With Crt Display Patents (Class 342/142)
  • Patent number: 11131761
    Abstract: A method of estimating position of an obstacle of a plurality of obstacles with a radar apparatus. An azimuth frequency, an elevation frequency and a range of the obstacle are estimated to generate an estimated azimuth frequency, an estimated elevation frequency and an estimated range of the obstacle. A metric is estimated from one or more of the estimated azimuth frequency, the estimated elevation frequency and the estimated range of the obstacle. The metric is compared to a threshold to detect an error in at least one of the estimated azimuth frequency and the estimated elevation frequency. On error detection, a sign of at least one of the estimated azimuth frequency and the estimated elevation frequency is inverted to generate a true estimated azimuth frequency and a true estimated elevation frequency respectively.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: September 28, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Sandeep Rao
  • Patent number: 11105910
    Abstract: A system for virtual aperture array radar tracking includes a transmitter that transmits first and second probe signals; a receiver array including a first plurality of radar elements positioned along a first radar axis; and a signal processor that calculates a target range from first and second reflected probe signals, corresponds signal instances of the first reflected probe signal to physical receiver elements of the radar array, corresponds signal instances of the second reflected probe signal to virtual elements of the radar array, calculates a first target angle between a first reference vector and a first projected target vector from the first reflected probe signal, and calculates a position of the tracking target relative to the radar array from the target range and first target angle.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: August 31, 2021
    Assignee: Oculii Corp.
    Inventors: Lang Hong, Steven Hong
  • Patent number: 10794697
    Abstract: Provided are a movable marking system, a method of controlling a movable marking apparatus, and a computer-readable recording medium.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: October 6, 2020
    Assignee: LANDOR ARCHITECTURE, INC.
    Inventors: Han Seok Nam, Dongjun Lee
  • Patent number: 10725162
    Abstract: A method of estimating position of an obstacle of a plurality of obstacles with a radar apparatus. An azimuth frequency, an elevation frequency and a range of the obstacle are estimated to generate an estimated azimuth frequency, an estimated elevation frequency and an estimated range of the obstacle. A metric is estimated from one or more of the estimated azimuth frequency, the estimated elevation frequency and the estimated range of the obstacle. The metric is compared to a threshold to detect an error in at least one of the estimated azimuth frequency and the estimated elevation frequency. On error detection, a sign of at least one of the estimated azimuth frequency and the estimated elevation frequency is inverted to generate a true estimated azimuth frequency and a true estimated elevation frequency respectively.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: July 28, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Sandeep Rao
  • Patent number: 10573965
    Abstract: Systems and methods are provided for implementing a phased array antenna having a boresight direction. A scan angle within a defined range of scan angles is selected for the phased array antenna such that the selected scan angle is different from a scan angle associated with the boresight direction. An antenna port impedance associated with each of a plurality of antenna elements comprising the phased array antenna varies with the scan angle of the phased array antenna. A plurality of amplifiers are each coupled to an antenna port of one of the plurality of antenna elements. Each of the plurality of amplifiers is configured such that a maximum value for a performance characteristic of the plurality of amplifiers is achieved when an impedance at the antenna port corresponds to the selected scan angle.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: February 25, 2020
    Assignee: VIASAT, INC.
    Inventor: Konrad Miehle
  • Patent number: 10509119
    Abstract: A system for virtual aperture array radar tracking includes a transmitter that transmits first and second probe signals; a receiver array including a first plurality of radar elements positioned along a first radar axis; and a signal processor that calculates a target range from first and second reflected probe signals, corresponds signal instances of the first reflected probe signal to physical receiver elements of the radar array, corresponds signal instances of the second reflected probe signal to virtual elements of the radar array, calculates a first target angle between a first reference vector and a first projected target vector from the first reflected probe signal, and calculates a position of the tracking target relative to the radar array from the target range and first target angle.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: December 17, 2019
    Assignee: Oculii Corp.
    Inventors: Lang Hong, Steven Hong
  • Patent number: 10412823
    Abstract: The present disclosure discloses a circuit component and a method for manufacturing the same and a bonding device. The circuit component comprises a first circuit board and a second circuit board, wherein at least one of the first circuit board and the second circuit board comprises a bonding detection layer configured to be capable of detecting a bonding parameter between the first circuit board and the second circuit board; and emitting a detection signal when the bonding parameter reaches a preset value.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: September 10, 2019
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., CHENGDU BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Tingliang Liu, Shuo Jin, Yuanjie Xu
  • Patent number: 10048366
    Abstract: A method for virtual aperture array radar tracking includes: transmitting first and second probe signals; receiving a first reflected probe signal at a radar array; receiving a second reflected probe signal at the radar array; calculating a target range from at least one of the first and second reflected probe signals; corresponding signal instances of the first reflected probe signal to physical receiver elements of the radar array; corresponding signal instances of the second reflected probe signal to virtual elements of the radar array; calculating a first target angle by performing beamforming from the signal instances of the first and second reflected probe signals; and calculating a position of the tracking target relative to the radar array from the target range and first target angle.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: August 14, 2018
    Assignee: Oculii Corp
    Inventors: Lang Hong, Steven Hong
  • Patent number: 9121943
    Abstract: The present disclosure relates to a beam forming device, comprising a transmit unit comprising at least two transmit elements that transmit radiation towards a scene, a receiver unit comprising at least two receive elements that receive radiation from said scene and that generate receive signals from said received radiation, and a beam forming unit that performs beam forming to obtain beam formed output signals from said receive signals by use of beam forming weights, wherein said beam forming weights are adapted to a distance between the scene and one or more transmit elements and/or receive elements, said distance being indicated by a distance indicator, and wherein said beam forming weights are changed if said distance changes.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: September 1, 2015
    Assignee: Sony Corporation
    Inventors: Richard Stirling-Gallacher, Qi Wang, Ralf Boehnke
  • Patent number: 8885774
    Abstract: A receiving apparatus, a receiving method, and an imaging apparatus and method, adapted to receive high frequency image signals. The apparatus includes two or more receiver channels, each receiver channel including an antenna pattern including plural antenna elements to receive high frequency image signals, a receiving mechanism to process the high frequency image signals received by the antenna elements into baseband signals, an analog-to-digital conversion mechanism to convert the baseband signals from the receiving mechanism into digital signals, a phase shifting mechanism to phase shift the digital signals, and a combining mechanism to combine the phase shifted digital signals from the receiver channels into combined signals.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: November 11, 2014
    Assignee: Sony Corporation
    Inventors: Richard Stirling-Gallacher, Ralf Boehnke, Qi Wang, Stefan Koch, Marc Guthoerl
  • Patent number: 8373580
    Abstract: Systems and methods for efficiently updating text or symbol annunciations outputted by an avionics system on legacy displays. Instead of using a set sweeping pattern to update the display, a smart updating concept is used. The smart updating concept senses when the pilot is adjusting the selected altitude control (or other user interface device that will alter displayed annunciations), then gives priority to updating the radial lines on the display that contain the annunciation field. Once the annunciation field has been updated, the display returns to normal operation.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: February 12, 2013
    Assignee: Honeywell International Inc.
    Inventors: Brian P. Bunch, Rodney Rowen, Brennan Kilty
  • Patent number: 7619556
    Abstract: The present invention is a method for obtaining a localizer deviation and a glide slope deviation for an aircraft. The method may include directing electromagnetic signals from a weather radar system of an aircraft towards a runway. The method may further include receiving return signals in response to the directed signals. The method may further include, based on the received return signals, determining an azimuth angle for the aircraft relative to the runway, determining an elevation angle for the aircraft relative to the runway, and determining a range for the aircraft relative to the runway. The method may further include based on the azimuth angle, the elevation angle, and the range, calculating the localizer deviation and the glide slope deviation for the aircraft.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: November 17, 2009
    Assignee: Rockwell Collins, Inc.
    Inventor: Patrick Dennis McCusker
  • Patent number: 7522094
    Abstract: A method and system is proposed for use by a moving station (such as a jetfighter) for radar tracking of a moving target (such as an air-to-air missile). The proposed method and system involves the use of a hybrid FSK/LFM (Frequency Shift Keying & Linear Frequency Modulation) scheme for acquiring a collection of raw radar data, a first Gaussian-noise filter array of one-stage linear Kalman filters for S/N-enhancement of the raw radar data, a trilateration module, and a second Gaussian-noise filter array of one-stage linear Kalman filters for S/N-enhancement of the trilateration-resulted radar data. These features allow the radar tracking of moving objects to be more fast and accurate.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: April 21, 2009
    Assignee: National Taiwan University
    Inventors: Po-Jen Tu, Jean-Fu Kiang
  • Patent number: 7518548
    Abstract: A method for determining a quality of measurement in a radar level gauge system arranged to measure a filling level of a content contained in a tank, comprising the steps of providing an antenna having at least two separate antenna functions, including a transmitting function and a receiving function, transmitting microwave energy from said transmitting function of said antenna, receiving a reflected part of said microwave energy, reflected from said level of content to be gauged, using said receiving function of said antenna, detecting a leakage signal, said leakage signal leaking from said transmitting function of said antenna to said receiving function of said antenna, and determining, based on a relationship between said leakage signal and said reflected signal, a level of quality of said reflected signal. An advantage with the above method is its improved accuracy when determining the level of quality, since there is no need for a separate reference reflection point.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: April 14, 2009
    Assignee: Rosemount Tank Radar AB
    Inventor: Olov Edvardsson
  • Publication number: 20070222671
    Abstract: A millimeter wave image processor, capable of performing imaging by matching and filtering while considering a spherical wave on an antenna face in a near field, is provided. The processor includes: a T-antenna which receives a radio wave emitted by a target; an A/D converter which A/D converts signals received by the T-antenna; a correlation processing unit which performs correlation processing to a combination of signals of a horizontal conversion output and a vertical conversion output among A/D converted data; and an imaging processor which correlates a reference function in which a received signal is generated theoretically on an assumption that the target is at a position of a focused distance and a received signal of a spherical wave received by the T-antenna for each pixel in the field of view to thereby create an image of the target.
    Type: Application
    Filed: March 21, 2007
    Publication date: September 27, 2007
    Inventor: Hitoshi Nohmi
  • Patent number: 7230524
    Abstract: An obstacle detection device includes: an obstacle detection section (11) for emitting beams having a predetermined divergence angle consecutively in a plurality of different directions, receiving a reflected wave from an obstacle for each direction, and detecting the obstacle existing within an emission angle range of the beam for the direction; a distance calculation section (12) for calculating a distance representative of an interspace between the obstacle and the vehicle for each direction based on a received signal of the reflected wave for the direction outputted from the obstacle detection section; an obstacle image creation section (14) for creating, as an obstacle image, a figure two-dimensionally developed in the emission angle range of the beam emitted in each direction while treating, as a basis for image creation, the distance calculated by the distance calculation section for the direction, and for creating and outputting image data for displaying the obstacle image; and a display section (15)
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: June 12, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yutaka Watanabe, Takashi Yoshida, Akira Ishida
  • Publication number: 20030071733
    Abstract: A system, electronic device and method are provided that utilize the positioning capabilities of impulse radio technology to track one or more moving athletes. The movement of these athletes can be displayed on a television, a handheld unit or an Internet site. In addition, the present invention can utilize the communication capabilities of impulse radio technology to enable secure communications to take place between an athlete and their teammates, fans or coaches. The athletes can include, for example, track and field athletes, baseball players, football players, basketball players, soccer players or hockey players.
    Type: Application
    Filed: June 4, 2001
    Publication date: April 17, 2003
    Applicant: Time Domain Corporation
    Inventors: David J. Hall, Jonnathan H. Kim
  • Patent number: 6326915
    Abstract: A radar device for use in backing up a vehicle is disclosed herein. A plurality of wave sensors is installed on a rear portion of a vehicle for detecting an obstacle therebehind. A master controller has a plurality of transceiver circuits and a microprocessor connected to the plurality of transceiver circuits. Each transceiver circuit corresponds to one of the plurality of wave sensors. The microprocessor activates the plurality of transceiver circuits to drive the plurality of wave sensors for transmitting and receiving ultrasound wave signals thereby determining the location of the obstacle. A location display device is connected to the master controller for receiving and decoding data related to the location of the obstacle thereby indicating the direction of the obstacle and displaying in numerical form the distance between the obstacle and the vehicle.
    Type: Grant
    Filed: January 26, 2000
    Date of Patent: December 4, 2001
    Assignee: Tung Thih Enterprise Co., Ltd.
    Inventors: Shin-Chung Chen, Sen-Jung Chen
  • Patent number: 5905455
    Abstract: A cost-effective wideband radar system capable of locating objects, such as reinforcing steel rods, pipes, and air bubbles, objects located behind or within a volume of, e.g., concrete, soil, wood, or air. A sequence of wideband radar pulses are emitted without a carrier from each of two transmit antennas. The system includes a receiver that detects reflected pulse energy (echoes) that result when transmitted pulses encounter a change in material (e.g., an air to metal change or concrete to metal change). These amplitudes of the echoes are visually displayed along with the length of the transmit/echo path for each transmitter. The lengths of the displayed transmit/echo paths are compared to determine whether the system is centered over an object located within or behind a volume, the system being centered over the object when the transmit/echo paths for each transmitter/receiver combination are of equal length.
    Type: Grant
    Filed: October 23, 1997
    Date of Patent: May 18, 1999
    Assignee: Zircon Corporation
    Inventors: Charles E. Heger, James C. Long, Noel H. C. Marshall, Paul W. Dodd
  • Patent number: 5614831
    Abstract: A device for gauging the level of a fluid in a container includes a floating roof, a transmitter for feeding a first microwave signal downwards in the direction of a fluid surface of the fluid, and a receiver for receiving a reflected microwave signal. The device includes a collector located above and in the vicinity of the floating roof, collecting the first microwave signal producing a collected microwave signal. The device also includes a vertical wave guide passing through the floating roof. The vertical wave guide guides the collected microwave signal to the fluid surface, and receives a reflected microwave signal reflected from the fluid surface. The vertical wave guide then guides the reflected microwave signal back to the collector and further to the receiver. It is a special feature to permit accurate measurement of the level of the fluid surface without having direct access to the surface.
    Type: Grant
    Filed: February 13, 1995
    Date of Patent: March 25, 1997
    Assignee: Saab Marine Electronics Ab
    Inventor: Kurt O. Edvardsson
  • Patent number: 5455591
    Abstract: A high speed and high precision coordinate transformation process for transforming image data in range-azimuth coordinates to horizontal-vertical display coordinates. The process is comprised of the following steps. Recursion initialization parameters and values for a perspective transformation are computed. Then, range and azimuth values using predetermined recursion equations are computed. A critical range factor using predetermined recursion equations and inverse operation is computed. Range and azimuth results are computed. Display address values are computed. Data is retrieved and the data is stored in display locations. A decision is then made whether the last display address has been stored. Additional display address values are computed until all addresses have been computed, and the process is ended once all addresses have been computed.
    Type: Grant
    Filed: June 30, 1994
    Date of Patent: October 3, 1995
    Assignee: Hughes Aircraft Company
    Inventor: Leo H. Hui