Scanning Patents (Class 342/158)
  • Patent number: 10338187
    Abstract: A spherically constrained optical seeker assembly includes a spherical lens having an outer surface, an optical sensor assembly associated with the spherical lens, and a gimbal assembly. The optical sensor assembly is coupled to the gimbal assembly. The gimbal assembly is configured to move the optical sensor assembly to at least one desired position on the outer surface of the spherical lens. A method of manipulating the optical sensor assembly includes positioning the optical sensor assembly with respect to the spherical lens and moving the optical sensor assembly to at least one desired position with respect to the outer surface of the spherical lens by the gimbal assembly.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: July 2, 2019
    Assignee: RAYTHEON COMPANY
    Inventor: Michael K. Burkland
  • Patent number: 10254145
    Abstract: An antenna apparatus for connection to a fill level measurement device for detecting a topology of a filling material surface is provided, including an antenna configured to emit a measurement signal towards the surface and to receive the measurement signal reflected from the surface; a drive shaft configured to rotate the antenna about the drive axis while the measurement signal is being emitted; a first energy store configured to supply the antenna apparatus with electrical energy, wherein the antenna includes an array of radiator elements configured to emit the measurement signal and to receive the reflected measurement signal, and wherein the first energy store is attached to the antenna apparatus such that it rotates with the antenna when the antenna is rotated by the drive shaft.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: April 9, 2019
    Assignee: VEGA GRIESHABER KG
    Inventors: Levin Dieterle, Roland Welle
  • Patent number: 10222178
    Abstract: A method of mapping a target region image to a referenced image includes steps of acquiring the target region image. The method also includes acquiring the referenced image overlapping the target region image. The method further includes determining a number of common subregions in an intersection of the referenced image and the target region image, determining offsets between the common subregions, computing a distortion map of the target region image over the intersection, and remapping the target region image to match the reference image. The method can be utilized in a Unmanned Aerial Vehicle (UAV) and the target image can be a SAR image.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: March 5, 2019
    Assignee: LITEL INSTRUMENTS
    Inventors: Robert O. Hunter, Jr., Adlai H. Smith
  • Patent number: 10151825
    Abstract: A radar detection system that includes a signal transmitter, a signal receiver, a coupling module, two antennas and a switching module is provided. The coupling module includes a first and a second coupling paths each corresponding to a group of phase-shifting parameters. Under a first operation mode, the switching module connects the signal transmitter to the first coupling path to perform signal transmission from the two antennas along a first axis and connects the signal receiver to the second coupling path to perform signal receiving from the two antennas along a second axis. Under a second operation mode, the switching module connects the signal transmitter to the second coupling path to perform signal transmission from the two antennas along the second axis and connects the signal receiver to the first coupling path to perform signal receiving from the two antennas along the first axis.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: December 11, 2018
    Assignee: HTC Corporation
    Inventors: Ta-Chun Pu, Chun-Yih Wu, Yen-Liang Kuo
  • Patent number: 10131446
    Abstract: An apparatus comprises a time-of-flight ranging sensor that scans in two or more directions relative to the apparatus over a series of scanning cycles. A processor computes, and to communicates to the time-of-flight ranging sensor, a pulse repetition rate (PRR) for the time-of-flight ranging sensor for each of the two or more directions based on information about surrounding terrain of the apparatus and a sensor pointing schedule for the time-of-flight ranging sensor that indicates directions that the time-of-flight ranging sensor is scheduled to point at time during the scanning cycles. In addition or lieu of computing the PRR, the processor(s) matches returns from pulses of the time-of-flight ranging sensor to the pulses probabilistically based on a current map of the vehicle's surroundings and scan coherence analysis for shapes in the returns. The current map can then be updated based on the matched returns for the next iteration.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: November 20, 2018
    Assignee: NEAR EARTH AUTONOMY, INC.
    Inventors: Adam Stambler, Lyle J. Chamberlain, Sebastian Scherer
  • Patent number: 10075221
    Abstract: A method is performed by a first communication device for directing an antenna beam based on motion. The method includes directing an antenna beam in a first direction. The method further includes receiving motion data that indicates movement of the first communication device or a second communication device. Moreover, the method includes determining, based on the motion data, a change in direction of the antenna beam from the first direction to a second direction toward the second communication device.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: September 11, 2018
    Assignee: MOTOROLA MOBILITY LLC
    Inventors: Philip G Lee, Mark Braun, Ranjeet Gupta, Mary Hor-Lao
  • Patent number: 10042050
    Abstract: A vehicle radar system for monitoring a blind spot of a vehicle includes a radar transmitter mounted on the vehicle and a transmitting antenna coupled to the radar transmitter. The transmitting antenna transmits radiation in a pattern into a region adjacent to the vehicle, the pattern comprising a first radiation lobe and a second radiation lobe. A null region of the pattern between the first lobe and the second lobe is directed into the region approximately perpendicular to a longitudinal axis of the vehicle, the longitudinal axis running between a rear end of the vehicle and a front end of the vehicle and running along a line of travel of the vehicle.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: August 7, 2018
    Assignee: Veoneer US, Inc.
    Inventors: Bernard De Mersseman, Olof Eriksson, Roine Andersson
  • Patent number: 10036800
    Abstract: Systems and methods are provided for the filtering of coherent noise signals. In an illustrative embodiment, a pulsed electronic signal receives varying phase shifts for each of its pulses prior to transmission. When coherent noise interferes with the transmitted signal, received signal receives a phase shift opposite of that applied prior to transmission such that the electronic signal is restored and the coherent noise becomes non-coherent. In another embodiment, width of each transmitted pulses can be varied prior to transmission, but a constant midpoint-to-midpoint time is maintained. After receiving a signal with coherent noise interference, the midpoints of the pulses are aligned causing the coherent noise to become non-coherent.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: July 31, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: John Paul Schofield, III, Jack Eugene Fulton, Jr., Terry Wayne Lockridge
  • Patent number: 10031220
    Abstract: Error that occurs when an absolute velocity of a target object is measured by using an antenna installed on a ship body that rocks and drifts in a complex manner since it floats on the sea is reduced. An antenna is installed on a ship body and transceives electromagnetic waves. A roll angle and a pitch angle of the ship body are detected by using an inclination sensor. An antenna velocity calculator calculates an antenna velocity of the antenna by using the detected roll and pitch angles of the ship body. An antenna velocity compensator compensates the antenna velocity of the antenna for a relative velocity between the ship body and a target object, the antenna velocity calculated by the antenna velocity calculator, the relative velocity obtained based on reflection waves received by the antenna.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: July 24, 2018
    Assignee: Furuno Electric Co., Ltd.
    Inventor: Sae Takemoto
  • Patent number: 10018713
    Abstract: A radar system for motor vehicles has at least two radar sensors for emitting and receiving radar radiation for monitoring the surroundings of the motor vehicle, the at least two radar sensors being each positioned at an angle between 40 degrees and 50 degrees to an axis, and the at least two radar sensors being configured in such a way that the respective antenna has a pivotable visual range of an angle between at least ?60 degrees and +60 degrees, in particular between ?45 degrees and +45 degrees, relative to the main emission direction of the respective radar sensor.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: July 10, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Thomas Binzer, Christian Waldschmidt, Raphael Hellinger
  • Patent number: 10012727
    Abstract: A method for detecting targets, implemented by a multifunction radar wherein the radar comprises an antenna subdivided into at least two portions and is configured to transmit at least two types of signals on distinct frequency bands and to perform at least one ground detection or imaging function. During the transmission phases of an antenna portion, the reception of each antenna portion of the radar is cut. The method comprises, for each range gate, a step of reception of signals, a step of estimation of the autocorrelation matrix associated with the interferences the ground returns and from the thermal noise of the radar and a step of target detection using a test of the generalized maximum likelihood. A multifunction radar configured to implement the method for detecting targets is provided.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: July 3, 2018
    Assignee: THALES
    Inventors: Cyrille Enderli, Jean-Yves Delabbaye
  • Patent number: 9958543
    Abstract: The present method and system relates to the determination of elevation angles for the case in which more than one target object is situated within a radar cell. Through the estimation according to the present invention of the elevation angles in multi-target scenarios, even in such cases both azimuth angles and elevation angles can be determined, and a reliable classification of the respective target objects can then take place. The present system also relates to a motor vehicle having a radar system that includes an azimuth and elevation angle estimation method and system.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: May 1, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Michael Schoor, Volker Gross
  • Patent number: 9910150
    Abstract: A method is provided for detecting at least two objects, particularly using a radar system having the steps of sending out a first radio signal using a first sending device, the first sending device being situated in a horizontal plane having at least two first antenna elements, receiving the radio signal using the at least two first antenna elements, receiving the radio signal using at least two second antenna elements, which are situated in different horizontal positions each above or below corresponding first antenna elements of the horizontally situated antenna elements, calculating respectively one azimuth angle and one angle of elevation from at least two objects located in front of the first antenna elements and the second antenna elements from the first radio signal received by the first antenna elements and from the first radio signal received by the second antenna elements. Furthermore, an antenna array, a radar system, and a vehicle are provided.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: March 6, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Michael Schoor, Goetz Kuehnle, Volker Gross, Benedikt Loesch
  • Patent number: 9897695
    Abstract: A frequency-modulation, continuous-wave (FMCW) radar system may include a transmit array including a number of transmit antenna elements in a first dimension that is greater than a number of transmit antenna elements in a second dimension. The transmit array may output an FMCW transmit beam that illuminates an area with a greater extent in a first illumination dimension than in a second illumination dimension. The radar system may include a transmit electronics module that electronically scans the transmit beam in the second illumination dimension, and a receive array comprising receive antenna elements. The radar system may include a receive electronics module that generates, using a plurality of receive signals, a plurality of receive beams within the area illuminated by the transmit beam and electronically scans each receive beam in the second illumination dimension such that scanning of each receive beam is coordinated with scanning of the transmit beam.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: February 20, 2018
    Assignee: Honeywell International Inc.
    Inventor: David C. Vacanti
  • Patent number: 9891310
    Abstract: A radar system uses multiple-beam maximum likelihood estimation (MLE) during both search and tracking operations. During search, a four beam sequential beam cluster may be used to search for targets in a region-of-interest. During tracking, a three beam triad may be used to track one or more detected targets. In some embodiments, a beam selector switch may be used to allow two offset receive beams to time share a beamformer output port to generate the four beam sequential cluster.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: February 13, 2018
    Assignee: Raytheon Company
    Inventors: Kaichiang Chang, Yong Liu, David R. Schmidt, Stephen M. Sparagna, Frederic C. Stevens, IV
  • Patent number: 9859959
    Abstract: The present invention relates to a method for alignment of a first node with at least one secondary node in a wireless communication network. The first node includes first node antenna beams with corresponding designated pointing angles. For each such beam, the method comprises the steps of, for each secondary node: directing a first node antenna beam in its designated pointing angle; using a secondary node antenna beam where objects can generate signal reflections/diffractions; and detecting at least one signal property of reflected/diffracted signals. The method further comprises the steps: exchanging information between the nodes, regarding beam angles resulting in said signal property exceeding a corresponding threshold level; and selecting a first node beam angle and a secondary node beam angle from the beam angles for communication between the first node and each secondary node.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: January 2, 2018
    Assignee: Telefonaktiebolaget LM Ericsson (Publ)
    Inventors: Anders Derneryd, Jan-Erik Berg, Ulrika Engström, Lars Manholm
  • Patent number: 9847573
    Abstract: A method for alignment of a first node with a second node in a wireless communication network. The method comprises directing a first node first antenna beam at a first pointing angle, using a second node antenna beam for scanning a first volume with objects being able to generate signal reflections/diffraction, detecting a first signal property of reflected/diffracted signals; and saving scan angles resulting in said first signal property exceeding a first threshold level. The method further comprises directing the second node antenna beam at said saved angles, and, for each such angle: using a first node second antenna beam for scanning; and detecting at least a second signal property of reflected/diffracted signals; exchanging information between the nodes comprising first node second antenna beam pointing direction angles resulting in said second signal property exceeding a second threshold level and said saved angles; and selecting angles for communication.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: December 19, 2017
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Anders Derneryd, Jan-Erik Berg, Ulrika Engström, Lars Manholm
  • Patent number: 9634388
    Abstract: A fixed phase shift for each of a plurality of radio frequency signal components directed to or received from a plurality of antenna elements is formed in a phase shifter. A desired antenna beam pattern with at least one grating lobe is formed on the basis of the phase-shifted radio frequency signal components of the antenna elements in a predefined antenna structure.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: April 25, 2017
    Assignee: ELEKTROBIT WIRELESS COMMUNICATIONS OY
    Inventors: Juha Ylitalo, Taavi Hirvonen
  • Patent number: 9552732
    Abstract: A driver assistance system senses and provides an indication of an approaching vehicle located sidewardly and rearwardly within an immediately adjacent driving lane to a host vehicle. The system includes left and right rear sensor units proximate rear corners of the host vehicle. The rear sensor units sense vehicles on respective sides and rearwardly of the host vehicle. When either rear sensor unit detects an approaching vehicle within the adjacent lane on the opposite side of the host vehicle therefrom, the rear sensor unit provides an opposite-lane warning signal to the other rear sensor unit. The system includes providing host vehicle driving path information to the rear sensor units for determining the path of the adjacent lanes adjacent to and rearward of the host vehicle. The path information accounts for curves in a roadway. Further, the rear sensor units detect the speed of a closing vehicle.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: January 24, 2017
    Assignee: Robert Bosch GmbH
    Inventors: Oliver Schwindt, Bhavana Chakraborty, Kevin Buckner, James Kim
  • Patent number: 9513365
    Abstract: Respective sector radars generate first and second transmission signals by multiplying any one Spano code sequence and any one orthogonal code sequence, selected among 2(N+1) first and second Spano code sequences which are different from each other and 2(N+1) first and second orthogonal code sequences which are different from each other, in a predetermined order in each transmission period, where N is an integer of 1 or greater. Respective sector radars convert the first and second transmission signals into first and second high frequency signals, and transmit the first and second high frequency signals through first and second transmission antennas. The 2(N+1) first orthogonal code sequences and the 2(N+1) second orthogonal code sequences used in the respective sector radars are orthogonal over transmission periods of M multiples of 2(N+1), where M is an integer of 2 or greater.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: December 6, 2016
    Assignee: Panasonic Corporation
    Inventors: Tadashi Morita, Takaaki Kishigami
  • Patent number: 9291707
    Abstract: A 3D avian radar sampling system comprises a 3D volume scanning radar system and an avian track interpreter. Scanning methods employed ensure that volume revisit times are suitably short and track data produce 3D target trajectories. The avian interpreter uses the track data from the volume scanning radar to create detailed avian activity reports that convey bird abundance and behavior within a 3D cylindrical volume on intervals including hourly, daily, weekly, monthly and yearly. Hourly activity reports (updated typically every 15 minutes) provide enhanced situational awareness of developing hazards and are actionable, allowing operators to dispatch wildlife control personnel to respond to threats.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: March 22, 2016
    Assignee: Accipiter Radar Technologies nc.
    Inventors: Timothy J. Nohara, Peter T. Weber, Andrew M. Ukrainec, Al-Nasir Premji, Graeme S. Jones, Nelson Costa, Robert C. Beason
  • Patent number: 8929821
    Abstract: A wireless short range radio-frequency master device adapted to create and maintain a portable private network of wireless short range radio-frequency slave devices wherein the master device is configured to detect and register suitable slave devices for a network, and is capable of determining the proximity of any registered slave device with respect to the master device in use, the master device further being adapted to enable a user to define two or more groups of registered slave devices selected from the total number of registered slave devices and to enable a user to select a defined group of such registered slave devices as an active group, thereby forming an active portable private network of wireless short range radio frequency devices comprising the master device and selected registered slave devices within the selected group.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: January 6, 2015
    Assignee: Bigger Than The Wheel Ltd.
    Inventors: Mark Elsom-Cook, Steve P Morris
  • Patent number: 8847815
    Abstract: An electronic scanning radar apparatus mounted on a moving object includes a receiving unit including a plurality of antennas receiving a received wave arriving from a target having reflected a transmitted wave, a beat signal generating unit generating a beat signal from the transmitted wave and the received wave, a frequency resolving unit resolving the beat signal in beat frequencies and to calculate complex data based on the beat signal resolved for each beat frequency, and an azimuth detecting unit calculating a direction of arrival of the received wave based on original complex data calculated based on the beat signal, wherein the azimuth detecting unit includes a data extending unit generating extended complex data by extending the number of data based on the original complex data, and a first computation processing unit calculating the direction of arrival of the received wave based on the extended complex data.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: September 30, 2014
    Assignee: Honda elesys Co., Ltd.
    Inventor: Junji Kanamoto
  • Patent number: 8730096
    Abstract: An electronic scanning type radar device mounted on a moving body includes: a transmission unit transmitting a transmission wave; a reception unit comprising a plurality of antennas receiving a reflection wave of the transmission wave from a target; a beat signal generation unit generating a beat signal from the transmission wave and the reflection wave; a frequency resolution processing unit frequency computing a complex number data; a target detection unit detecting an existence of the target; a correlation matrix computation unit computing a correlation matrix from each of a complex number data of a detected beat frequency; a target consolidation processing unit linking the target in a present detection cycle and a past detection cycle; a correlation matrix filtering unit generating an averaged correlation matrix by weighted averaging a correlation matrix of a target in the present detection cycle and a correlation matrix of a related target in the past detection cycle; and a direction detection unit compu
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: May 20, 2014
    Assignee: Honda elesys Co., Ltd.
    Inventors: Junji Kanamoto, Hiroyuki Akimoto
  • Patent number: 8717229
    Abstract: An active antenna array is arranged to activate subsets of switchable elements causing the antenna to form a first beam having a first beam pattern, and later to form a second beam having a second beam pattern of substantially identical far field radiation pattern to the first beam pattern but with different origins. A receiver receives radiation reflected from a target back to the antenna when the antenna is configured with the first beam pattern and then when configured with the second beam pattern, and compares the phase of the radiation received at the receiver when the antenna is configured with the first beam pattern with the phase of the radiation received at the receiver when the antenna is configured with the second beam pattern to provide a phase difference signal. A target locating means determines the angular location of the target from the phase difference signal.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: May 6, 2014
    Assignee: TRW Automotive US LLC
    Inventor: Richard Blachford
  • Patent number: 8674875
    Abstract: The invention provides a security scanner that produces a radar profile of a clothed person or another object such as a bag carried by a person at a distance and does not require close proximity of the person or object to the scanner itself. The scanner includes a millimeter wave antenna system optimised for short-range active imaging and arranged to provide rapid high-resolution images of an object or person of interest and processing means for resolving the images so as to detect the presence of predetermined objects. The processing means preferably includes means for comparing contrasts in reflectivity in the scanned images with predetermined expected values from skin and light clothing. The processing means may also include means for detecting predetermined behavioral or physical traits such as the effect on gait on carried weighty objects or stiff structures strapped to the person from the images of a scanned object or person. The scanner may be incorporated within a turnstile access arrangement.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: March 18, 2014
    Assignee: MBDA UK Limited
    Inventors: Christopher Ralph Carter, Charles Anthony Rowatt
  • Publication number: 20140062763
    Abstract: A transmission beam control unit 8 changes a main beam direction of a radar transmission beam every predetermined number of transmission periods. A radar transmitting unit Tx transmits a radar transmission signal using the radar transmission beam of which the main beam direction has been changed. In a radar receiving unit Rx, an estimation range selection unit 22 selects an estimation range of the direction of arrival of a reflected wave signal by limiting the estimation range to the approximate transmission beam width on the basis of the transmission beam width of the radar transmission beam and the output from the transmission beam control unit 8. The direction-of-arrival estimation unit 23 estimates the direction of arrival of the reflected wave signal on the basis of phase information between a plurality of antennas according to the selected range.
    Type: Application
    Filed: February 6, 2013
    Publication date: March 6, 2014
    Inventors: Takaaki Kishigami, Yoichi Nakagawa
  • Patent number: 8654005
    Abstract: Methods for resolving radar ambiguities using multiple hypothesis tracking are described. One such method includes (a) choosing a single waveform for each of a plurality of dwells of a first scan, wherein the single waveforms of consecutive scans are different, (b) generating the first scan using the single waveform for each of the dwells of the first scan, (c) receiving observation data as a result of the first scan, the observation data comprising measured positions of true targets and false targets, (d) generating, using multiple hypothesis tracking, position predictions for true targets and false targets, (e) comparing the predicted positions and measured positions, repeating (a)-(e) until a preselected process condition is met, and determining the true targets based on the results of the comparisons.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: February 18, 2014
    Assignee: Raytheon Company
    Inventors: Keian Christopher, Samuel S. Blackman, Robert A. Rosen, Robert J. Dempster
  • Patent number: 8648745
    Abstract: An electronic scanning radar apparatus in accordance with an embodiment of the present invention, a frequency resolving unit resolves beat signals into beat frequencies having a predetermined frequency bandwidth and calculates complex data based on the resolved beat signals for each beat frequency. An azimuth calculating unit estimates a number of received waves based on eigenvalues of a matrix being part of a primary normal equation having complex data as elements calculated from the beat signals, creates coefficients calculated as a solution of a secondary normal equation of a signal subspace created based on eigenvalues and eigenvectors corresponding to the number of the estimated waves, and calculates a DOA of a received wave based on the created coefficients.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: February 11, 2014
    Assignee: Honda elesys Co., Ltd.
    Inventor: Junji Kanamoto
  • Patent number: 8581777
    Abstract: In an electronic scanning radar apparatus, a receiving unit includes a plurality of antennas receiving a reflected wave arriving from a target having reflected a transmitted wave as a received wave. A beat signal generating unit generates beat signals from the transmitted wave and the received wave. A frequency resolving unit resolves the beat signals in beat frequencies having a predetermined frequency bandwidth and calculates complex data based on the resolved beat signals for each beat frequency. An azimuth calculating unit estimates an order of a normal equation used to calculate a DOA of the received wave on the basis of eigenvalues of a primary order matrix having complex data calculated from the beat signals as elements, creates a secondary order normal equation based on the estimated order, and calculates the DOA of the received wave based on the created secondary order normal equation.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: November 12, 2013
    Assignee: Honda elesys Co., Ltd.
    Inventors: Junji Kanamoto, Itaru Izumi, Hiroyuki Akimoto
  • Patent number: 8558734
    Abstract: A ground based avian radar receive antenna is implemented using a vertically oriented offset parabolic cylindrical antenna. The desired azimuth beamwidth is determined by the width of the parabolic cylinder reflector surface and the desired elevation beamwidth by the height of the parabolic cylinder reflector surface. A vertical array of antenna elements is mounted along the vertical focal line to provide electronic scanning in elevation. Low sidelobe levels are obtained using tapered antenna element illumination. Low cost modular construction with high reflector accuracy is obtained by attaching a thin metal reflector to thin ribs machined or stamped in the shape of the parabolic cylinder reflector surface. The antenna is enclosed in a radome and mechanically rotated 360 degrees in azimuth.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: October 15, 2013
    Inventor: Gregory Hubert Piesinger
  • Publication number: 20130229301
    Abstract: An electronic scanning type radar device mounted on a moving body includes: a transmission unit transmitting a transmission wave; a reception unit comprising a plurality of antennas receiving a reflection wave of the transmission wave from a target; a beat signal generation unit generating a beat signal from the transmission wave and the reflection wave; a frequency resolution processing unit frequency computing a complex number data; a target detection unit detecting an existence of the target; a correlation matrix computation unit computing a correlation matrix from each of a complex number data of a detected beat frequency; a target consolidation processing unit linking the target in a present detection cycle and a past detection cycle; a correlation matrix filtering unit generating an averaged correlation matrix by weighted averaging a correlation matrix of a target in the present detection cycle and a correlation matrix of a related target in the past detection cycle; and a direction detection unit compu
    Type: Application
    Filed: April 9, 2013
    Publication date: September 5, 2013
    Applicant: Honda elesys Co., Ltd.
    Inventors: Junji KANAMOTO, Hiroyuki Akimoto
  • Patent number: 8514383
    Abstract: Arbitrarily deploying scanning polarized RF reference sources and using them to establish a full position and angular orientation reference coordinate system or a full angular orientation reference coordinate system that objects property equipped with polarized RF sensors could use to determine their angular position and/or orientation relative to the reference coordinate system.
    Type: Grant
    Filed: September 18, 2010
    Date of Patent: August 20, 2013
    Assignee: Omnitek Partners LLC
    Inventor: Jahangir S. Rastegar
  • Patent number: 8477063
    Abstract: A obstacle detection system comprises a transmission antenna operable to radiate a radio frequency (RF) signal and a transmitter operable to control transmission of the RF signal from the antenna. The obstacle detection system also comprises a receiver antenna operable to receive a reflection of the RF signal; and processing circuitry operable to analyze a plurality of characteristics of a radar cross section (RCS) of the received reflection to identify an obstacle and one or more physical attributes of the obstacle.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: July 2, 2013
    Assignee: Honeywell International Inc.
    Inventors: David W. Meyers, Long Bui, Yi-Chi Shih, Alan G. Cornett
  • Patent number: 8446312
    Abstract: An electronic scanning type radar device mounted on a moving body includes: a transmission unit transmitting a transmission wave; a reception unit comprising a plurality of antennas receiving a reflection wave of the transmission wave from a target; a beat signal generation unit generating a beat signal from the transmission wave and the reflection wave; a frequency resolution processing unit frequency computing a complex number data; a target detection unit detecting an existence of the target; a correlation matrix computation unit computing a correlation matrix from each of a complex number data of a detected beat frequency; a target consolidation processing unit linking the target in a present detection cycle and a past detection cycle; a correlation matrix filtering unit generating an averaged correlation matrix by weighted averaging a correlation matrix of a target in the present detection cycle and a correlation matrix of a related target in the past detection cycle; and a direction detection unit compu
    Type: Grant
    Filed: December 25, 2008
    Date of Patent: May 21, 2013
    Assignee: Honda Elesys Co., Ltd.
    Inventors: Junji Kanamoto, Hiroyuki Akimoto
  • Patent number: 8446577
    Abstract: A method for determining an angular orientation of a sensor relative to a source. The method including: amplitude modulating at least two synchronized polarized Radio Frequency (RF) carrier signals with a predetermined relationship between their amplitude modulation of their electric field components and their polarization states to provide a scanning polarized RF reference source with a desired scanning range, pattern and frequency; detecting the scanning polarized RF reference source at the sensor; and using peak detection or pattern matching analysis on a signal detected at the sensor to determine the angular orientation of the sensor relative to scanning polarized RF reference source.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: May 21, 2013
    Assignee: Omnitek Partners, LLC
    Inventor: Jahangir S. Rastegar
  • Patent number: 8400350
    Abstract: An electronic scanning radar device that detects an azimuth angle of a target based on a phase difference between a first pair of received waves received by a first pair of antennas separated by a prescribed distance, and combines the first pair of received waves and generates a first composite wave. The composite wave has a steep antenna pattern, for which the amount of level change is large for the amount of change in azimuth angle, and an azimuth angle judgment unit performs true/false judgment in which a detected azimuth angle is judged to be true when the level of the above first composite wave is equal to or above a reference value, and the azimuth angle is judged to be false when the level is below the reference value.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: March 19, 2013
    Assignee: Fujitsu Ten Limited
    Inventor: Yoshihide Uesato
  • Patent number: 8368586
    Abstract: A system includes a multi-system approach to detecting concealed weapons and person borne improvised explosive devices (PBIED). A first and second radar system operate at different center frequencies to provide, respectively, isolation of a target of interest from clutter and fine detail information on the target, such as whether the target is a living person, whether a concealed object may be present, material composition of the object, and shape, size, and position of the target relative to the system. Circular polarized radar beam may be used to distinguish a suspect object from within a crowd of people. Radar image of the object may be overlaid on visual image of a person carrying the object. Radar tracking of the object is coordinated with visual tracking of the target provided by a camera system, with visual display and tracking of the target overlaid with the radar information.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: February 5, 2013
    Assignee: Tialinx, Inc.
    Inventors: Farrokh Mohamadi, Mikko Oijala, Mohsen Zolghadri, Paul Strauch
  • Patent number: 8325082
    Abstract: A device and method for wide area surveillance of a geographic region includes identifying a search space associated with a geographic region having a plurality of sub-regions. The search space is divided into a plurality of search cells and observation data is collected for each of the plurality of search cells based on a scan of the geographic region. An event generation rate is calculated for each of the search cells based on the collected observation data. One or more of the sub-regions are identified as a region(s) of interest based on the calculated event generation rates. A coverage pattern is estimated for each of the sub-regions and a desired revisit rate is calculated for the region of interest based on the estimated coverage pattern. The desired revisit rate is then output for scanning the region of interest.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: December 4, 2012
    Assignee: Raytheon Company
    Inventors: William Rudnisky, Guillermo Jimenez, James J. Hiroshige
  • Publication number: 20120293359
    Abstract: A radar imaging apparatus includes: (i) a delay code generation unit which repeats, for M scan periods, scan processing of generating, using a transmission code, N delay codes in a scan period for scanning N range gates having mutually different distances from the radar imaging apparatus; (ii) a signal storage unit which stores, in association with a range gate and a scan period, a baseband signal; (iii) a memory control unit which repeatedly writes, in the signal storage unit, for the M scan periods, N demodulated signals corresponding to a single scan period, and reads out a group of M demodulated signals corresponding to mutually different scan periods; (iv) a Doppler frequency discrimination unit which performs frequency analysis on demodulated signals having the same range gate; and (v) a direction of arrival calculation unit which estimates a direction of a target.
    Type: Application
    Filed: May 23, 2012
    Publication date: November 22, 2012
    Inventors: Takeshi FUKUDA, Kenichi Inoue, Toru Sato, Takuya Sakamoto, Kenshi Saho
  • Patent number: 8299958
    Abstract: An airborne radar device having a given angular coverage in elevation and in azimuth includes a transmit system, a receive system and processing means for carrying out target detection and location measurements. The transmit system includes: a transmit antenna made up of at least a first linear array of radiating elements focusing a transmit beam, said arrays being approximately parallel to one another; at least one waveform generator; means for amplifying the transmit signals produced by the waveform generator or generators; and means for controlling the transmit signals produced by the waveform generator or generators, said control means feeding each radiating element with a transmit signal. The radiating elements being controlled for simultaneously carrying out electronic scanning of the transmit beam in elevation and for colored transmission in elevation.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: October 30, 2012
    Assignee: Thales
    Inventors: Stépahne Kemkemian, Pascal Cornic, Patrick Le Bihan, Myriam Nouvel-Fiani
  • Publication number: 20120268316
    Abstract: An electronic scanning radar apparatus in accordance with an embodiment of the present invention, a frequency resolving unit resolves beat signals into beat frequencies having a predetermined frequency bandwidth and calculates complex data based on the resolved beat signals for each beat frequency. An azimuth calculating unit estimates a number of received waves based on eigenvalues of a matrix being part of a primary normal equation having complex data as elements calculated from the beat signals, creates coefficients calculated as a solution of a secondary normal equation of a signal subspace created based on eigenvalues and eigenvectors corresponding to the number of the estimated waves, and calculates a DOA of a received wave based on the created coefficients.
    Type: Application
    Filed: October 18, 2011
    Publication date: October 25, 2012
    Applicant: Honda elesys Co., Ltd.
    Inventor: Junji KANAMOTO
  • Publication number: 20120249360
    Abstract: An electronic scanning radar apparatus mounted on a moving object includes a receiver unit including a plurality of antennas receiving a received wave arriving from a target having reflected a transmitted wave, a beat signal generating unit generating a beat signal from the transmitted wave and the received wave, a frequency resolving unit resplving the beat signal into beat frequencies having a predetermined frequency bandwidth and that calculates complex data based on the beat signal resolved for each beat frequency, and an azimuth detecting unit estimating a wave number of the received wave based on singular values calculated from a matrix created based on the complex data calculated based on the beat signal and calculating a direction of arrival of the received wave based on coefficients calculated based on a pseudo-inverse matrix of the matrix included in a signal subspace determined by the estimated wave number.
    Type: Application
    Filed: February 3, 2012
    Publication date: October 4, 2012
    Applicant: HONDA ELESYS CO., LTD.
    Inventor: Junji KANAMOTO
  • Publication number: 20120242535
    Abstract: An electronic scanning radar apparatus mounted on a moving object includes a receiving unit including a plurality of antennas receiving a received wave arriving from a target having reflected a transmitted wave, a beat signal generating unit generating a beat signal from the transmitted wave and the received wave, a frequency resolving unit resolving the beat signal in beat frequencies and to calculate complex data based on the beat signal resolved for each beat frequency, and an azimuth detecting unit calculating a direction of arrival of the received wave based on original complex data calculated based on the beat signal, wherein the azimuth detecting unit includes a data extending unit generating extended complex data by extending the number of data based on the original complex data, and a first computation processing unit calculating the direction of arrival of the received wave based on the extended complex data.
    Type: Application
    Filed: December 21, 2011
    Publication date: September 27, 2012
    Applicant: Honda elesys Co., Ltd.
    Inventor: Junji KANAMOTO
  • Patent number: 8259292
    Abstract: A method of providing a polarized radio frequency scanning source is provided. The method including amplitude modulating at least two synchronized polarized radio frequency (RF) carrier signals with a predetermined relationship between their amplitude modulation of their electric field components and their polarization states to provide a scanning polarized RF reference source with a desired scanning range, pattern and frequency. The two or more synchronized polarized RF carrier signals with the predetermined relationship between their amplitude modulation can obtain a periodic or non-periodic scanning range, rate and frequency.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: September 4, 2012
    Assignee: Omnitek Partners LLC
    Inventors: Jahangir S. Rastegar, Thomas Spinelli
  • Patent number: 8212713
    Abstract: An object detecting apparatus including: an object detecting device that causes electromagnetic waves to be reflected from an object and receives the reflected waves to detect the object while scanning a predetermined scan range; a rotating device that changes a direction of the object detecting device; an imaging device that captures images; a display device that displays an image captured by the imaging device; a setting device that sets the scan range of the object detecting device on the image displayed by the display device; and a control device that instructs the rotating device to rotate the object detecting device based on the set scan range, and instructs the object detecting device to scan the scan range.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: July 3, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yoshimitsu Aiga, Takeshi Sasajima, Takashi Asaba
  • Patent number: 8184041
    Abstract: Radar beams for searching a volume are selected by determining the central angle and azimuth and elevation extents to define an acquisition face. The number of beams NMBA required to cover the acquisition face is determined by N MBA = ( 2 ? n + 1 ) ? ( m + 1 2 ) + ( - 1 ) n + m 2 ( 2 ) The number of beams NMBA is multiplied by the dwell per beam to determine the total search time, which is compared with a maximum time; (a) if the total search time is greater than the permissible time, the acquisition face is partitioned, and (b) if the total search time is less, the acquisition face information is applied to a radar processor for filling the unextended acquisition face with the number NMBA of beams in a particular pattern.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: May 22, 2012
    Assignee: Lockheed Martin Corporation
    Inventor: Mark A. Friesel
  • Patent number: 8169363
    Abstract: An antenna device includes an antenna substrate and a feed line substrate. The antenna substrate includes subarray antennas, feeding interfaces and a back surface. The subarray antennas are arranged parallel with an interval on a plane. Each subarray antenna includes antenna elements and first feed lines. The first feed lines feed signals from the feeding interface on back surface to the antenna elements. The feed line substrate is attached along back surface and includes second feed lines, first and second mode transformers. Each second feed line has one and other ends portions. Other end portion has wider width than one end portion. Each first mode transformer is located in one end portion and connected to the feeding interface. Each second mode transformer is located in other end portion. One end portions are arranged in a line with interval, and other end portions are alternately arranged across one end portions.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: May 1, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tetsu Shijo, Shuichi Obayashi
  • Patent number: 8164745
    Abstract: A method of determining an angular orientation of a sensor relative to a source including the steps of amplitude modulating at least two synchronized polarized Radio Frequency (RF) carrier signals with a predetermined relationship between their amplitude modulation of their electric field components and their polarization states to provide a scanning polarized RF reference source with a desired scanning range, pattern and frequency; detecting the scanning polarized RF reference source at the sensor; and determining the orientation of the sensor based on the detected scanning polarized RF reference source. Similar methods are also provided for determining an angular orientation and/or position of a sensor relative to two or more sources, aligning a mobile sensor relative to a source and homing a sensor relative to a predetermined plane and/or point.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: April 24, 2012
    Assignee: Omnitek Partners LLC
    Inventors: Jahangir S. Rastegar, Thomas Spinelli
  • Publication number: 20120038506
    Abstract: In an electronic scanning radar apparatus, a receiving unit includes a plurality of antennas receiving a reflected wave arriving from a target having reflected a transmitted wave as a received wave. A beat signal generating unit generates beat signals from the transmitted wave and the received wave. A frequency resolving unit resolves the beat signals in beat frequencies having a predetermined frequency bandwidth and calculates complex data based on the resolved beat signals for each beat frequency. An azimuth calculating unit estimates an order of a normal equation used to calculate a DOA of the received wave on the basis of eigenvalues of a primary order matrix having complex data calculated from the beat signals as elements, creates a secondary order normal equation based on the estimated order, and calculates the DOA of the received wave based on the created secondary order normal equation.
    Type: Application
    Filed: July 1, 2011
    Publication date: February 16, 2012
    Applicant: HONDA ELESYS CO., LTD
    Inventors: Junji Kanamoto, Itaru Izumi, Hiroyuki Akimoto