For Correlation Patents (Class 342/189)
  • Patent number: 8730099
    Abstract: An electronic scanning type radar device mounted on a moving body includes: a transmission unit transmitting a transmission wave; a reception unit comprising a plurality of antennas receiving a reflection wave of the transmission wave from a target; a beat signal generation unit generating a beat signal from the transmission wave and the reflection wave; a frequency resolution processing unit frequency computing a complex number data; a target detection unit detecting an existence of the target; a correlation matrix computation unit computing a correlation matrix from each of a complex number data of a detected beat frequency; a target consolidation processing unit linking the target in a present detection cycle and a past detection cycle; a correlation matrix filtering unit generating an averaged correlation matrix by weighted averaging a correlation matrix of a target in the present detection cycle and a correlation matrix of a related target in the past detection cycle; and a direction detection unit compu
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: May 20, 2014
    Assignee: Honda elesys Co., Ltd.
    Inventors: Junji Kanamoto, Hiroyuki Akimoto
  • Patent number: 8730096
    Abstract: An electronic scanning type radar device mounted on a moving body includes: a transmission unit transmitting a transmission wave; a reception unit comprising a plurality of antennas receiving a reflection wave of the transmission wave from a target; a beat signal generation unit generating a beat signal from the transmission wave and the reflection wave; a frequency resolution processing unit frequency computing a complex number data; a target detection unit detecting an existence of the target; a correlation matrix computation unit computing a correlation matrix from each of a complex number data of a detected beat frequency; a target consolidation processing unit linking the target in a present detection cycle and a past detection cycle; a correlation matrix filtering unit generating an averaged correlation matrix by weighted averaging a correlation matrix of a target in the present detection cycle and a correlation matrix of a related target in the past detection cycle; and a direction detection unit compu
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: May 20, 2014
    Assignee: Honda elesys Co., Ltd.
    Inventors: Junji Kanamoto, Hiroyuki Akimoto
  • Patent number: 8698670
    Abstract: A high speed high dynamic range and low power consumption analog correlator for use in a radar sensor. The analog correlator combines various pulse replication schemes with various parallel integrator architectures to improve the detection speed, dynamic range, and power consumption of conventional radar sensors. The analog correlator includes a replica generator, a multiplier, and an integrator module. The replica generator generates a template signal having a plurality of replicated pulse compression radar (PCR) pulses. The multiplier multiplies a received PCR signal with the plurality of replicated PCR pulses. The integrator module is coupled to the multiplier and configured to generate a plurality of analog correlation signals, each of which is based on the multiplying between the received PCR signal and one of the replicated PCR pulses.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: April 15, 2014
    Assignee: Panasonic Corporation
    Inventor: Michiaki Matsuo
  • Publication number: 20140091964
    Abstract: A radar includes an antennal structure, with means for transmitting an impulse signal in a band centered on F1 according to a repetition period centered on a recurrence period Tr1 and pulse width T1, with means for receiving signals by the antenna in frequency band ?F, with a unit for processing the signals received on a set of N distance bins. The signals received are transmitted by another radar in a frequency band centered on F2 where F2?F1??F, according to a repetition period centered on a period Tr2 and pulse width T2. The signals transmitted by the two radars are asynchronous. The method comprises: slaving frequency F1 to frequency F2, by measuring the power received integrated over the N distance bins and over several recurrences, determination of period Tr2 and T2 and slaving the period centered on Tr1 to a period centered on Tr2 with Tr1=k*Tr2.
    Type: Application
    Filed: February 13, 2012
    Publication date: April 3, 2014
    Applicant: THALES
    Inventors: Pascal Cornic, Daniel Jahan, Patrick Garrec
  • Patent number: 8681037
    Abstract: A target correlation matrix is generated for multiple two-class combinations of target types each having a target correlation and a synthetic aperture radar observation space. A target probability density of a target radar cross-section signature and a background probability density of a background radar cross-section signature are utilized. The observation space of each of the two-class combinations is partitioned into a target partition and at least one background partition in accordance with the target correlation. A conditional log likelihood is calculated using at least one random number for each of the partitions in accordance with the target probability density and the background probability density, and summed according to the two-class combinations. A maximum log likelihood is calculated from the summed conditional log likelihoods given that one target type of the multiple two-class combinations is assumed to be true.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: March 25, 2014
    Assignee: Raytheon Company
    Inventor: David M. Doria
  • Patent number: 8674874
    Abstract: A method for calibrating an array antenna having a plurality of branches includes generating a test signal using a pseudo-random sequence assigned to one of the plurality of branches for each of the plurality of branches; adding the test signals to a useful signal of the antenna so as to form a summed signal emitted via the array antenna; receiving the summed signal with a receiver antenna; correlating the received summed signal with a replica of the pseudo-random sequence so as to produce a correlation result; estimating a characteristic of one of the plurality of branches by processing the correlation result; and calibrating the antenna based on the estimated characteristic.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: March 18, 2014
    Assignee: Astrium GmbH
    Inventors: Francis Soualle, Helmut Wolf
  • Patent number: 8648745
    Abstract: An electronic scanning radar apparatus in accordance with an embodiment of the present invention, a frequency resolving unit resolves beat signals into beat frequencies having a predetermined frequency bandwidth and calculates complex data based on the resolved beat signals for each beat frequency. An azimuth calculating unit estimates a number of received waves based on eigenvalues of a matrix being part of a primary normal equation having complex data as elements calculated from the beat signals, creates coefficients calculated as a solution of a secondary normal equation of a signal subspace created based on eigenvalues and eigenvectors corresponding to the number of the estimated waves, and calculates a DOA of a received wave based on the created coefficients.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: February 11, 2014
    Assignee: Honda elesys Co., Ltd.
    Inventor: Junji Kanamoto
  • Patent number: 8610621
    Abstract: A method for transmission and detection in an adaptive-on-transmit (AT) system operating in the electromagnetic spectrum comprising determining a waveform-filter pair; and employing the waveform-filter pair in transmission and detection, wherein two or more are provided of the group consisting of an auto-correlation function sidelobe level reduction proportional to a the filter length, K, or better, an out-of-band spectral suppression of at least about 40 dB, and a frequency spectrum power tail power decay of K?4 or better.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: December 17, 2013
    Assignee: Arrowhead Center, Inc.
    Inventors: Ana Vazquez Alejos, Muhammad Dawood
  • Patent number: 8593335
    Abstract: A method includes inputting an echo signal from an antenna for discharging an electromagnetic wave to a predetermined area and receiving an echo signal reflected on a target object, outputting a level of the echo signal from every location so as to associate the level with a distance from the antenna in an azimuth direction where the electromagnetic wave is discharged, calculating a degree of change in the level of the echo signal from mutually adjacent locations among all the locations concerned, performing edge emphasis processing for the level of the echo signal in the azimuth direction based on the degree of change and outputting an edge-emphasized echo signal, and performing scan-to-scan correlation processing to calculate a correlation value of the echo signals of two or more scans using the edge-emphasized echo signals, where the echo signals from the entire predetermined area is used as one scan.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: November 26, 2013
    Assignee: FURUNO Electric Company Limited
    Inventor: Kazuya Nakagawa
  • Patent number: 8576116
    Abstract: Systems, methods and apparatus related to a high speed, high dynamic range and low power consumption radar system are provided herein. The radar system may include an analog correlator which combines various pulse replication schemes with various parallel integrator architectures to improve the detection speed, dynamic range, and power consumption of conventional radar sensors. The radar system may further include a matched filter for determining a match of a portion of a received PCR signal and producing an output signal in response to further improve the speed of detection of the radar system.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: November 5, 2013
    Assignee: Panasonic Corporation
    Inventor: Michiaki Matsuo
  • Patent number: 8570213
    Abstract: This disclosure provides a fake image reduction device, which includes a target object detection module for being inputted with an echo signal from an antenna that transmits an electromagnetic wave and receives the echo signal, measuring a level of the echo signal to detect a target object, a reflecting body identifying module for identifying the detected target object as a reflecting body, and a fake image area setting module for setting a fake image area according to a distance and an azimuth direction from a transmitting position of the electromagnetic wave to the identified reflecting body.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: October 29, 2013
    Assignee: Furuno Electric Company Limited
    Inventor: Koji Nishiyama
  • Patent number: 8559483
    Abstract: Various embodiments relate to a method of determining the presence of a spread spectrum signal, including: receiving N input samples of a signal; performing a first autocorrelation on the N input samples with a first offset; performing a second autocorrelation on the N input samples with a second offset; performing a third autocorrelation on the N input samples with a third offset; performing a fourth autocorrelation on the N input samples with a fourth offset; performing a fifth autocorrelation on the N input samples with a fifth offset; determining if the values of the first, second, and third autocorrelations are decreasing, and determining if the values of the fourth and fifth autocorrelations are less than a threshold value, then determining that a spread spectrum signal is present in the N input samples.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: October 15, 2013
    Assignee: NXP B.V.
    Inventor: Stefan Drude
  • Patent number: 8552907
    Abstract: In accordance with one of embodiments of the present invention, a frequency resolution processing unit calculates complex number data based on a beat signal caused by a receiving wave coming from a target and a transmission wave. A target detection unit detects a peak value from the intensities of beat frequencies, and then detects an existence of the target. The target link unit makes association between a target detected in the present detecting cycle and the target detected in the past detecting cycle. A direction estimating unit generates a generative complex number data based on the complex number data so as to correspond to a data generation unit. The direction estimating unit calculates, for each antenna, an incoming direction of the receiving wave based on each of normal equations formed by use of the complex number data of the beat frequency which an existence of the target is detected and the generative complex number data.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: October 8, 2013
    Assignee: Honda elesys Co., Ltd.
    Inventor: Junji Kanamoto
  • Patent number: 8542145
    Abstract: The present invention relates to a system for locating non-cooperating objects by means of a random or pseudo-random noisy type waveform generator, an amplifier, of said waveforms and an antenna which radiates them towards the object, which object generates an electromagnetic echo which is detected by a passive subsystem of antennas and receivers. The time delay and Doppler shift values are determined in the latter subsystem and in turn forwarded from encoding and modulating blocks to a central processor which estimates the position and the speed of the object. The passive subsystem receives, through a transmission channel or storage element, the reference signal which represents the transmitted noisy type waveform and uses it for calculating the bi-dimensional cross correlation (ambiguity function), which permits to estimate the time delay and the Doppler shift.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: September 24, 2013
    Assignee: Universita' Degli Studi di Roma Tor Vergata
    Inventor: Gaspare Galati
  • Patent number: 8497477
    Abstract: A system and technique for imaging a subject at a scene overcomes the weaknesses in the existing gain fluctuation techniques by switching the environmental temperature at the scene at a rate sufficiently fast enough to obtain subsequent samples in a time period where the gain has not fluctuated sufficiently to have a negative effect on detection sensitivity. This technique is utilized in conjunction with the method of subsequent subtraction of alternate samples which both reveals the reflectance of the scene and removes gain fluctuation.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: July 30, 2013
    Assignee: MVT Equity LLC
    Inventor: Thomas D. Williams
  • Publication number: 20130135140
    Abstract: A high-frequency transmission signal is transmitted from a transmission antenna with a predetermined transmission period, and a signal of a reflected wave reflected from a target is received by a reception antenna. A code generator generates a first code sequence and second code sequence that constitute a pair of complementary codes. A first modulator modulates the first code sequence to generate a first transmission signal. A second modulator modulates the second code sequence to generate a second transmission signal. A quadrature modulator performs quadrature modulation by using the generated first and second transmission signals. The high-frequency transmission signal is generated from a signal that is quadrature modulated, and transmitted from the transmission antenna.
    Type: Application
    Filed: August 16, 2011
    Publication date: May 30, 2013
    Applicant: Panasonic Corporation
    Inventors: Takaaki Kishigami, Yoichi Nakagawa, Hirohito Mukai
  • Patent number: 8446312
    Abstract: An electronic scanning type radar device mounted on a moving body includes: a transmission unit transmitting a transmission wave; a reception unit comprising a plurality of antennas receiving a reflection wave of the transmission wave from a target; a beat signal generation unit generating a beat signal from the transmission wave and the reflection wave; a frequency resolution processing unit frequency computing a complex number data; a target detection unit detecting an existence of the target; a correlation matrix computation unit computing a correlation matrix from each of a complex number data of a detected beat frequency; a target consolidation processing unit linking the target in a present detection cycle and a past detection cycle; a correlation matrix filtering unit generating an averaged correlation matrix by weighted averaging a correlation matrix of a target in the present detection cycle and a correlation matrix of a related target in the past detection cycle; and a direction detection unit compu
    Type: Grant
    Filed: December 25, 2008
    Date of Patent: May 21, 2013
    Assignee: Honda Elesys Co., Ltd.
    Inventors: Junji Kanamoto, Hiroyuki Akimoto
  • Publication number: 20130120185
    Abstract: A radar apparatus transmits a radio frequency transmission signal from a transmitter antenna in a given transmission period, and receives a signal of a reflected wave reflected by a target via a receiver antenna. The radar apparatus includes a transmission signal generator that generates a first transmission signal obtained by modifying a code having a third sub-code sequence and a fourth sub-code sequence coupled to each other in a first transmission period, and generates a second transmission period obtained by modifying a code having a fifth sub-code sequence and a sixth sub-code sequence coupled to each other in a second transmission period, and a transmitter RF unit that converts the first and second transmission signals into radio frequency transmission signals, and transmits the radio frequency transmission signals from the transmitter antenna.
    Type: Application
    Filed: July 14, 2011
    Publication date: May 16, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Takaaki Kishigami, Yoichi Nakagawa, Hirohito Mukai
  • Publication number: 20130113653
    Abstract: The disclosed technique includes transmitting a signal intermittently according to a transmission cycle having a predetermined transmission period and a non-transmission period; receiving the signal reflected from a target with reception antennas; and detecting the target from the reflected signal. A high-frequency transmission signal attenuated during the transmission period and a receipt signal received during the non-transmission period are combined together. A correlation value between a reference transmission signal and the receipt signal in the combined signal is calculated, and the amount of phase shift in an arbitrarily selected reception antenna is calculated from the correlation value of a reference reception antenna, and the correlation values of the other reception antennas. The phase component of the correlation value of the arbitrarily selected reception antenna is corrected on the basis of the amount of phase shift.
    Type: Application
    Filed: July 1, 2011
    Publication date: May 9, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Takaaki Kishigami, Hirohito Mukai, Yoichi Nakagawa
  • Publication number: 20130099959
    Abstract: Systems, methods and apparatus related to a high speed, high dynamic range and low power consumption radar system are provided herein. The radar system may include an analog correlator which combines various pulse replication schemes with various parallel integrator architectures to improve the detection speed, dynamic range, and power consumption of conventional radar sensors. The radar system may further include a matched filter for determining a match of a portion of a received PCR signal and producing an output signal in response to further improve the speed of detection of the radar system.
    Type: Application
    Filed: October 20, 2011
    Publication date: April 25, 2013
    Inventor: Michiaki Matsuo
  • Patent number: 8423598
    Abstract: In order to attain an optimally compressed, narrow pulse peak at the filter output of a correlation filter for the purpose of reception, the interfering secondary maxima of the autocorrelation function of binary codes must be as small as possible. The invention uses specially designed signal codes which are used to generate the associated complementary signal code from the received sequence by means of evaluation in the reception filter. The subsequent parallel formation of the autocorrelation functions of the received signal code and the complementary signal code exhibits secondary maxima having an opposite mathematical sign, thus resulting in the desired prefect pulse peak having secondary maxima which are equal to zero during summation at the filter output.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: April 16, 2013
    Inventor: Reinhart Rudershausen
  • Patent number: 8410978
    Abstract: A shape measurement instrument includes a plurality of transmitters 1 to 4 which radiate signals having different waveforms or phases, receivers 31 to 34 which receive signals reflected from an object O, correlation units 41 to 44 which obtain correlation waveforms between waveforms of the signals received by the receivers 31 to 34, and the signal radiated by a transmitter radiating the received signal of the transmitters 1 to 4, and a shape estimation unit 5 which extracts a quasi-wavefront based on the correlation waveforms obtained by the correlation units 41 to 44 and estimates a shape of the object O based on a relationship between the quasi-wavefront and the object O. As a result, a period of time required to measure an object shape can be significantly reduced.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: April 2, 2013
    Assignee: Panasonic Corporation
    Inventors: Hiroyuki Sakai, Takeshi Fukuda, Takuya Sakamoto, Toru Sato
  • Patent number: 8391340
    Abstract: A low-cost GPS/GNSS receiver receives a satellite signal at an RF frequency (fRF). The GPS/GNSS receiver includes a front end section for receiving the satellite signal and generating a digital complex signal having a first bandwidth, the received satellite signal being converted into a complex signal before digitizing, a signal capturing section for searching for and acquiring the satellite signal, the signal capturing section including a capture memory, a baseband processor for tracking the acquired satellite signal, and a signal splitter coupled to the front end section. The signal splitter splits the digital complex signal into two bandwidths, by generating a narrowband digital complex signal having a second bandwidth substantially smaller than the first bandwidth. The signal splitter provides the narrowband digital signal to the capture memory and the wider first bandwidth digital complex signal to the baseband processor.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: March 5, 2013
    Assignee: Magellan Systems Japan, Inc.
    Inventor: Lawrence R. Weill
  • Patent number: 8368551
    Abstract: A method of detecting motion in components that form part of a structure. The method includes flooding a first component with transmitted radio frequency signals and receiving reflected radio frequency signals from the first component with an antenna. The method further includes generating a first set of intermediate frequency signals based on differences between the transmitted radio frequency signals and the reflected radio frequency signals and measuring the first set of intermediate frequency signals. The method further includes flooding a second component with transmitted radio frequency signals and receiving reflected radio frequency signals from the second component with an antenna. The method further includes generating a second set of intermediate frequency signals based on differences between the transmitted radio frequency signals and the additional reflected radio frequency signals and measuring the second set of intermediate frequency.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: February 5, 2013
    Assignee: Honeywell International Inc.
    Inventors: Andy Peczalski, Gary Richard O'Brien, Jr., Steve D. Huseth
  • Patent number: 8362945
    Abstract: Systems and methods for detecting and tracking a gun using millimeter waves are provided. In one embodiment, the invention relates to a method for detecting and tracking a gun using radio frequency waves at millimeter wavelengths, the method including storing empirical data, for up to N types of guns, including information indicative of a resonant frequency of a barrel of each of the N guns, generating pulse energy including at least one sequence of pulses at millimeter wave frequencies for each of the N guns, transmitting the pulse energy, receiving reflected pulse energy, filtering the reflected pulse energy to a preselected bandwidth for each of the N guns, determining a first maximum value of the filtered reflected pulse energy in each of the preselected bandwidths that exceeds a preselected threshold, determining a second maximum value among the first maximum values, and correlating a frequency of the second maximum value with the stored resonant frequencies of the N guns to identify a gun.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: January 29, 2013
    Assignee: Raytheon Company
    Inventors: Tien M. Nguyen, John J. Wootan
  • Patent number: 8358233
    Abstract: A process is provided for analyzing a radar signal using CLEAN to identify an undetected target in sidelobes of a detected target. The process includes obtaining system impulse response data of a waveform for a point target having a signal data vector based on a convolution under conjugate transpose multiplied by a target amplitude vector plus a noise vector, estimating the target amplitude vector, and applying a CLEAN Deconvolver to remove the detected target from the data signal vector based on the estimate amplitude vector absent the detected target and an amplitude vector of an undetected target. The process further includes building a detected target vector with the amplitude estimate vector, setting to zero all elements of the detected target vector except at an initial time, and recomputing the amplitude estimate vector by a Reformulated CLEAN Detector.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: January 22, 2013
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventor: Terry L. Foreman
  • Patent number: 8350754
    Abstract: Embodiments of the present invention are low cost, robust, broadband, optimum, high precision methods and apparatus of processing pulsed, transient, non-cooperative, non-reproducible, complex, or simultaneous signals based on correlation measurements utilizing optical RF signal train generators. An embodiment of the inventive apparatus comprises: (a) a signal receiving apparatus which receives one or more signals, and outputs the signals; (b) a replica generation apparatus, which comprises one or more RF signal train generators, accepts signals from the receiving apparatus as inputs, and outputs trains of replica pairs, where relative separations between two members in the replica pairs are same or different; and (c) an integration apparatus which performs Doppler, self, or mutual (cross) correlation operations on the replica pairs at RF or optical level.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: January 8, 2013
    Inventor: Ming-Chiang Li
  • Patent number: 8345731
    Abstract: Control circuitry is configured to control a sampler, in a sampling phase determination process, to sample a signal at a sampling period of T±T/n for outputting a sample set for each one of n phases of the sampled signal. Each one of n correlators has a first input configured to receive one of the sample sets, a second input configured to receive a PN signal, and an output which provides a correlation result from a correlation process between the sample set and the PN signal. The control circuitry is further configured to identify, from the correlation results, one of the phases associated with the optimal correlation result. The control circuitry is then configured to control the sampler, in a communication mode, to sample a received signal at a sampling period of T at the phase associated with the optimal correlation result.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: January 1, 2013
    Assignee: Research In Motion Limited
    Inventor: Xin Jin
  • Publication number: 20120306687
    Abstract: A high speed high dynamic range and low power consumption analog correlator for use in a radar sensor. The analog correlator combines various pulse replication schemes with various parallel integrator architectures to improve the detection speed, dynamic range, and power consumption of conventional radar sensors. The analog correlator includes a replica generator, a multiplier, and an integrator module. The replica generator generates a template signal having a plurality of replicated pulse compression radar (PCR) pulses. The multiplier multiplies a received PCR signal with the plurality of replicated PCR pulses. The integrator module is coupled to the multiplier and configured to generate a plurality of analog correlation signals, each of which is based on the multiplying between the received PCR signal and one of the replicated PCR pulses.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 6, 2012
    Inventor: Michiaki Matsuo
  • Patent number: 8305262
    Abstract: A signal processing method includes transforming a received NLFM waveform from a first domain to a second domain, multiplying the transform of the received NLFM waveform with a complex conjugate of a low-pass filtered and transformed reference signal, and inverse transforming a product of the multiplication from the second domain to the first domain.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: November 6, 2012
    Assignee: Lockheed Martin Corporation
    Inventor: Rao Nuthalapati
  • Publication number: 20120256787
    Abstract: According to one embodiment, a calculating of a weight includes which is calculating a covariance matrix by applying a process (Post-Doppler process) of selecting a plurality of banks after execution of a Doppler filter process to a specified number of pulses of the received signal, and extracting a plurality of arbitrary bank parts from among the plurality of selected banks which are used for the calculation of the covariance matrix, and calculating a plurality of weights on a phase and an amplitude, from a matrix of the plurality of extracted bank parts.
    Type: Application
    Filed: December 28, 2011
    Publication date: October 11, 2012
    Inventors: Junichiro SUZUKI, Toshiyuki MIYAZAKI, Mitsuyoshi SHINONAGA
  • Patent number: 8284098
    Abstract: A method provides space-time adaptive processing (STAP) for target detection using adaptive matched filters (AMF). A generalized likelihood ratio test (GLRT) is determined where spatial and temporal correlation matrices Q and A are assumed. Then, the correlation matrices A and Q are replaced with maximum likelihood (ML) estimates obtained only from training signals subject to a persymmetric constraint.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: October 9, 2012
    Assignee: Mitsubishi Electric Research Laboratories, Inc.
    Inventors: Zafer Sahinoglu, Pu Wang, Man-On Pun
  • Patent number: 8284090
    Abstract: Embodiments of the present invention provide a hybrid analog to digital converter that may include a DAC coupled to a hybrid analog to digital converter input; an integrator having an input coupled to the hybrid analog to digital converter input and the DAC, and generating an integrator output; a comparator coupled to the integrator output and having a comparator output; a successive approximation register coupled to the comparator output; and a counter coupled to the comparator output to generate an hybrid analog to digital converter output. The hybrid analog to digital converter may be operable as a successive approximation register converter and a continuous time sigma delta converter.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: October 9, 2012
    Assignee: Analog Devices, Inc.
    Inventor: Roberto Maurino
  • Publication number: 20120235859
    Abstract: Provided is a radar apparatus that can detect the failure of the transmission switch. The radar apparatus includes: a plurality of transmission antennas; transmission switches that select a transmission antenna for transmitting an electromagnetic wave from among the plurality of transmission antennas; a plurality of reception antennas that receive a reflected wave which is the electromagnetic wave reflected from a target as a reception signal; a signal processing unit that detects the target based on a sampling signal obtained by sampling the reception signal; and a failure judgment unit that compares first reception signals transmitted from one of the plurality of transmission antennas and received by the plurality of reception antennas, with second reception signals transmitted from another of the plurality of transmission antennas and received by the plurality of reception antennas, and judges whether or not any one of the transmission switches has failed based on a comparison result.
    Type: Application
    Filed: August 9, 2011
    Publication date: September 20, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Kei HAYASE
  • Publication number: 20120218139
    Abstract: In an adaptive array antenna, an array antenna receives a signal containing a reflected target signal of a radar pulse, a correlation filter circuit suppresses a component correlating with a target signal in the received signal by applying a correlation filter to the received signal, a weight calculation circuit calculates an adaptive weight from data processed with application of the correlation filter, and a beam synthesizing circuit creates output data by performing weight control on the received signal by using the adaptive weight.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 30, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Junichiro SUZUKI, Mitsuyoshi Shinonaga, Yoshikazu Shoji
  • Patent number: 8207887
    Abstract: A method and system for processing radar data from a movable platform comprising passing a radar signal through a low noise amplifier; down converting the signal to a lower frequency; filtering out harmonics; sampling using A/D converter at or above Nyquist frequency; determining a scene center; performing a two stage averaging scheme of the received signals with a variable window function based upon the velocity, acceleration of the platform and scene center; coherently averaging N pulses to create an average pulse; performing an inverse Fourier transform; compensating to the scene center by multiplying by a complex exponential based upon GPS and inertial navigational system; summing the average pulses using a low pass filter; repeating the determination of an average pulse for a time period that is less than the Nyquist sample time interval to generate second average pulses; and performing a 2D inverse Fourier transform to obtain SAR image.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: June 26, 2012
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Geoffrey Howard Goldman
  • Publication number: 20120146844
    Abstract: The present invention relates to an active radar system and a corresponding method. The proposed system comprises at least two transmit antennas that each transmits radiation to a scene as a transmit signal, said transmit signal comprising a series of frequency modulated pulses, at least one receive antenna that receives radiation from said scene as a receive signal, a controller that controls said at least two transmit antennas. The transmissions of the transmit signals are subsequently initiated with time offsets, controlled to be larger than the time delay between transmission of a first transmit signal of said two transmit signals and reception of radiation of said first transmit signal by said at least one receive antenna and to be smaller than the time duration of a complete frequency modulated pulse of said first transmit signal.
    Type: Application
    Filed: November 23, 2011
    Publication date: June 14, 2012
    Applicant: Sony Corporation
    Inventors: Richard Stirling-Gallacher, Qi Wang
  • Patent number: 8188909
    Abstract: An observation signal processing apparatus transmits pulse signals as search signals per each search, generates observation values based on reflected signals against a target and delay modulation pulse signals, and performs coherent integration on the observation values to output an integration value. The apparatus includes a section for storing a coherent integration count, a section for transmitting pulse signals equivalent to the coherent integration count, a section for calculating a phase correction amount based on an estimated relative speed, and a section for performing phase-weighted coherent integration on the observation values based on the phase correction amount.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: May 29, 2012
    Assignee: Denso Corporation
    Inventors: Yasuyuki Miyake, Asahi Kondou, Gaku Takano
  • Publication number: 20120127027
    Abstract: A method provides space-time adaptive processing (STAP) for target detection using adaptive matched filters (AMF). A generalized likelihood ratio test (GLRT) is determined where spatial and temporal correlation matrices Q and A are assumed. Then, the correlation matrices A and Q are replaced with maximum likelihood (ML) estimates obtained only from training signals subject to a persymmetric constraint.
    Type: Application
    Filed: November 24, 2010
    Publication date: May 24, 2012
    Inventors: Zafer Sahinoglu, Pu Wang, Man-On Pun
  • Publication number: 20120127016
    Abstract: A signal processing unit in a radar device calculates a change amount Y (=log(P)?log(Pb)) between a power P of a current arrival echo and a power of a previous arrival echo arrived before an observation period TSW. A memory unit in the radar device stores, every type of objects, a probability distribution of the change amount Y calculated from the arrival echo from the object. On the basis of the calculated change amount Y and the probability distribution, the signal processing unit determines a probability Pr to obtain the change amount Y every type of object, and determines that the object having the maximum probability Pr is the object which transmits the current arrival echo.
    Type: Application
    Filed: November 17, 2011
    Publication date: May 24, 2012
    Applicant: DENSO CORPORATION
    Inventors: Yuu Watanabe, Koichiro Suzuki, Chiharu Yamano
  • Patent number: 8144049
    Abstract: In a radar with a non-uniformly spaced antenna array, an extractor estimates a number of arrivals of echoes to the antenna array. A setter sets a number of azimuths corresponding to a number of extracted peaks as a number of tested azimuths greater than the number of arrivals of echoes by a preset number. A determiner determines a level of correlations among steering vectors respectively corresponding to the tested azimuths. A selector selects, from the tested azimuths, azimuths as power-estimation targets based on the determined level of the correlations among the steering vectors. A first estimator estimates a received power level from each power-estimation target. A second estimator estimates, from the power-estimation targets, an azimuth of the target based on the estimated received power level from each power-estimation target. The estimated received power level from the azimuth is equal to or greater than a preset threshold level.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: March 27, 2012
    Assignee: Denso Corporation
    Inventors: Akiyoshi Mizutani, Koichiro Suzuki
  • Patent number: 8138969
    Abstract: A radar warning receiver is implemented in low cost integrated circuit form utilizing only one analog component, namely a limiting amplifier. By taking the output of the limiting amplifier and utilizing monobit sampling of the output it has been found that one can provide an integrated circuit single chip radar warning receiver using delay correlation to extract frequency, amplitude and modulation type from signals at or below the noise level.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: March 20, 2012
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: James M. Huggett, Kevin S. Bassett, Arthur J. Tardif
  • Publication number: 20120056779
    Abstract: A method and apparatus for determination of a Doppler frequency shift 30 between a transmitted signal 4 and a received signal 20 resulting from this transmitted signal. A plurality of relative frequency shifts are carried out, in each case by a real frequency shift value, in that either at least one shifted discrete amplitude spectrum 8 of the transmitted signal 4 and at least one shifted discrete amplitude spectrum 22 of the received signal 20, or a plurality of shifted amplitude spectra of the transmitted signal 4 or of the received signal 20 are produced. Quality measures are determined for these frequency shifts, indicating the quality of the match between the shifted signals. That quality measure which corresponds to the highest quality of the match is determined, and the frequency shift value associated with this quality measure is equated to the Doppler frequency shift 30 to be determined.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 8, 2012
    Applicant: Atlas Elektronik GmbH
    Inventor: Benno FREKING
  • Publication number: 20120032837
    Abstract: A network analyzer includes an n-port network with two ports for measuring wave parameters of a measurement object. Each port has a feed for a radio-frequency signal from a signal source. Signal components of the radio-frequency signal fed into the respective port are reflected at the measurement object and the signal components of one or more radio-frequency signals fed into at least one other port are transmitted through the measurement object to the respective port are measured as wave parameters. The two ports are supplied with different radio-frequency signals, wherein frequencies or frequency bands are offset with respect to one another by a frequency offset. Reflected and transmitted signal components of the radio-frequency signals are measured at the same time at the two ports.
    Type: Application
    Filed: February 25, 2010
    Publication date: February 9, 2012
    Inventors: Florian Poprawa, Andreas Schicht, Claus Seisenberger, Andreas Ziroff
  • Patent number: 8102309
    Abstract: Provided is a radar device capable of accurately calculating directions and the number of targets. A direction calculation unit includes a correlation matrix addition prohibition unit that prohibits, when a peak frequency in a plurality of modulation periods of a target is in the vicinity of 0, addition of a correlation matrix generated from a peak frequency spectrum having the peak frequency in the vicinity of 0, and calculates the direction of the target on the basis of a summed correlation matrix in which correlation matrices generated from peak frequency spectra having peak frequencies out of the vicinity of 0.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: January 24, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventor: Kado Nakagawa
  • Patent number: 8094060
    Abstract: A method for processing returns from a sensor, such as a radar system, in order to identify targets is provided. The method uses a track before detect routine to integrate data from several scans in order to give better discrimination. In running the track before detect routine however a number of possible target motions are postulated and the data combined accounting for such motions. A result above a threshold may then be indicative to a target present and moving with the postulated velocity. The method gives more accurate target detection as the combined data at the correct target motion postulate is more consistent than transient noise and clutter. Once a target has been identified it is preferably removed from the data set in searching for additional targets.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: January 10, 2012
    Assignee: Qinetiq Limited
    Inventors: Gavin Spencer Beard, Robert Michael Horey, Richard Oliver Lane, Samantha Jane Lycett
  • Publication number: 20110285579
    Abstract: One or more human attributes extracted from a micro-impulse radar (MIR) signal is correlated to a temporary identity or phenotypic identity of a person.
    Type: Application
    Filed: December 16, 2010
    Publication date: November 24, 2011
    Applicant: Searete LLC
    Inventors: Mahalaxmi Gita Bangera, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K.Y. Jung, Jordin T. Kare, Eric C. Leuthardt, Nathan P. Myhrvold, Elizabeth A. Sweeney, Clarence T. Tegreene, David B. Tuckerman, Thomas A. Weaver, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Patent number: 8049663
    Abstract: A method to improve a system's signal performance may comprise: generating a first signal, transmitting the first signal, receiving the first signal, and generating a second signal. The method may further comprise: identifying signal distortions generated by at least one of, a transmitter hardware that transmits the first signal and a receiver hardware that receives the first signal, modifying the second signal based upon the identified signal distortions, correlating the first signal and the second signal by a correlator to generate a correlated signal, and outputting the correlated signal.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: November 1, 2011
    Assignee: Raytheon Company
    Inventors: Mark S. Frank, Marty K. Rupp, Devin B. Pratt
  • Patent number: 8035551
    Abstract: A pulsed compression noise correlation radar uses noise modulation and pulse compression technology to scramble recognizable transmit signal characteristics and reduce transmit energy. The pulsed noise correlation radar advantageously uses pulse compression technology, a pulsed linear frequency modulated noise correlation mixer, and a new and innovative noise fused waveform to automatically correlate the pulsed linear frequency modulated (LFM) noise waveform with the received signal. The pulsed noise correlation radar apparatus and system now make it possible to effectively reduce transmitting power, preserve high band widths through oversampling in the receiver, and achieve multi-channel array frequency diversity. A secure pulsed compression noise correlation radar system and methods for undetected target detection with pulsed noise correlation radar and a pulsed LFM fused noise waveform are also provided.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: October 11, 2011
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Mark A. Govoni
  • Patent number: RE44269
    Abstract: A linear detection method for determining correlation values associated with an estimated Pulse Repetition Interval (PRI) executed by a linear detection module of a correlation mask disposed on a digital signal processor is provided comprising: determining a correlation spread associated with a vector of Times-of-Arrival (TOA) data; determining a delta spread associated with the correlation spread; determining a first/next estimated PRI associated with the vector of TOA data; determining a first/next estimated PRI vector based on the first/next estimated PRI; determining a delta vector based on the first/next estimated PRI vector; determining a correlation weights vector based on the delta vector; determining a first/next correlation value based on the correlation weights vector; and in response to there being no additional PRIs to estimate, searching the correlation values for a highest correlation.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: June 4, 2013
    Assignee: Wisterium Development LLC
    Inventor: Joseph A. Sirois