Plural Antennas Patents (Class 342/423)
  • Patent number: 6707910
    Abstract: The scope of the present invention is a device for detecting the source of a voice, which device comprises microphone means (2; 2a, 2b, 2M) for receiving a voice signal and detecting means for detecting the voice from the received voice signal. The device comprises means (15, 17) for determining the direction of arrival of the received signal, means (17) for storing the assumed direction of arrival of the voice of a certain source and means (18) for comparing the direction of arrival of said received signal with said assumed direction of arrival. The device further comprises means (18) for indicating that the source of the voice is said certain source when the comparison proves that the direction of arrival of said received signal matches with said assumed direction of arrival within a certain tolerance.
    Type: Grant
    Filed: September 2, 1998
    Date of Patent: March 16, 2004
    Assignee: Nokia Mobile Phones Ltd.
    Inventors: Päivi Valve, Juha Häkkinen
  • Patent number: 6697012
    Abstract: A system and method for detecting and tracking a target object, including the calculation of the target object's altitude, is disclosed. During the processing of signals received by a receiver, the system selectively calculates the altitude of the target object from signals modified by an interference effect pattern formed by the signals broadcast by a transmitter, or from the calculation of geometric shapes associated with three or more transmitters and determining the intersection point of those shapes.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: February 24, 2004
    Assignee: Lockheed Martin Corporation
    Inventors: Richard A. Lodwig, Bonnie L. Adams, Gregory A. Baker
  • Patent number: 6677884
    Abstract: For interferometric and/or tomographic remote sensing by means of synthetic aperture radar (SAR) one to N receiver satellites and/or transmitter satellites and/or transceiver satellites with a horizontal across-track shift the same or differing in amplitude form a configuration of satellites orbiting at the same altitude and same velocity. Furthermore, a horizontal along-track separation, constant irrespective of the orbital position, is adjustable between the individual receiver satellites. In this arrangement one or more receiver satellites orbiting at the same altitude and with the same velocity are provided with a horizontal across-track shift varying over the orbit such that the maximum of the horizontal across-track shift occurs over a different orbital position for each satellite, the maxima of the horizontal across-track shifts are positioned so that the baselines are optimized for across-track interferometry.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: January 13, 2004
    Assignee: Deutsches Zentrum fur Luft-und Raumfahrt e.V.
    Inventors: Alberto Moreira, Gerhard Krieger, Josef Mittermayer
  • Publication number: 20030197637
    Abstract: A cross-link antenna system including a plurality of spacecraft in a constellation is provided. Each of the spacecraft includes an antenna. One or more of the antennas has a number of antenna elements that can be controllably energized. Determined or selected phases and amplitudes can be individually applied through phase shifters and amplifiers to the antenna elements. In determining phase values for energizing the antenna elements to provide the receive beam in the direction of the current transmit antenna of one of the spacecraft in the constellation, location information is obtained for the transmit spacecraft and each of the beam receiving spacecraft. Additionally, attitude information for each receive spacecraft is found and location information associated with each of the antenna elements for each receive antenna is obtained.
    Type: Application
    Filed: March 21, 2002
    Publication date: October 23, 2003
    Inventor: Farzin Lalezari
  • Patent number: 6598009
    Abstract: A GPS receiver that determines its own attitude under jamming conditions is created by augmenting it with an array antenna and a novel signal processing system. The augmented signal processing system comprises a cascaded parallel architecture inserted between the array antenna and the GPS receiver. A blind adaptive nulling processor is cascaded ahead of the GPS receiver so that the GPS receiver can operate on the jamming-suppressed signals in a normal manner. A monopulse angular measurement unit in series with an attitude determination unit interacts in parallel with the blind adaptive nulling processor and the GPS receiver. Constrained beamforming adaptive monopulse is used to simultaneously place nulls in both the sum and difference beams toward jammers while maintaining the monopulse ratio for accurate angular measurement. In this way, the GPS receiver is capable of providing rotational information in addition to regular time and translation information.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: July 22, 2003
    Inventor: Chun Yang
  • Patent number: 6587080
    Abstract: A wireless tracking system consists of a wireless target including a wireless communication system for transmitting a data packet over a communication path, and a locating station for determining a position of the target. The data packet transmitted from the target includes an identification code uniquely associated with the target. The locating station includes a configurable directional antenna, a communication interval processing system, a direction processing system, and a position processing system. The communication interval processing system is in communication with the directional antenna and determines the transmission interval of the transmitted data packet over the communication path. The direction processing system determines the transmission angle of the communication path, and is in communication with the directional antenna for controlling the configuration of the directional antenna so as to facilitate the determination of the transmission angle.
    Type: Grant
    Filed: July 18, 2000
    Date of Patent: July 1, 2003
    Assignee: Centraxx Corp.
    Inventors: Brian De Champlain, Frank Gerlach
  • Patent number: 6459409
    Abstract: An array antenna includes two sub-arrays. Each sub-array has at least three elements with at least one unshared element. Samplers sample elements separately for the sub-arrays. A direction-of-arrival estimator uses sampling from the samplers to make a separate direction-of-arrival estimate for each sub-array for direction of arrival of a signal from a source. A source location estimator estimates distances from the source to each element based on the separate direction-of-arrival estimates from the direction-of-arrival estimator. A sampling adjuster adjusts timing of sampling performed by the samplers based on the distances from the source location estimator.
    Type: Grant
    Filed: May 16, 2001
    Date of Patent: October 1, 2002
    Assignee: Sony Corporation
    Inventors: Ryuji Kohno, Abreu Giuseppe
  • Patent number: 6437740
    Abstract: A wireless tracking system consists of a wireless target including a wireless communication system for transmitting a data packet over a communication path, and a locating station for determining a position of the target. The data packet transmitted from the target includes an identification code uniquely associated with the target. The locating station includes a configurable directional antenna, a communication interval processing system, a direction processing system, and a position processing system. The communication interval processing system is in communication with the directional antenna and determines the transmission interval of the transmitted data packet over the communication path. The direction processing system determines the transmission angle of the communication path, and is in communication with the directional antenna for controlling the configuration of the directional antenna so as to facilitate the determination of the transmission angle.
    Type: Grant
    Filed: July 18, 2000
    Date of Patent: August 20, 2002
    Assignee: Stelx, Inc.
    Inventors: Brian De Champlain, Frank Gerlach
  • Publication number: 20010024466
    Abstract: A spread spectrum phased array receiver has a set of phased array antennas. The set of phased array antennas receive a spread spectrum signal containing a plurality of channels. The receiver outputs timed versions of the received signal. Each timed version is associated with a respective one out of the set of phased array antennas. A plurality of despread signals is produced by despreading each timed version of the received signal using a plurality of chip code sequences associated with the channels. The despread signals are combined as a despread signal. A magnitude of the combined despread signal is determined for obtaining a present and a prior magnitude. The present and prior magnitude are compared. A delay associated with the timed versions is adjusted in response to the comparison so antenna beams are steered towards components of the spread spectrum signal with a highest combined magnitude.
    Type: Application
    Filed: January 19, 2001
    Publication date: September 27, 2001
    Inventor: Donald L. Schilling
  • Patent number: 6208296
    Abstract: A method and apparatus for training a receiver on a source are provided. The receiver is an antenna and the source is a broadcast satellite. A first signal sensor receives at least one signal from the source. The first signal sensor may be a first low noise block (LNB) downconverter of the antenna. At least one secondary signal sensor measures a strength of the received signal. The secondary signal sensor comprises four LNB downconverters, wherein each of the four LNB downconverters are located on each of four sides of the first signal sensor. The measured strength of the received signal is used to provide guidance information for training the receiver on the source. When the broadcast satellite moves relative to the antenna, the secondary LNB downconverters detect a variance in the measured strength of the at least one signal and provide guidance information based on the detected variance, thereby reducing the training time for the antenna.
    Type: Grant
    Filed: July 24, 1998
    Date of Patent: March 27, 2001
    Assignees: Sony Corporation, Sony Electronics
    Inventor: Joseph Saib
  • Patent number: 6198436
    Abstract: An integrated receiver includes an Instantaneous Frequency Measurement (IFM) device, an interferometer and switches. The IFM receives signals from a target and determines the frequency of the signals. The IFM includes the shared N-channel phase receiver. The interferometer also receives the signals from the target and determines the angle-of-arrival (AOA) of the signals. The interferometer includes the shared N-channel phase receiver and shares the shared N-channel phase receiver with the IFM. The switches selectively connect the shared N-channel phase receiver to the IFM when the IFM is determining the frequency of the signals, and selectively connect the shared N-channel phase receiver to the interferometer when the interferometer is determining the AOA of the signals. The shared N-channel phase receiver determines phase information indicative of the frequency of the signals and the AOA of the signals.
    Type: Grant
    Filed: January 29, 1999
    Date of Patent: March 6, 2001
    Assignee: Ail Systems, Inc.
    Inventor: Ronald Rudish
  • Patent number: 6184830
    Abstract: An algorithmic technique which allows antenna arrays that are used for interferometric direction finding to have elements with arbitrary orientation. This technique allows the phase errors associated with non-identical element orientation to be estimated, without explicit knowledge of either the polarimetrics of the array elements or the polarimetrics of the source. It relies upon the fact that there exists a single number which describes the polarimetric interaction, and that this number can be estimated and then utilized to remove the phase component due to polarimetric interaction. This technique makes it feasible to incorporate direction finding arrays into articles that could benefit from such arrays, but because of size or shape constraints, were previously not able to do so.
    Type: Grant
    Filed: August 4, 1998
    Date of Patent: February 6, 2001
    Assignee: Raytheon Company
    Inventor: Mark A. Owens
  • Patent number: 6009335
    Abstract: A method and apparatus is provided for calibrating and detecting faults in a receiver having a multi-element antenna. The method includes the steps of selecting an antenna element of the multi-element antenna and transmitting a signal through the selected element. The method further includes the steps of detecting the transmitted signal through at least one antenna element of a remaining set of elements of the multi-element antenna and calculating a phase shift for the at least one antenna element of the remaining set of elements.
    Type: Grant
    Filed: September 26, 1997
    Date of Patent: December 28, 1999
    Assignee: Rockwell Science Center, Inc.
    Inventor: John W. Murphy
  • Patent number: 5250953
    Abstract: A tracking radar system comprising an aerial arrangement having a plurality of outputs, means for deriving from the aerial outputs a sum signal representative of the sum of the aerial outputs and a difference signal representative of the direction of a target relative to the aerial, a receiver for processing said sum and difference signals to produce corresponding intermediate frequency sum and difference signals, means for comparing the intermediate frequency sum signal with the output of an oscillator in a first phase-locked loop and using the resulting signal to control the oscillator frequency so as to cause the oscillator to lock on to the frequency of the intermediate frequency sum signal, a phase-sensitive detector for comparing the intermediate frequency difference signal with the output of the oscillator to produce an output signal representative of the phase difference between the sum and difference signals, and bandwidth alteration means responsive to the sum signal to alter the bandwidth of the fi
    Type: Grant
    Filed: November 10, 1977
    Date of Patent: October 5, 1993
    Assignee: The Marconi Company Limited
    Inventors: Michael A. Jones, John W. Attwood, John T. Floyd, Alan J. Mitchell
  • Patent number: 5119103
    Abstract: A method for steering the gain of a multiple antenna Global Positioning System (GPS) receiver toward a plurality of a GPS satellites simultaneously is provided. The GPS signals of a known wavelength are processed digitally for a particular instant in time. A range difference or propagation delay between each antenna for GPS signals received from each satellite is first resolved. The range difference consists of a fractional wavelength difference and an integer wavelength difference. The fractional wavelength difference is determined by each antenna's tracking loop. The integer wavelength difference is based upon the known wavelength and separation between each antenna with respect to each satellite position. The range difference is then used to digitally delay the GPS signals at each antenna with respect to a reference antenna. The signal at the reference antenna is then summed with the digitally delayed signals to generate a composite antenna gain.
    Type: Grant
    Filed: November 16, 1990
    Date of Patent: June 2, 1992
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Alan G. Evans, Bruce R. Hermann
  • Patent number: 5099248
    Abstract: An apparatus and method for determining the direction of origin of a received transmission signal using a spinning antenna pair generally provides the steps and apparatus for measuring the phase difference between signals simultaneously received, coarsely approximating the direction of origin of the transmission signal, reconstructing a phase difference signal using the measured phase differences and a calculated signal based upon the coarse approximation, correcting the reconstructed phase signal based upon the first derivatives of the reconstructed signal and the calculated signal, and determining the direction of origin based upon the corrected reconstructed phase signal.
    Type: Grant
    Filed: March 15, 1991
    Date of Patent: March 24, 1992
    Assignee: Lockheed Sanders, Inc.
    Inventor: Karl D. Brommer
  • Patent number: 4639733
    Abstract: An interferometer type DF system uses an array of five antennas (A,B,C,D,E) arranged at the apices of a regular pentagon to define five wide apertures along the sides of the pentagon and a further five apertures along the diagonals. The phases of the signals received by each antenna, are measured modulo 2.pi. and processed to give a unique bearing of the radio source to the accuracy of the widest aperture defined by the array. One method of processing the phases is to calculate from them the Fourier coefficients of the Fourier series representing the spatial phase distribution. By comparing the difference between each calculated coefficient and a corresponding order coefficient of a set of imaginary antenna phases expressed as integral multiples of 2.pi., the complete 2.pi. phase differences between the measured phases modulo 2.pi. can be found.
    Type: Grant
    Filed: May 11, 1984
    Date of Patent: January 27, 1987
    Assignee: Racal Communications Equipment Limited
    Inventors: Nigel J. R. King, Ian W. N. Pawson, Michael P. Baker, Robert N. Shaddock, Edward V. Stansfield