Ppi Type Patents (Class 342/144)
  • Patent number: 10191141
    Abstract: The ultra-violet radar display screen is a low latency display screen that is adapted for use with radar systems. The ultra-violet radar display screen uses a radiation source that is used to fluorescence a fluorescent screen. The track of the generated radiation source is controlled using a plurality of rotating structures that send radiation to a target location on the fluorescent screen that is provided by the radar system the ultra-violet radar display screen is adapted to work with. The ultra-violet radar display screen improves on the existing response times of existing radar display screens because of the response time of the radiation source combined with the rotational speed and flexibility provided by each of the plurality of rotating structures. The ultra-violet radar display screen comprises a fluorescent screen, a plurality of rotating structures, a radiation source, and a synchronous resolution device.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: January 29, 2019
    Inventor: Norman Barrette Czerski
  • Patent number: 9019152
    Abstract: A standard wafer is provided including a substrate; a first layer of semiconductor material formed on the substrate; a bar formed over the first layer of semiconductor material with an interlayer interposed therebetween; and a first sidewall spacer and a second sidewall spacer formed on the opposite sides of the bar respectively, in which the bar and the first layer of semiconductor material are formed of a same semiconductor material, and the interlayer interposed between the first layer of semiconductor material and the bar is formed of a first oxide, and the first sidewall spacer and the second sidewall spacer are formed of a second oxide. A corresponding fabrication method of the standard wafer is also provided.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: April 28, 2015
    Assignee: Semiconductor Manufacturing International Corporation (Shanghai)
    Inventors: BoXiu Cai, YanLei Zu
  • Publication number: 20030151785
    Abstract: The present invention relates generally to an optical element (OE) which can serve as an optical analogue to digital converter (OADC) and/or an optical digital to analogue converter (ODAC), and uses therefor. The OE can be usefully employed in a variety of applications to transform analogue information present in a light wave front into digital light signals and/or to transform digital information into analogue information in the form of the physical parameters of a light wave front.
    Type: Application
    Filed: October 31, 2002
    Publication date: August 14, 2003
    Inventor: Victor Vertoprakhov
  • Patent number: 5455591
    Abstract: A high speed and high precision coordinate transformation process for transforming image data in range-azimuth coordinates to horizontal-vertical display coordinates. The process is comprised of the following steps. Recursion initialization parameters and values for a perspective transformation are computed. Then, range and azimuth values using predetermined recursion equations are computed. A critical range factor using predetermined recursion equations and inverse operation is computed. Range and azimuth results are computed. Display address values are computed. Data is retrieved and the data is stored in display locations. A decision is then made whether the last display address has been stored. Additional display address values are computed until all addresses have been computed, and the process is ended once all addresses have been computed.
    Type: Grant
    Filed: June 30, 1994
    Date of Patent: October 3, 1995
    Assignee: Hughes Aircraft Company
    Inventor: Leo H. Hui
  • Patent number: 5025492
    Abstract: A damping circuit is described for the antenna resonance circuit (28) of a radio transmitter-receiver (10) which in a transmitting phase transmits a time-limited high-energy interrogation pulse and in a receiving phase following the transmitting phase is ready to receive high-frequency response signals coming from a responder (26) which transmits said response signals as reaction to the reception of the interrogation pulse. In the damping circuit (24) a damping member (R5, R5, R6) is provided which is adapted to be connected to the antenna resonance circuit and disconnected therefrom. A switching means (T4, T5) on receiving a switching voltage applies the damping member (R4, R5, R6) to the antenna resonance circuit (28).
    Type: Grant
    Filed: April 11, 1990
    Date of Patent: June 18, 1991
    Assignee: Texas Instruments Deutschland GmbH
    Inventor: Bruno Viereck