With Laser Patents (Class 342/54)
  • Patent number: 10363114
    Abstract: An aiming and status indicator system for surgical lightheads, cameras, and other lighting system accessory devices. The system includes a plurality of marker lights mounted to a housing for the accessory device. Each marker light produces a respective marker light beam that is directed towards a work area (surgical site) to provide a marker indicator pattern. The marker indicator patterns can be used to indicate the boresight of a lighthead or camera, whether a lighthead is in a focused or unfocused condition, and status information associated with the lighting system.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: July 30, 2019
    Assignee: American Sterilizer Company
    Inventors: Michael Hollopeter, Damon Jurkiewicz, David Jesurun, Lena Tana Fogle
  • Patent number: 10353072
    Abstract: Detection of sunlight as noise is avoided in obtaining point clouds by using a laser scanner. A laser scanner controlling device includes a sun direction calculating unit 115, a brightness measuring unit 116, and a scan condition setting unit 118. The sun direction calculating unit 115 calculates the direction of the sun. The brightness measuring unit 116 measures the brightness of an image that contains the direction of the sun. The scan condition setting unit 118 sets a condition for restricting laser scanning in the direction of the sun when the brightness is not less than a predetermined threshold value.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: July 16, 2019
    Assignee: TOPCON CORPORATION
    Inventors: You Sasaki, Tadayuki Ito
  • Patent number: 10302754
    Abstract: The solid object fusion portion includes a lane slope estimation portion, a grouping area set portion and an identity determination portion. The lane slope estimation portion performs estimate processing to estimate a lane slope angle ? in a detecting position of a solid object detected by an autonomous recognition sensor. The grouping area set portion performs setting processing to set a grouping area GA used in determination processing in the identity determination portion. Based on the grouping area GA, the identity determination portion determines whether or not the solid object detected by a certain autonomous recognition sensor is identical to the solid object detected by an autonomous recognition sensor which is different from the certain autonomous recognition sensor.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: May 28, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Terumoto Komori
  • Patent number: 10222471
    Abstract: A vehicle movement estimation device has a radar that is provided in a vehicle and that performs transmission of a radar wave and reception of a reflected wave that is the radar wave reflected by an object, a radar movement estimator that estimates a radar movement velocity and a radar movement direction of the radar based on the received reflected wave, an angular velocity estimator that estimates a rotational angular velocity of the vehicle, and a vehicle movement estimator that estimates a movement velocity and a movement direction of a prescribed position of the vehicle based on the estimated radar movement velocity and radar movement direction, the estimated rotational angular velocity, and a spatial relationship between the radar and the prescribed position.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: March 5, 2019
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Yunyun Cao, Hirofumi Nishimura, Takaaki Kishigami, Asako Hamada
  • Patent number: 10200975
    Abstract: The present invention is designed so that a radio base station controls base station parameters dynamically, in accordance with changes in the surrounding propagation environment. The radio base station according to the present invention has a surrounding environment information acquiring section that acquires surrounding environment information, which is information about the environment in a service area, a propagation environment information extraction section that extracts propagation environment information, which is information about electric wave propagation, based on the surrounding environment information, and a base station parameter generating section that generates base station parameters, which are information about the control of electric waves to transmit and receive, based on the propagation environment information.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: February 5, 2019
    Assignee: NTT DOCOMO, INC.
    Inventors: Jiyun Shen, Satoshi Suyama, Yukihiko Okumura, Tetsuro Imai
  • Patent number: 10200222
    Abstract: A test set system and related method are provided comprise a first direct digital synthesizer (DDS) having a balanced output configured to produce a first signal, and a second DDS having a balanced output signal configured to produce a second signal that differs from the first signal. The test set system also comprises a fully differential amplifier (FDA) having a balanced input that is connected to the balanced output of the first DDS and the balanced output of the second DDS, and a balanced output at which a combination of the first signal and the second signal is provided that suppresses even-order intermodulation products.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: February 5, 2019
    Assignee: Raytheon Company
    Inventors: David Allen Hairfield, Michael G. Carlsen, Ryan G. Beck, Shawna L. Ong, Colt James
  • Patent number: 10154253
    Abstract: A multi-view display system or optical vortex 3D display in a multi-view or multilayer embodiment or configuration. The new 3D display system encodes and decodes images into independent modes of optical angular momentum (OAM). In some embodiments, the 3D display system uses pixel-based OAM. In such systems, transformation optics are used to sort the OAM modes. These transformation optics convert the OAMs' spiral wavefronts to linear gradient wavefronts, which are then deflected by a simple lens. The transformation optics, thus, are used in image-based (per pixel) decoding/sorting. In other embodiments, the 3D display system uses image-based OAM. In such systems, convolution of the OAM modes with the image is used rather than the direct modulation of the OAM mode and the image (as used in the prior system discussed above) for image-based encoding and decoding/sorting of images in different OAM modes.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: December 11, 2018
    Assignees: DISNEY ENTERPRISES, INC., CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Quinn Y. Smithwick, Xuefeng Li, Jiaqi Chu, Daping Chu
  • Patent number: 10054678
    Abstract: Minimizing incorrect associations of sensor data for an autonomous vehicle are described. A driving environment of the autonomous vehicle includes a stationary object and a dynamic object. Such objects can be detected by radar sensors and/or lidar sensors. In one example, a history of radar observation can be used to minimize incorrect sensor data associations. In such case, the location of a stationary object in the driving environment can be determined. When a dynamic object passes by the stationary object, lidar data of the dynamic object is prevented from being associated with radar data obtained substantially at the determined location of the stationary object. In another example, identifiers assigned to radar data can be used to minimize incorrect sensor data associations. In such case, lidar data of an object can be associated with radar data having a particular identifier.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: August 21, 2018
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Xue Mei, Naoki Nagasaka, Bunyo Okumura
  • Patent number: 10031224
    Abstract: A radar device which receives reflected waves from objects, and derives still targets, includes: a determining unit that determines whether any other still target exists at a position in the vicinity of a reference target which is a still target existing at a position closest to a position of a vehicle in a longitudinal direction; and a setting unit that makes it easy to determine the reference target as a roadblock, in a case where the number of other still targets existing at positions in the vicinity of the reference target is equal to or less than a predetermined value.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: July 24, 2018
    Assignee: FUJITSU TEN LIMITED
    Inventors: Shinya Aoki, Hisateru Asanuma
  • Patent number: 9903946
    Abstract: A system performs operations including receiving pairs of sensor signals indicative of imaging of an environment, each pair of sensor signals including (i) a first sensor signal received from a first sensor and including first spatial coordinates and a first signal characteristic and (ii) a second sensor signal including second spatial coordinates and a second signal characteristic. The operations include identifying valid pairs of sensor signals, including determining that an address including the first coordinates of the first sensor signal of a given pair and the second coordinates of the second sensor signal of the given pair corresponds to an admissible address in a set of admissible addresses stored in a data storage.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: February 27, 2018
    Assignee: RFNAV, INC.
    Inventors: Jefferson M. Willey, Richard E. Pavek
  • Patent number: 9753130
    Abstract: A target detection apparatus includes a first target detection section which detects a target which exists ahead of a vehicle and has a height sufficient to strike against the vehicle; a second target detection section which detects the target in an area different from an area in which the target is detected by the first target detection section, and a reliability degree setting section which sets a target reliability degree indicating probability that the target exists. When the target is detected only by the first target detection section or the second target detection section, and after the target is detected by both the first and the second target detection sections, the reliability setting section sets the target reliability degree based on an overlap detection time which is a period of time during which both the first and the second target detection sections continuously detect the target.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: September 5, 2017
    Assignee: DENSO CORPORATION
    Inventor: Ryo Takaki
  • Patent number: 9524647
    Abstract: A flight path planning approach may be deterministic and guarantee a safe, quasi-optimal path. A plurality of three-dimensional voxels may be determined as cells of a rectangular grid. The cells may have a predetermined length and width. A shortest safe path through the grid graph may be calculated from a local start to a local goal defined as points on a nominal global path. Geometric smoothing may be performed on the basis line from the local start to the local goal to generate a smooth three-dimensional trajectory that can be followed by a given rotorcraft. Dynamic smoothing may be performed on the three-dimensional trajectory to provide a maximum possible speed profile over a path defined by the dynamic smoothing. The three dimensional path information may be provided to an autopilot, which may then control the rotorcraft to fly along the defined path.
    Type: Grant
    Filed: January 19, 2015
    Date of Patent: December 20, 2016
    Assignee: The Aerospace Corporation
    Inventor: Sylvia Kohn-Rich
  • Patent number: 9305241
    Abstract: Systems and methods for reducing a point cloud data set are provided. According to aspects of the present disclosure, a method includes receiving a point of a point cloud data set, the point having three-dimensional coordinates. The point's coordinates are mapped to a location to determine whether a different point's coordinates have already been mapped to the location. The point is discarded when a different point's coordinates have been mapped to the location.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: April 5, 2016
    Assignee: Google Inc.
    Inventor: Arthur Robert Pope
  • Patent number: 9188677
    Abstract: An imaging Doppler lidar (IDL) enables the measurement of the velocity distribution of a large volume, in parallel, and at high spatial resolution in the wake of a wind turbine. Because the IDL is non-scanning, it can be orders of magnitude faster than conventional coherent lidar approaches. Scattering can be obtained from naturally occurring aerosol particles. Furthermore, the wind velocity can be measured directly from Doppler shifts of the laser light, so the measurement can be accomplished at large standoff and at wide fields-of-view.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: November 17, 2015
    Assignee: Sandia Corporation
    Inventor: David J. Bossert
  • Patent number: 9188481
    Abstract: A number of apparatuses are provided, for sensing and/or emitting energy along one or more desired apparatus line of sights (LOS) with respect to the respective apparatus. In an embodiment, an apparatus includes an assembly that is rotatably mounted on a base with respect to a switching axis. The assembly has two or more sensing/emitting units, each having a respective sensing/emitting unit line of sight (ULOS). Each sensing/emitting unit has an operative state, wherein the respective unit ULOS is pointed along a LOS of the apparatus for sensing and/or emitting energy along the LOS, and a corresponding inoperative state, where the respective unit ULOS is pointed along a direction different from this LOS. A switching mechanism enables switching between the sensing/emitting units to selectively bring a desired sensing/emitting unit exclusively into its respective operative state while concurrently bringing a remainder of the sensing/emitting units each to a respective non-operative state.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: November 17, 2015
    Assignee: ELTA SYSTEMS LTD.
    Inventor: David Baumatz
  • Patent number: 9134174
    Abstract: A laser detection and warning system and associated methods of warning a pilot of an aircraft of incoming laser radiation and determining a location of a source of laser radiation including a detector configured to be mounted to an aircraft, the detector having an optical subsystem, a detector subsystem, and a processor subsystem to determine characteristics of incoming laser radiation and transmit a laser warning output signal, wherein the laser warning output signal may include wavelength characteristics of the laser radiation, corresponding protective eyewear type, and location of the source of the laser radiation.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: September 15, 2015
    Assignee: The Boeing Company
    Inventor: Douglas R. Jungwirth
  • Patent number: 9041589
    Abstract: A system for determining a coverage region of a radar device is disclosed. The system may have one or more processors and a memory. The memory may store instructions that, when executed, enable the one or more processors to receive radar data generated by a radar device and lidar data generated by a lidar device. The radar data may include radar data points representing objects detected by the radar device and the lidar data may include lidar data points representing objects detected by the lidar device. The one or more processors may be further enabled to determine a radar coverage region for the radar device by comparing one or more radar data points to one or more lidar data points, and to generate data used to display a graphical representation of the radar coverage region.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: May 26, 2015
    Assignee: Caterpillar Inc.
    Inventors: Hong Chang, Bradley Scott Kriel, Michael Sean McDaniel
  • Patent number: 9030351
    Abstract: A land-based Smart-Sensor System and several system architectures for detection, tracking, and classification of people and vehicles automatically and in real time for border, property, and facility security surveillance is described. The preferred embodiment of the proposed Smart-Sensor System is comprised of (1) a low-cost, non-coherent radar, whose function is to detect and track people, singly or in groups, and various means of transportation, which may include vehicles, animals, or aircraft, singly or in groups, and cue (2) an optical sensor such as a long-wave infrared (LWIR) sensor, whose function is to classify the identified targets and produce movie clips for operator validation and use, and (3) an IBM CELL supercomputer to process the collected data in real-time. The Smart Sensor System can be implemented in a tower-based or a mobile-based, or combination system architecture. The radar can also be operated as a stand-alone system.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: May 12, 2015
    Assignee: Vista Research, Inc.
    Inventors: Phillip A. Fox, Joseph W. Maresca, Jr.
  • Publication number: 20150061917
    Abstract: Imaging system comprising an illuminator configured to illuminate a target area using at least one illumination beam, the illumination beam having a substantially elongated cross-section for illuminating at least one respective elongated first section of the target area; a detector having at least one detector part, each with an elongated field of view, for detecting radiation emanating from a respective elongated second section of the target area; the illuminator and detector being arranged such that each elongated first section the target area traverses each elongated second section of the target area.
    Type: Application
    Filed: March 26, 2013
    Publication date: March 5, 2015
    Inventor: Adriaan Jan de Jong
  • Patent number: 8939081
    Abstract: A weapon-locating ladar system estimates a backward trajectory of an airborne target by using flow field measurements to follow the wake turbulence trailing the airborne target from a position at which the target is detected backwards until the wake is no longer observable. The system may use the backward trajectory to estimate the point-of-origin of the target. The system may also use the flow field measurements along the backward trajectory to classify the target. Target classification may be used to refine the point-of-origin estimate, to influence counter-fire or to adapt the flow field measurements.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: January 27, 2015
    Assignee: Raytheon Company
    Inventors: Duane Donald Smith, Robert William Byren
  • Publication number: 20150015869
    Abstract: A weapon-locating ladar system estimates a backward trajectory of an airborne target by using flow field measurements to follow the wake turbulence trailing the airborne target from a position at which the target is detected backwards until the wake is no longer observable. The system may use the backward trajectory to estimate the point-of-origin of the target. The system may also use the flow field measurements along the backward trajectory to classify the target. Target classification may be used to refine the point-of-origin estimate, to influence counter-fire or to adapt the flow field measurements.
    Type: Application
    Filed: January 15, 2013
    Publication date: January 15, 2015
    Applicant: Raytheon Company
    Inventor: Raytheon Company
  • Patent number: 8907839
    Abstract: Disclosed herein are a method and a system for recognizing a space of a road shoulder using an ultrasonic wave sensor, a radar and an imaging device. The method includes: controlling the radar to transmit a radar beam within a preset range based on the vehicle location; detecting a fixed object located within the preset range using a reflective wave of the radar beam received by the radar; calculating a distance between the fixed object and the vehicle using the radar when the fixed object is located within the preset range; detecting a solid line lane marking in a front image of a travel lane obtained from the imaging device; and recognizing the calculated distance between the fixed object and the vehicle as a space width of the road shoulder when the solid line lane is in the front image of the travel lane.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: December 9, 2014
    Assignee: Hyundai Motor Company
    Inventors: Young Chul Oh, Surim Kwon
  • Publication number: 20140333468
    Abstract: Methods and systems for detecting weather conditions including sunlight using onboard vehicle sensors are described. In one example, a method is provided that includes receiving laser data collected for an environment of a vehicle. The method also includes associating laser data points with one or more objects in the environment, and determining given laser data points that are unassociated with the one or more objects in the environment as being representative of an untracked object at a given position with respect to the vehicle. The method also includes determining that the untracked object remains at a substantially same relative position with respect to the vehicle as the vehicle moves, and identifying by the computing device an indication that a weather condition of the environment of the vehicle is sunny.
    Type: Application
    Filed: May 7, 2013
    Publication date: November 13, 2014
    Applicant: Google Inc.
    Inventor: Google Inc.
  • Publication number: 20140307247
    Abstract: Example methods and systems for detecting weather conditions including wet surfaces using vehicle onboard sensors are provided. An example method includes receiving laser data collected for an environment of a vehicle. The method also includes determining laser data points that are associated with one or more objects in the environment, and based on laser data points being unassociated with the one or more objects in the environment, identifying an indication that a surface on which the vehicle travels is wet. The method may further include receiving radar data collected for the environment of the vehicle that is indicative of a presence of the one or more objects in the environment of the vehicle, and identifying the indication that the surface on which the vehicle travels is wet further based on laser data points being unassociated with the one or more objects in the environment indicated by the radar data.
    Type: Application
    Filed: April 11, 2013
    Publication date: October 16, 2014
    Applicant: Google Inc.
    Inventor: Google Inc.
  • Patent number: 8860608
    Abstract: A photonic-assisted digital radar system comprising an active electronically-scanned antenna; a transmitting section comprising a waveform generator to generate a modulating signal; and a modulator to receive a transmission carrier and the modulating signal and to modulate the transmission carrier by means of the modulating signal; and a receiving section comprising a photonic-assisted analog-to-digital converter to convert electric analog signals into electric digital signals; and a digital signal processor to receive and process the electric digital signals. The photonic-assisted analog-to-digital converter comprises a mode-locked laser to generate an optical clock signal; and an electronic analog-to-digital converter; wherein the electronic analog-to-digital converter, the waveform generator, the modulator and the digital signal processor are configured to operate based on electric clock signals generated based on the optical clock signal.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: October 14, 2014
    Assignee: Selex Sistemi Integrati S.p.A.
    Inventors: Luigi Pierno, Massimiliano Dispenza, Alessandro Gatta, Annamaria Fiorello, Alberto Secchi, Massimo Ricci
  • Patent number: 8842036
    Abstract: A method, a radar image registration manager, and a set of instructions are disclosed. A primary sensor interface 430 may receive a primary sensor image and a camera model of the primary sensor image. A data storage 420 may store a digital elevation model. A processor 410 may automatically align the primary sensor image with the digital elevation model.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: September 23, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Mark Pritt, Michael Alan Gribbons
  • Patent number: 8825260
    Abstract: Methods and systems for object and ground segmentation from a sparse one-dimensional range data are described. A computing device may be configured to receive scan data representing points in an environment of a vehicle. The computing device may be configured to determine if a test point in the scan data is likely to be an obstacle or ground by comparing the point to other points in the scan data to determine if specific constraints are violated. Points that do not pass these tests are likely to be above the ground, and therefore likely belong to obstacles.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: September 2, 2014
    Assignee: Google Inc.
    Inventors: David Harrison Silver, David Ian Franklin Ferguson
  • Patent number: 8773300
    Abstract: A missile includes a radar system that has a radome through which a main antenna sends and receives signals. The radome includes a radome body and a radome tip include different transmissive materials, with for example the radome body primarily made of a lossy optically nontransparent material, and the radome tip primarily made of a lossless (permittivity with low imaginary part) glass material that may also be optically transparent. A laser may be used in conjunction with the radome to send and receive encoded signals. The laser may be located behind (aft of) the main antenna, and one or more optical fibers may extend into and/or along the radome to guide laser signals to the radome tip. The laser may be used to emit encoded signals so as to allow multiple radar systems operating in the same area at the same time to discriminate between different targets.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: July 8, 2014
    Assignee: Raytheon Company
    Inventors: Glafkos K. Stratis, Alphonso A. Samuel, Salvatore Bellofiore, David J. Knapp
  • Publication number: 20140152487
    Abstract: An improved method and apparatus for non-destructive measurements of coating thicknesses on a curved surface by measuring components of the microwave energy reflected from the surface. Preferred embodiments of the present invention provide a portable microwave thickness detector with a rounded rocker-type base allowing the microwave beam to be moved through a range of angles with respect to the target surface. An optical alignment system determines when the microwave angle of incidence is at a desired angle when the components of the reflected microwave energy are measured. Preferred embodiments of the present invention also provide a portable microwave thickness detector which maintains a constant standoff distance between the between the microwave detector and the sample to be measured.
    Type: Application
    Filed: November 4, 2013
    Publication date: June 5, 2014
    Applicant: Systems and Materials Research Corporation
    Inventors: Alan V. BRAY, Matthew LINDSEY
  • Patent number: 8686326
    Abstract: In certain aspects, this invention is a “control system” that detects and minimizes (or otherwise optimizes) an angle between vehicle centerline (or other reference axis) and vehicle velocity vector—as for JDAM penetration. Preferably detection is exclusively by optical flow (which herein encompasses sonic and other imaging), without data influence by navigation. In other aspects, the invention is a “guidance system”, with optical-flow subsystem to detect an angle between the vehicle velocity vector and line of sight to a destination—either a desired or an undesired destination. Here, vehicle trajectory is adjusted in response to detected angle, for optimum angle, e.g. to either home in on a desired destination or avoid an undesired destination (or rendezvous), and follow a path that's ideal for the particular mission—preferably by controlling an autopilot or applying information from navigation.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: April 1, 2014
    Assignee: Arete Associates
    Inventors: John C. Dennison, David C. Campion
  • Patent number: 8681068
    Abstract: A technique for suppressing backwaves employs a photonic approach. In one aspect, the technique includes an apparatus, including: a radiating element; and a microwave-photonic device for suppressing backwaves from the radiating element. In a second aspect, the technique includes a method for removing unwanted radiation from a radiating device, comprising: receiving unwanted radiation from the radiating device; communicating the received radiation to an electro-optically active material; communicating laser light to the electro-optically active material; communicating electromagnetic products of interactions between the radiation and the laser light to a photodiode; and communicating photodiode outputs to a termination.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: March 25, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Brett A. Williams, Kurt S. Schuder, J. Michael Zamarron
  • Publication number: 20140070979
    Abstract: A method for validating received positional data in vehicle surveillance applications. A signal carrying a Mode S ES message including positional data indicating an alleged position of a vehicle, transmitted from a radio source is received with a radio direction finding antenna of a receiver. A bearing from the receiver to the radio source is estimated utilizing the radio direction finding antenna and received signal. A distance between the receiver and radio source based on a time of flight for a signal travelling between the receiver and radio source at known speed is estimated with a distance measurer including primary radar, laser detector and ranger, and/or secondary surveillance radar. An estimated position of the radio source is calculated based on the estimated bearing and distance. A deviation value indicating a deviation/coincidence between the alleged position is determined according to the received and estimated position of the radio source.
    Type: Application
    Filed: November 12, 2013
    Publication date: March 13, 2014
    Applicant: SAAB AB
    Inventors: Svante Andersson, Andreas Persson
  • Patent number: 8614640
    Abstract: A forward facing sensing system for a vehicle includes a radar sensor device disposed within the vehicle cabin and having a sensing direction forward of the vehicle, and an image sensor disposed within the vehicle cabin and having a viewing direction forward of the vehicle. A control includes an image processor that is operable to analyze images captured by the image sensor in order to, at least in part, detect an object forward of the vehicle. The control, at least in part, determines that a potentially hazardous condition may exist in the path of the vehicle, with the potentially hazardous condition including at least one of (i) another vehicle, (ii) a person and (iii) an animal in the path of the vehicle. The radar sensor device and the image sensor collaborate to enhance the sensing capability of the sensing system for the potentially hazardous condition in the vehicle's path.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: December 24, 2013
    Assignee: Magna Electronics Inc.
    Inventor: Niall R. Lynam
  • Patent number: 8593332
    Abstract: The present invention relates to a device for detecting objects. The device comprises at least one microwave-frequency transmitter and one microwave-frequency receiver. The receiver makes a relative rotary movement about the transmitter, a signal being transmitted toward an individual for several positions of the receiver on the circle of relative rotation, the signals reflected by points of an object and received by the receiver at the positions being supplied to processing means in order to form a radar image. The receiver and the transmitter can be installed on a disk with a very low moment of inertia. The invention applies notably for the detection of weapons or explosives carried by persons.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: November 26, 2013
    Inventors: Claude Chekroun, Gilles Chekroun
  • Patent number: 8581771
    Abstract: A system is disclosed to identify authorized EO devices and unauthorized EO devices within a scene. The system hampers the operation of the unauthorized EO devices detected within the scene.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: November 12, 2013
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Timothy Bradley
  • Publication number: 20130257641
    Abstract: The system and method of detection of low flying animals, such as birds, bats, and insects, and more particularly the detection of low flying animals using a radar system to detect the animals in three-dimensional airspace. The radar system produces narrowly focused radar pulses. The radar system comprises a single radar unit, an A/D proceeding apparatus, an A/D conversion apparatus, and a pan/tilt controlled base platform. The system and method further producing an avoidance response in an animal, and more particularly, producing an avoidance response by illuminating the animal with ultraviolet light.
    Type: Application
    Filed: September 19, 2012
    Publication date: October 3, 2013
    Inventor: Donald Ronning
  • Publication number: 20130241762
    Abstract: A light beam is scanned, for use in laser radar and other uses, by an optical system of which an example includes a beam-shaping optical system that includes a first movable optical element and a second movable optical element. The first optical element forms and directs an optical beam along a nominal propagation axis from the beam-shaping optical system to a target, and the second optical element includes a respective actuator by which the second optical element is movable relative to the first optical element. A controller is coupled at least to the actuator of the second optical element and is configured to induce motion, by the actuator, of the second optical element to move the optical beam, as incident on the target, relative to the nominal propagation axis.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 19, 2013
    Applicant: Nikon Corporation
    Inventors: Daniel G. Smith, Alexander Cooper, Eric Peter Goodwin, Yuichi Takigawa, Alec Robertson
  • Publication number: 20130241761
    Abstract: Optical systems suitable for use as or in laser radar systems and other uses include a beam-forming unit, a beam-scan unit, and a controller. The beam-forming unit includes a first optical element, and the beam-scan unit includes a second optical element. The first optical element is movable to shape and direct a substantially collimated optical beam along a nominal propagation axis to a target, and the second optical element includes at least one movable beam deflector that moves the optical beam in a scanning manner relative to the nominal propagation axis. The controller is coupled to the beam-forming unit and beam-scan unit, and is configured to induce movement of the first optical element required for shaping and directing the optical beam along the nominal propagation axis and to induce independent motion of the beam deflector of the second optical element as required to scan the optical beam relative to the nominal propagation axis. The beam deflector can be refractive or reflective.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 19, 2013
    Applicant: Nikon Corporation
    Inventors: Alexander Cooper, Daniel G. Smith, W. Thomas Novak
  • Publication number: 20130222174
    Abstract: An apparatus for providing obstacle information in an autonomous mobile vehicle and a method thereof, in which a target object is determined to be what obstacle by combining pieces of information received from a laser distance sensor and radars, thereby enabling the autonomous driving of a vehicle. The apparatus and method for providing obstacle information in an autonomous mobile vehicle, which is capable of providing robust obstacle information not only in environments normal times, but also dust environments by combining a laser distance sensor and radar data radars. A problem that an obstacle through which a mobile unit can pass, such as dust, is mistaken for an obstacle through which the mobile unit cannot pass can be solved.
    Type: Application
    Filed: September 14, 2011
    Publication date: August 29, 2013
    Inventors: Tok Son Choe, Yoon Woon Park, Young Il Lee
  • Publication number: 20130201052
    Abstract: A method and apparatus comprising a group of passive sensor systems, an active sensor system, and a processor unit. The group of passive sensor systems is configured to generate first sensor information from light in an environment around the group of passive sensor systems. The active sensor system is configured to send signals, receive responses from the signals, and generate second sensor information from the responses. The processor unit is configured to control the active sensor system to send the signals in a direction toward an object using the first sensor information and generate information about the object using the second sensor information.
    Type: Application
    Filed: February 6, 2012
    Publication date: August 8, 2013
    Applicant: THE BOEING COMPANY
    Inventors: Jonathan Martin Saint Clair, William D. Sherman, Mitchell D. Voth, Ronald N. Murata, Bentley Edwin Northon, James Ridgeway Gillis, Robert P. Higgins, David Christien Soreide, Robert R. Keever, Ordie Dean Butterfield
  • Patent number: 8493261
    Abstract: A countermeasure device for directing a mobile tracking device away from an asset is provided. The countermeasure device includes a continuous wave laser source whose output is directed at a seeker head of the mobile tracking device. The countermeasure device causes the generation of localized sources within the mobile tracking device and confuses the mobile tracking device as to the true location of the asset.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: July 23, 2013
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Timothy Bradley
  • Publication number: 20130154869
    Abstract: A tower crane load location determiner is disclosed. One example includes a load location measurer to provide load location measurement information for a load coupled with a tower crane. In addition, a load position determiner utilizes the load location measurement information to determine a location of the load. A user accessible load location provider provides the determined location of the load.
    Type: Application
    Filed: December 19, 2011
    Publication date: June 20, 2013
    Inventors: John F. Cameron, Kurt Maynard
  • Publication number: 20130099957
    Abstract: A compact optical assembly for a laser radar system is provided, that is configured to move as a unit with a laser radar system as the laser radar system is pointed at a target and eliminates the need for a large scanning (pointing) mirror that is moveable relative to other parts of the laser radar. The optical assembly comprises a light source, a lens, a scanning reflector and a fixed reflector that are oriented relative to each other such that: (i) a beam from the light source is reflected by the scanning reflector to the fixed reflector; (ii) reflected light from the fixed reflector is reflected again by the scanning reflector and directed along a line of sight through the lens; and (iii) the scanning reflector is moveable relative to the source, the lens and the fixed reflector, to adjust the focus of the beam along the line of sight.
    Type: Application
    Filed: October 25, 2011
    Publication date: April 25, 2013
    Applicant: Nikon Corporation
    Inventors: Eric Peter Goodwin, Daniel Gene Smith, Brian L. Stamper, Alexander Cooper, Alec Robertson
  • Patent number: 8400348
    Abstract: Apparatus and methods for an airborne biota monitoring and control system are disclosed. Radar and laser/optical sensors are used to detect insects, with detection zones being over water in some embodiments to reduce backscatter clutter. A pest control laser or small autonomous or radio controlled aircraft under automated or human control may be used to disable a targeted flying insect. One embodiment includes use of a head-mounted display for displaying insect targeting information superimposed on a real landscape view. Technologies such as adaptive lens, holographic optical elements, polarized radar and/or laser beams, light amplifiers and light guides, thin disk, spinning disk, or vertical cavity surface emitting lasers enhance performance of the apparatus or reduce cost of the apparatus. Also disclosed are methods of discrimination of insect types using spectral information and dynamic relative variation of spectral intensities at different wavelengths reflected from an insect in flight.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: March 19, 2013
    Assignee: Applied Information Movement and Management, Inc.
    Inventors: David Lehmann Guice, Augustus Hammond Green, Jr., William Vaden Dent, Jr.
  • Patent number: 8384583
    Abstract: A synthetic-aperture radar system, and related operating method, for the monitoring of ground and structure movements, particularly suitable for emergency conditions, characterized by a ground based platform with polarimetric capabilities, that able to quickly acquire, embeddedly process and post-process data by a novel data acquisition “On the Fly” mode of operation, reducing by at least an order of magnitude the data acquisition time. The inventive system characteristics allows to achieve on-field measurement results on three-dimensional maps georeferenced to absolute coordinate systems (WGS84, Gauss-Boaga, and so on).
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: February 26, 2013
    Assignee: Ellegi S.R.L.
    Inventors: Davide Leva, Carlo Rivolta
  • Publication number: 20130046461
    Abstract: A method and device for streamlining navigation from a point to a visual point of interest by combining the necessary items into a single device incorporating an optical finder such as binoculars which incorporates an optical display into the viewfinder, a rangefinder, GPS, compass, altimeter, inclinometer, microprocessor and memory. The device performs three functions: 1) acquires the POI's coordinates relative to the user by visual indication of the POI by the user; 2) reproduces an updated POI vector on demand; and 3) displays the POI vector information in the device viewfinder. All three functions happen seamlessly and instantaneously with the use of only one compact hand held device.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Inventor: Abram L. Balloga
  • Patent number: 8354939
    Abstract: A logging system and method for measuring propped fractures and down-hole subterranean formation conditions including: a radar source; an optical source; an optical modulator for modulating an optical signal from the optical source according to a signal from the radar source; a photodiode for converting the modulated optical signal output from the optical modulator to the source radar signal. A transmitter and receiver unit receives the source radar signal from the photodiode and transmits the source radar signal via at least one antenna attached to the casing and in communication with at least one photodiode into the formation and receives a reflected radar signal. A mixer mixes the reflected radar signal with the source radar signal to provide an output. This can describe fractures connected to the wellbore and differentiate between the dimensions of the two vertical wings of a propped fracture.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: January 15, 2013
    Assignee: Momentive Specialty Chemicals Inc.
    Inventors: Robert R. McDaniel, Michael L. Sheriff, Eric E. Funk, Ethan A. Funk
  • Patent number: 8354952
    Abstract: Disclosed herein are systems, methods, and non-transitory computer-readable storage media for radio phase retrieval. A system practicing the method gathers first data from radio waves associated with an object observed via a first aperture, gathers second data from radio waves associated with the object observed via an introduced second aperture associated with the first aperture, generates reduced noise data by incoherently subtracting the second data from the first data, and performs phase retrieval for the radio waves by modeling the reduced noise data using a single Fourier transform. The first and second apertures are at different positions, such as side by side. This approach can include determining a value Q which represents a ratio of wavelength times a focal ratio divided by pixel spacing. This information can be used to accurately measure and correct alignment errors or other optical system flaws in the apertures.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: January 15, 2013
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Bruce H. Dean
  • Patent number: 8330647
    Abstract: A land-based smart sensor system and several system architectures for detection, tracking, and classification of people and vehicles automatically and in real time for border, property, and facility security surveillance is described. The preferred embodiment of the proposed smart sensor system is comprised of (1) a low-cost, non-coherent radar, whose function is to detect and track people, singly or in groups, and various means of transportation, which may include vehicles, animals, or aircraft, singly or in groups, and cue (2) an optical sensor such as a long-wave infrared (LWIR) sensor, whose function is to classify the identified targets and produce movie clips for operator validation and use, and (3) a supercomputer to process the collected data in real-time. The smart sensor system can be implemented in a tower-based or a mobile-based, or combination system architecture. The radar can also be operated as a stand-alone system.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: December 11, 2012
    Assignee: Vista Research, Inc.
    Inventors: Phillilp A. Fox, Joseph W. Maresca, Jr.
  • Patent number: 8330646
    Abstract: A number of apparatuses are provided, for sensing and/or emitting energy along one or more desired apparatus line of sights (LOS) with respect to the respective apparatus. In at least one embodiment, the apparatus includes an assembly that is rotatably mounted on a base with respect to a switching axis. The assembly has two or more sensing/emitting units, each having a respective sensing/emitting unit line of sight (ULOS). Each sensing/emitting unit has an operative state, wherein the respective unit ULOS is pointed along a LOS of the apparatus for sensing and/or emitting energy along the LOS, and a corresponding inoperative state, where the respective unit ULOS is pointed along a direction different from this LOS. A switching mechanism enables switching between the sensing/emitting units to selectively bring a desired sensing/emitting unit exclusively into its respective operative state while concurrently bringing a remainder of the sensing/emitting units each to a respective non-operative state.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: December 11, 2012
    Assignee: Elta Systems Ltd.
    Inventor: David Baumatz