With Laser Patents (Class 342/54)
  • Publication number: 20040056792
    Abstract: A system for the detection and determination of the success of interception of incoming missiles, used in conjunction with a defense weapon system capable of identifying and tracking incoming missiles and interceptors. The system comprises at least one of a plurality of sensing units. Each sensing unit comprises: an optical sensor for detecting optical signals within a predetermined range; tracking means coupled to the optical sensor for tracking an intercepting missile or an incoming missile; processing means for processing optical input detected by the optical sensor and analyzing the optical input to identify an optical signature and determine detonation of interceptor or incoming missile; communicating means for communicating data between the sensing unit and the defense weapon system; and control means for controlling the tracking means, the processing means and the communicating data.
    Type: Application
    Filed: May 12, 2003
    Publication date: March 25, 2004
    Inventor: Raphael Miron
  • Patent number: 6680688
    Abstract: A measuring system and method of detecting an object distance by transmission media with different wave velocities are described. The measuring system has a computer, a primary detector and a secondary detector. The primary detector is connected to the computer through bus communication and the secondary detector connected to the primary one through two different transmission media. The primary detector is able to receive separately a first signal and a second signal emitted simultaneously from the secondary detector through the transmission media. Moreover, the first signal has light-speed and the second signal has sound-speed. To calculate the distance between the objects which the primary and the secondary detector are attached respectively. The delay time of second signal and the wave velocity of the supersonic media are multiplied.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: January 20, 2004
    Assignee: Viewmove Technologies, Inc.
    Inventors: Shyh-Biau Jiang, Hung-Chuan Chien, Dong-Liang Lee, Chi-Ming Yang, Hsin-Ming Chang, Chuan-Fu Huang
  • Patent number: 6653971
    Abstract: A method and system for detecting airborne plant material, such as mold spores and pollen, and flying insects and birds, and classifying them as to whether they are harmful to field crops, production animals or other assets within a protected volume or area. Lasers, radar, and other types of radiation may be used to illuminate at least a perimeter around such assets to be protected, with radiation returns detected and applied to a pattern classifier to determine whether the detected objects of interest are harmful, benign or beneficial. In the event the objects are determined to be harmful (pests), a variety of measures controllable via the radiation returns may be taken to eliminate the harmful objects, these measures including firing pulses of laser, microwave or other radiation of a sufficient intensity to at least incapacitate them, or mechanical measures such as controlled drone aircraft to macerate the pests with propellers or spray limited amounts of pesticide in the area of the pests.
    Type: Grant
    Filed: May 14, 2000
    Date of Patent: November 25, 2003
    Inventors: David L. Guice, Augustus H. Green, William V. Dent, Jr.
  • Patent number: 6650235
    Abstract: A transmission wave is applied to a predetermined range in a width-wise direction of a subject vehicle. Objects located ahead of the subject vehicle are recognized on the basis of reflected waves which result from reflections of the transmission wave. The reflected waves are converted into a received signal. Detection is made regarding a variation in an intensity of the received signal along a direction corresponding to the width-wise direction of the subject vehicle. The received signal is separated into a first signal portion and a second signal portion on the basis of the detected signal intensity variation. The first signal portion corresponds to a scattered portion of the transmission wave. The second signal portion corresponds to an unscattered portion of the transmission wave. Objects are recognized on the basis of the second signal portion.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: November 18, 2003
    Assignee: Denso Corporation
    Inventors: Noriaki Shirai, Yoshie Samukawa, Keiji Matsuoka
  • Publication number: 20030201929
    Abstract: A multi-sensor system includes multiple sensors that are integrated onto the same substrate forming a unitary multi-sensor platform that provides a known consistent physical relationship between the multiple sensors. A processor can also be integrated onto the substrate so that data from the multiple sensors can be processed locally by the multi-sensor system.
    Type: Application
    Filed: April 24, 2002
    Publication date: October 30, 2003
    Inventors: Robert Pierce Pierce Lutter, Tracey Olson
  • Publication number: 20030184468
    Abstract: A method and system provide a multi-sensor data fusion system capable of adaptively weighting the contributions from each one of a plurality of sensors using a plurality of data fusion methods. During a predetermined tracking period, the system receives data from each individual sensor and each data fusion method is performed to determine a plurality of reliability functions for the system based on combining each sensor reliability function which are individually weighted based on the S/N (signal-to-noise) ratio for the received data from each sensor, and a comparison of predetermined sensor operation characteristics for each sensor and a best performing (most reliable) sensor. The system may dynamically select to use one or a predetermined combination of the generated reliability functions as the current (best) reliability function which provides a confidence level for the multi-sensor system relating to the correct classification (recognition) of targets and decoys.
    Type: Application
    Filed: March 25, 2003
    Publication date: October 2, 2003
    Inventors: Hai-Wen Chen, Teresa L. Olson
  • Patent number: 6626396
    Abstract: A method for guiding an intercepting missile to a body-to-body contact with an airborne target in the atmosphere. The method includes the steps of guiding the intercepting missile to within an appropriate distance from the airborne target, illuminating the airborne target, using an illuminator carried by the intercepting missile, acquiring an image of the illuminated airborne target and, steering the missile in accordance with an aimpoint on the image.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: September 30, 2003
    Assignee: Rafael-Armament Development Authority Ltd.
    Inventor: Arnon Secker
  • Publication number: 20030179129
    Abstract: The invention provides an object recognition apparatus that removes virtual images without detecting a roadside object. When a predetermined vehicle is currently running on a lane, a detection area, outside of the currently running lane, is designated to include a first area and an assumed ghost area therein. The first area is enclosed by a boundary of the detection area, a boundary of the assumed ghost area adjacent thereto, and a boundary on the currently running lane whose distance is traveled by the vehicle during one control cycle. The invention detects an object for the first time in the assumed ghost area, not in the first area. When the object travels with a distance and a speed of a target vehicle, it is determined to be a ghost to be deleted.
    Type: Application
    Filed: March 14, 2003
    Publication date: September 25, 2003
    Inventors: Yukimasa Tamatsu, Hiroaki Kumon
  • Publication number: 20030128149
    Abstract: Methods and systems are provided for characterizing an overhead line. A radar signal is propagated in a region that includes at least a portion of the overhead line and a reference object, which may, for example, be a ground surface, growth over a ground surface, or another overhead line. A reflected radar signal is received from the overhead line and the reference object. A determination is made of a geometric relationship between the overhead line and the reference object, such as by determining a minimal separation between the overhead line and the reference object.
    Type: Application
    Filed: October 21, 2002
    Publication date: July 10, 2003
    Applicant: Hot/Shot Radar Inspections, LLC
    Inventors: Gilbert F. Miceli, Michael Parisi
  • Patent number: 6590519
    Abstract: A radar source is configured on a vehicle, which may be an airborne vehicle such as a helicopter. An arrangement of at least one computer system is provided in communication with the radar source and configured to accept instructions from an operator and to operate the radar source. As the vehicle moves in the vicinity of a subterranean volume along a navigation path, a radar signal is propagated with the radar source into the subterranean volume. A reflected radar signal from a subterranean object within the subterranean volume is received. Physical characteristics of the subterranean object are ascertained from the reflected radar signal.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: July 8, 2003
    Assignee: Hot/Shot Radar Inspections, LLC
    Inventors: Gilbert F. Miceli, Michael Parisi
  • Patent number: 6590521
    Abstract: An object recognition system including a radar, an image sensor and a controller is provided. The radar determines the position of an object, and the image sensor captures an image of the object. The controller sets a processing area within the image captured by the image sensor based on the position of the object determined by the radar and a predetermined size for the object to be recognized. The controller extracts horizontal and vertical edges from the processing area, and preferably judges whether each of the extracted edges belongs to the object based on characteristics of the object to be recognized. The controller then recognizes the outline of the object based on the edges judged to belong to the object. The object can be recognized by determining upper, lower, left and right ends of the object. On the other hand, the controller recognizes lane lines defining the lane in which the vehicle mounting the system of the invention is running.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: July 8, 2003
    Assignee: Honda Giken Gokyo Kabushiki Kaisha
    Inventors: Masakazu Saka, Shigeru Inoue, Hisaya Izawa, Tomoyoshi Aoki
  • Patent number: 6587068
    Abstract: A police radar and/or laser detector senses radiant electromagnetic signals (e.g. radar, laser) characteristic of a police traffic surveillance device and responds thereto with a displayed and/or audible alert. During periods when no alert is necessary, the detector senses and displays, in numeric or bar graph form, vehicle parameters, such as sound pressure level and acceleration. In addition, calculations based on acceleration provide 0-60 m.p.h. time and quarter mile time. Thereby, the detector enhances information available to the driver without the inconvenience, expense, and clutter of multiple displays.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: July 1, 2003
    Assignee: Escort Inc.
    Inventors: John Kuhn, Jeffrey J. Clawson
  • Patent number: 6583750
    Abstract: The present invention relates to a wide-band radar detector with an electronic compass integrated therein. The radar detecting unit includes a horn antenna, a signal processing unit for detecting signals received by the horn antenna, a laser module for receiving laser signals, a central processing unit for controlling the detection of the signals, a visual display means for visually displaying the detected signals, and a voice producing means for outputting the detected signals to a speaker. The electronic compass includes a magneto-inductive sensor for sensing the earth's magnetic field and a sensor controlling unit. The sensor controlling unit then transmits the values sensed by the magneto-inductive sensor to the central processing unit.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: June 24, 2003
    Assignee: BG Tech Co., Ltd
    Inventor: Jin Woo Shin
  • Patent number: 6583752
    Abstract: A transmission wave is applied to a predetermined range in a width-wise direction of a vehicle. Objects ahead of the vehicle are recognized on the basis of reflected waves resulting from reflections of the transmission wave. Calculation is made as to a position of each of the objects and also a lane-sameness probability for each of the objects that the object and the subject vehicle are on a same lane. Object information pieces corresponding to the respective objects represent the calculated positions of the objects and the calculated lane-sameness probabilities for the objects. In cases where at least two objects become substantially equal in position, the two objects are recognized as a single object. One is selected from the two objects which relates to a calculated lane-sameness probability equal to or higher than a predetermined value. The single object takes over an object information piece corresponding to the selected object.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: June 24, 2003
    Assignee: Denso Corporation
    Inventors: Yoshie Samukawa, Keiji Matsuoka, Hiroshi Ookata, Toyohito Nozawa, Noriaki Shirai
  • Publication number: 20030112170
    Abstract: Existing positioning technologies used in conjunction with Ground Penetrating Radar (GPR) are generally too time-consuming or insufficiently accurate for high resolution, high frequency, 3-d structural investigations. The invention provides an optical positioning system for use in GPR surveys that uses a camera mounted on the GPR antenna that takes video of the surface beneath it and calculates the relative motion of the antenna based on the differences between successive frames of video. Positioning accuracy to within several millimeters is provided. The procedure is orders of magnitude faster than surveying a grid of data points or laying out parallel lines and surveying each line with an odometer wheel. The system and method of positioning is suitable for mapping the subsurface of structures such as building columns or floors using GPR. Time domain synthetic aperture radar algorithms can be used to reconstruct an image of the subsurface using this position data.
    Type: Application
    Filed: October 22, 2002
    Publication date: June 19, 2003
    Applicant: KYMATIX RESEARCH INC.
    Inventors: Kyle J. Doerksen, Alan G. McNaughton
  • Publication number: 20030058154
    Abstract: A radar detector includes an antenna for receiving a first signal of ultrahigh-frequency, a first local oscillator oscillating a second signal, a first filter removing noise from the second signal oscillated via the first local oscillator, a first mixer mixing the first signal of ultrahigh-frequency with a third signal filtered via the first filter, an intermediate frequency amplifier amplifying a fourth signal mixed at the first mixer, a second local oscillator oscillating a fifth signal, a second mixer mixing a sixth signal amplified via the intermediate frequency amplifier with the fifth signal oscillated by the second local oscillator, a second filter filtering a seventh signal mixed at the second mixer, a demodulator converting analog values of an eighth signal filtered by the second filter into digital values, a memory part storing data of relations between a ninth signal converted via the demodulator and the second and fifth signals oscillated by the first and second local oscillators, a central proces
    Type: Application
    Filed: July 24, 2002
    Publication date: March 27, 2003
    Inventors: Jong-Kui Kim, Sang-Bo Min, Jae-Seok Oh, Dong-Gi Youn, Keun-Sik No
  • Publication number: 20030038743
    Abstract: The present invention relates to a wide-band radar detector with an electronic compass integrated therein. The radar detecting unit includes a horn antenna, a signal processing unit for detecting signals received by the horn antenna, a laser module for receiving laser signals, a central processing unit for controlling the detection of the signals, a visual display means for visually displaying the detected signals, and a voice producing means for outputting the detected signals to a speaker. The electronic compass includes a magneto-inductive sensor for sensing the earth's magnetic field and a sensor controlling unit. The sensor controlling unit then transmits the values sensed by the magneto-inductive sensor to the central processing unit.
    Type: Application
    Filed: February 26, 2002
    Publication date: February 27, 2003
    Inventor: Jin Woo Shin
  • Patent number: 6522284
    Abstract: A method and system for identifying an anomaly in an electrically insulative component of a structure, such as an insulator on a utility or telecommunications pole, are provided. Locations for the structure and electrically insulative component are identified. A radar signal is propagated towards the electrically insulative component with a radar antenna while the radar antenna is motion along a navigation path in the vicinity of the structure. A reflected radar signal is received from the electrically insulative component, from which a determination is made whether the electrically insulative component contains the anomaly.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: February 18, 2003
    Assignee: Hot/Shot Radar Inspections, LLC
    Inventors: Gilbert F Miceli, Michael Parisi
  • Publication number: 20030030582
    Abstract: Environment measurement methods, systems, media, signals and data structures are disclosed. A first method involves receiving first signals produced in response to a laser beam scattered by the environment, receiving second signals produced in response to a radar beam scattered by the environment, and storing data representing the first and second signals, for use in producing a representation of the environment. A second method involves continuously producing data in response to scattered portions of a laser pulse scattered by respective portions of the environment, during a measurement interval of sufficient duration to receive all the scattered portions, and storing the data, for use in producing a representation of the environment.
    Type: Application
    Filed: August 10, 2001
    Publication date: February 13, 2003
    Inventor: Roger S. Vickers
  • Publication number: 20020196175
    Abstract: A detector device for detecting the presence of a speed detection system which includes a displaying means which pivots in relation to the device's housing thereby allowing a user to selectively adjust the orientation of the display to maximize the display's visual output without detracting from the alignment/orientation of the device's detection means.
    Type: Application
    Filed: December 19, 2001
    Publication date: December 26, 2002
    Inventors: Craig R. Autio, Michael Batten
  • Patent number: 6492939
    Abstract: A radar target with delayed reply means. The radar target contains devices for: (a) receiving a radar signal which has a frequency of from about 0.5 to about 94 gigahertz, (b) phase coherently amplitude modulating a continuous wave light emission with the radar signal with the frequency of from about 1 to about 94 gigahertz, (c) delaying an amplitude modulated light pulse for at least about one radar pulse width, (d) detecting the delayed modulated amplitude modulated light pulse, (e) converting a detected amplitude modulated light pulse into a converted radio frequency pulse, (f) modulating the converted radio frequency pulse, thereby producing a delayed modulated radio frequency pulse, and (g) transmitting the delayed modulated radio frequency pulse.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: December 10, 2002
    Inventors: Duane G. Fredericks, James N. Devlin
  • Patent number: 6492935
    Abstract: For data detected by a milltimetric wave radar 2 and an image sensor 3, a signal processor 4 of a peripheral monitoring sensor 1 divides an area in which a detected target exists into a plurality of areas. For a target that exists within a certain specific area, information on the target is prepared based on the information obtained by both sensors. The millimetric wave radar is good at measuring a range and a speed of a target at long range. The image sensor is good at measuring a width and a bearing of a target. Therefore, by combining the data that each sensor is good at obtaining, it is possible to obtain accurate information. The signal processor 4 decides a surface of a target by combining an existing position of the target detected by the millimetric wave radar with target information detected by the image sensor. Thus, a peripheral monitoring sensor is obtained that securely senses a range, a relative speed, and a shape of the target.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: December 10, 2002
    Assignee: Fujitsu Ten Limited
    Inventor: Takashi Higuchi
  • Patent number: 6480140
    Abstract: The present invention is to a method and system for providing protection from an EMS-targeted weapon by providing an appropriate spoofed EMS signal to cause an EMS-targeted weapon to determine an apparent object distance sufficiently close to the EMS-based targeting threat to nullify the weapon. In a first embodiment, the EMS-based targeting threat uses reflected EMS emissions, such as RADAR, to target the object the apparent object distance nullifies the weapon by falling within a weapon-safety lockout distance determined by a fire control system of the targeting threat. In another embodiment, the EMS-based targeting threat uses EMS signals from an external source, such as GPS, to target a position of the object and the apparent object distance nullifies the weapon by causing premature detonation at a safe standoff distance from said object.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: November 12, 2002
    Inventor: Jonathan B. Rosefsky
  • Publication number: 20020149510
    Abstract: The present invention relates to a method for the protection of mobile military facilities, in particular military bridges, against target-seeking guided weapons equipped with various threat sensors, wherein the mobile military facilities are equipped with active and passive anti-sensors for detecting a threat by approaching target-seeking guided weapons and computing their trajectories and determining suitable intercept coordinates for deploying countermeasures. Moreover a mobile dirigible launcher furnished with various decoy effective agent ammunitions is provided in the surroundings of the facility to be protected and/or immediately on the said facility.
    Type: Application
    Filed: April 4, 2002
    Publication date: October 17, 2002
    Inventor: Rudolf Salzeder
  • Patent number: 6466159
    Abstract: Radar apparatus in which output RF signals are modulated on an optical signal prior to transmission. Incoming optical echo signals are converted into RF signals using a detector. The original functionality of the radar apparatus is to a large extend retained, including the Doppler processing. The target radar cross section is determined by the wavelength of the optical signal.
    Type: Grant
    Filed: August 4, 2000
    Date of Patent: October 15, 2002
    Assignee: Thales Nederland B.V.
    Inventor: Petrus Johannes Rotgans
  • Patent number: 6456226
    Abstract: A convection induced turbulence (CIT) detection system performs a nowcast algorithm to detect CIT along the flight path of an aircraft using power returns from an airborne whether radar. Additional meteorological data is optionally provided by onboard sensors and/or data link from ground sources. A nowcast predicting turbulence along the flight path in the near future alerts the pilot to the likelihood of encountering clear air turbulence.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: September 24, 2002
    Assignee: Honeywell International Inc.
    Inventors: L. Lucy Zheng, Richard Burne, Dan T. Horak
  • Patent number: 6452535
    Abstract: A pre-crash sensing system is provided for sensing an impact of a target vehicle (46) with a host vehicle (12). The target vehicle (46) has side transponders that generate side identification signals. The host vehicle (12) has a remote object sensor (20) that generates an object distance signal in response to the target vehicle. A countermeasure system (42) resides in the host vehicle (12). A controller (14) in the host vehicle is coupled to the remote object sensor (20) and the countermeasure system (42). The controller (14) activates the countermeasure in response to the object distance signal and side identification signal.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: September 17, 2002
    Assignee: Ford Global Technologies, Inc.
    Inventors: Manoharprasad K. Rao, Gary Steven Strumolo, Ronald Hugh Miller
  • Publication number: 20020113727
    Abstract: A police activity transponder utilizes data available through a vehicle on-board diagnostic system or a intelligent vehicle data bus to adjust the sensitivity of the police activity transponder to law enforcement signals based on speed data. A police activity transponder is configured to read speed data available through an on-board diagnostic system or an intelligent vehicle data bus and using an internal clock, calculate a 0 to 60 mile per hour or a quarter mile time for display and function as a speedometer. A police activity transponder is configured to read engine revolutions per minute (rpm) data and function as a tachometer. A police activity transponder is configured to allow a user to input shift points, read engine rpm data, and provide a user indication.
    Type: Application
    Filed: December 17, 2001
    Publication date: August 22, 2002
    Inventors: John Kuhn, Steven K. Orr
  • Publication number: 20020109622
    Abstract: A method and system for identifying an anomaly in an insulative component of a structure, such as an insulator on a utility or telecommunications pole, are provided. Locations for the structure and insulative component are identified. A radar signal is propagated towards the insulative component with a radar antenna while the radar antenna is motion along a navigation path in the vicinity of the structure. A reflected radar signal is received from the insulative component, from which a determination is made whether the insulative component contains the anomaly.
    Type: Application
    Filed: December 20, 2000
    Publication date: August 15, 2002
    Applicant: Hot/Shot Radar Inspections, LLC
    Inventors: Gilbert F. Miceli, Michael Parisi
  • Publication number: 20020101372
    Abstract: A road antenna apparatus includes a road antenna 104 which is mounted on a post 103 and at an elevated position on a road R and establishes radio communication with an on-vehicle radio device 102 mounted in a vehicle 101 which is traveling over the road; and a laser-beam emitting device 111 which is mounted on the road antenna and radiates a laser beam onto a predetermined position 113 on the surface of the road. An offset in the angle at which a road antenna is mounted can be readily ascertained on the basis of a distance between a predetermined position on the surface of the road and a position 114 on the road surface onto which a laser beam is actually radiated.
    Type: Application
    Filed: February 26, 2002
    Publication date: August 1, 2002
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masaki Terashima, Yoshiteru Hirano, Makoto Takemoto, Akihiro Inui
  • Publication number: 20020101371
    Abstract: A road antenna apparatus includes a road antenna 104 which is mounted on a post 103 and at an elevated position on a road R and establishes radio communication with an on-vehicle radio device 102 mounted in a vehicle 101 which is traveling over the road; and a laser-beam emitting device 111 which is mounted on the road antenna and radiates a laser beam onto a predetermined position 113 on the surface of the road. An offset in the angle at which a road antenna is mounted can be readily ascertained on the basis of a distance between a predetermined position on the surface of the road and a position 114 on the road surface onto which a laser beam is actually radiated.
    Type: Application
    Filed: February 26, 2002
    Publication date: August 1, 2002
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masaki Terashima, Yoshiteru Hirano, Makoto Takemoto, Akihiro Inui
  • Publication number: 20020097179
    Abstract: A road antenna apparatus includes a road antenna 104 which is mounted on a post 103 and at an elevated position on a road R and establishes radio communication with an on-vehicle radio device 102 mounted in a vehicle 101 which is traveling over the road; and a laser-beam emitting device 111 which is mounted on the road antenna and radiates a laser beam onto a predetermined position 113 on the surface of the road. An offset in the angle at which a road antenna is mounted can be readily ascertained on the basis of a distance between a predetermined position on the surface of the road and a position 114 on the road surface onto which a laser beam is actually radiated.
    Type: Application
    Filed: February 26, 2002
    Publication date: July 25, 2002
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masaki Terashima, Yoshiteru Hirano, Makoto Takemoto, Akihiro Inui
  • Patent number: 6422508
    Abstract: A robotically controlled steerable gimbal mounted virtual broadband hyperspectral sensor system and methods provide a highly mobile, rapidly responsive and innovative system of locating targets and exploiting hyperspectral and ultraspectral imaging and non-imaging signature information in real-time from an aircraft or ground vehicles from overhead or standoff perspective in order to discriminate and identify unique spectral characteristics of the target. The system preferably has one or more mechanically integrated hyperspectral sensors installed on a gimbal backbone and co-boresighted with a similarly optional mounted color video camera and optional LASER within an aerodynamically stable pod shell constructed for three-dimensional stabilization and pointing of the sensor on a direct overhead or off-nadir basis.
    Type: Grant
    Filed: April 5, 2000
    Date of Patent: July 23, 2002
    Assignee: Galileo Group, Inc.
    Inventor: Donald Michael Barnes
  • Publication number: 20020080061
    Abstract: A method for guiding an intercepting missile to a body-to-body contact with an airborne target in the atmosphere. The method includes the steps of guiding the intercepting missile to within an appropriate distance from the airborne target, illuminating the airborne target, using an illuminator carried by the intercepting missile, acquiring an image of the illuminated airborne target and, steering the missile in accordance with an aimpoint on the image.
    Type: Application
    Filed: December 7, 2001
    Publication date: June 27, 2002
    Applicant: RAFAEL - ARMAMENT DEVELOPMENT AUTHORITY LTD.
    Inventor: Arnon Secker
  • Publication number: 20020080060
    Abstract: A road antenna apparatus includes a road antenna 104 which is mounted on a post 103 and at an elevated position on a road R and establishes radio communication with an on-vehicle radio device 102 mounted in a vehicle 101 which is traveling over the road; and a laser-beam emitting device 111 which is mounted on the road antenna and radiates a laser beam onto a predetermined position 113 on the surface of the road. An offset in the angle at which a road antenna is mounted can be readily ascertained on the basis of a distance between a predetermined position on the surface of the road and a position 114 on the road surface onto which a laser beam is actually radiated.
    Type: Application
    Filed: February 26, 2002
    Publication date: June 27, 2002
    Inventors: Masaki Terashima, Yoshiteru Hirano, Makoto Takemoto, Akihiro Inui
  • Patent number: 6371405
    Abstract: The present invention relates to a system for sweeping a laser beam in a preset pattern, while, at the same time, directing the pattern to any area in a predetermined scanning area. The invention is particularly useful in LADAR applications. In one version of the invention, a series of optical prisms are arranged in concentric tubes so that the prisms have a common optical path. The tubes and, hence, the prisms, may be independently rotated by precision electric motors coupled to gear rings on the tubes.
    Type: Grant
    Filed: November 3, 1999
    Date of Patent: April 16, 2002
    Assignee: BAE Systems Integrated Defense Solutions Inc.
    Inventors: Bradley Sallee, James Kenneth Vinson
  • Patent number: 6362773
    Abstract: A method via which the range of vision in a vehicle's field of view can be determined precisely, so that with the help of range-of-vision information the driver can be advised to modify his driving style. The contrast of an object detected by a radar or lidar sensor is measured by a monocular video sensor, and the range of vision is determined from the measured values supplied by the radar or lidar sensor and by the monocular video sensor. Alternatively, the distance to and contrast of at least one object can be measured by a binocular video sensor, the range of vision then being determined from the measured contrast and distance values.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: March 26, 2002
    Assignee: Robert Bosch GmbH
    Inventor: Werner Pöchmüller
  • Publication number: 20010035836
    Abstract: A radar source is configured on a vehicle, which may be an airborne vehicle such as a helicopter. An arrangement of at least one computer system is provided in communication with the radar source and configured to accept instructions from an operator and to operate the radar source. As the vehicle moves in the vicinity of a subterranean volume along a navigation path, a radar signal is propagated with the radar source into the subterranean volume. A reflected radar signal from a subterranean object within the subterranean volume is received. Physical characteristics of the subterranean object are ascertained from the reflected radar signal.
    Type: Application
    Filed: March 9, 2001
    Publication date: November 1, 2001
    Inventors: Gilbert Miceli, Michael Parisi
  • Patent number: 6302355
    Abstract: One aspect of the invention relates to a laser ranging system.
    Type: Grant
    Filed: November 2, 1999
    Date of Patent: October 16, 2001
    Assignee: BAE Systems Integrated Defense Solutions Inc.
    Inventors: Bradley Sallee, Joe Gleave
  • Patent number: 6297732
    Abstract: A combination radar/laser detector with environmental sensors is programmed to provide a range of functions, including weather information, road conditions and the like, and in some cases to incorporate road-specific information in functionality. The road-specific information may be provided by roadside RF broadcast terminals. In a preferred embodiment the system monitors characteristics that indicate a driver's state of awareness, and audio alerts are provides when the system determines a driver is dozing or drifting toward a dozing state. In various embodiments a broad range of functionality is provided based on received and sensed parameters.
    Type: Grant
    Filed: September 8, 1999
    Date of Patent: October 2, 2001
    Assignee: Precision Navigation, Inc.
    Inventors: George Hsu, Chung-a Becky Oh, Christine Annette Sherer
  • Publication number: 20010013835
    Abstract: A combination radar/laser detector with environmental sensors is programmed to provide a range of functions, including weather information, road conditions and the like, and in some cases to incorporate road-specific information in functionality. The road-specific information may be provided by roadside RF broadcast terminals. In a preferred embodiment the system monitors characteristics that indicate a driver's state of awareness, and audio alerts are provides when the system determines a driver is dozing or drifting toward a dozing state. In various embodiments a broad range of functionality is provided based on received and sensed parameters.
    Type: Application
    Filed: September 8, 1999
    Publication date: August 16, 2001
    Inventors: GEORGE HSU, CHUNG-A BECKY OH, CHRISTINE ANNETTE SHERER
  • Patent number: 6268822
    Abstract: A tandem dual-frequency sensor for a missile that uses a steerable dichroic primary millimeter wave reflector to reflect millimeter wave energy to a secondary reflector while passing laser light in the infra-red region through a dichroic region of the reflector to multiple staring laser detectors mounted behind the primary reflector.
    Type: Grant
    Filed: December 7, 1999
    Date of Patent: July 31, 2001
    Assignee: Alenia Marconi Systems Inc.
    Inventors: Ross J. Sanders, John D. Shmoldas, Dean Arthur Wicks
  • Patent number: 6262681
    Abstract: A method and apparatus for generating microwave signal frequencies. An incident reference signal is provided. A first stimulus signal is also provided, the first stimulus signal having a first polarization and having a first predetermined relationship with the incident reference signal. A second stimulus signal is also provided, the second stimulus signal having a second polarization and having a second predetermined relationship with the incident reference signal. The incident reference signal is split into a first polarization reference signal and into a second polarization reference signal. The first stimulus signal is coupled with the first polarization reference signal to provide first polarization mixed signals. The second stimulus signal is coupled with the second polarization reference signal to provide second polarization mixed signals.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: July 17, 2001
    Assignee: HRL Laboratories, LLC.
    Inventor: David L. Persechini
  • Patent number: 6246355
    Abstract: A method and system for analyzing a wooden structure, such as a utility or telecommunications pole, are provided. A location for the wooden structure is identified. A first radar signal is propagated towards the wooden structure with a radar antenna while the radar antenna is motion along a navigation path in the vicinity of the wooden structure. A reflected radar signal is received from the wooden structure, from which a determination is made whether the wooden structure contains a structural anomaly.
    Type: Grant
    Filed: October 7, 2000
    Date of Patent: June 12, 2001
    Assignee: Hot/Shot Radar Inspections, LLC
    Inventors: Gilbert F Miceli, Michael Parisi
  • Patent number: 6184816
    Abstract: A clear air turbulence (CAT) detection system performs a nested grid modeling algorithm to detect CAT along the flight path of an aircraft. The aircraft stores coarse simulation information and utilizes the information to perform large scale weather modeling over a large grid. On board sensors are utilized to generate observational information to model atmospheric conditions within a smaller grid, nested within the larger grid, and including the flight path of the aircraft. A nowcast predicting turbulence along the flight path in the near future alerts the pilot to the likelihood of encountering clear air turbulence. A data link may be utilized to receive coarse simulation data or observational data from sources external to the aircraft. Additionally, the coarse simulation information may include turbulence forecast data and the observational information is used to refine the turbulence forecast to more accurately predict clear air turbulence along the flight path of the aircraft.
    Type: Grant
    Filed: July 6, 1999
    Date of Patent: February 6, 2001
    Assignee: AlliedSignal Inc.
    Inventors: L. Lucy Zheng, Richard Burne
  • Patent number: 6147637
    Abstract: An automotive obstacle detecting system is provided which includes a radar to measure the distance to a target present within a detectable zone. The system monitors a distance limit measurable by the radar and determines a reduction in ability to measure the distance to the target by comparing the distance limit with a given reference value.
    Type: Grant
    Filed: July 23, 1998
    Date of Patent: November 14, 2000
    Assignee: DENSO Corporation
    Inventors: Katsuhiro Morikawa, Tetsuya Nakamura
  • Patent number: 6107954
    Abstract: This invention relates to advanced RF support systems which utilize optical fibers or direct lasers to achieve RF transmission and reception of navigation signals from widely separated supporting sites. The functional goals of these systems are to support navigation, guidance, control, and survey systems. A RF supporting network according to the present invention comprises a master supporting site; a number of secondary supporting sites; and a network of optical RF link systems which links secondary supporting sites with the master supporting site. The stable clock, GPS signal generators, and receivers are located only at the master site, which is also the processing, command, and control center. A network architecture of the present invention will provide a low cost mean to users in need of precision navigation and time information. Furthermore, the present invention furnishes an advance means in determining the instantaneous velocity of GPS satellites with high accuracy.
    Type: Grant
    Filed: March 14, 1994
    Date of Patent: August 22, 2000
    Inventor: Ming-Chiang Li
  • Patent number: 6064330
    Abstract: An apparatus and method for accurately determining a target distance in adverse weather conditions utilizing both LASER and RADAR is disclosed. The radar signals are used to determine an approximate range which is then used as a gating window for the determination of which laser reflection is from the actual target as opposed to a reflection from the atmospheric interference. The method basically comprises the steps of initiating a radar pulse in the direction of a target and receiving a reflection, transmitting a laser signal and receiving a plurality of reflections, determining an approximate range based on the radar signals, and using this approximate range to ascertain which of the laser reflections is from the target. This determination is preferably made by generating a gating signal and gate width from the radar signals and passing the set of laser range signals through the gate to eliminate the false signals and select the signal that survives the gate as the accurate target range.
    Type: Grant
    Filed: May 5, 1998
    Date of Patent: May 16, 2000
    Assignee: Laser Technology, Inc.
    Inventors: Scott Elliott, Eric A. Miller, Jeremy G. Dunne
  • Patent number: 6061015
    Abstract: A vehicle obstacle detecting system having a combination of different kinds of detectors, such as a laser radar and a millimeter-waver radar, to detect an obstacle present ahead of the course of vehicle travel. The system determines whether the detection output of the laser radar is similar to that of the millimeter-wave radar. When the result is positive, obstacle avoidance control is conducted based on the output of either the laser radar or the millimeter-wave radar. When the result is negative, it is determined that the laser radar (the detector normally of superior performance) is degraded and, based on the output of the millimeter-radar, obstacle avoidance control is conducted. With this, the outputs of the different kinds of detectors are fused and unified optimally, enabling effective obstacle avoidance control.
    Type: Grant
    Filed: January 5, 1999
    Date of Patent: May 9, 2000
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventor: Yoichi Sugimoto
  • Patent number: RE36944
    Abstract: A bistatic radar system includes a transmitting radar site; a receiving radar site; and an optical fiber RF link system for transmitting RF signals from the receiving site to the transmitting site and for transmitting command and control signals from the transmitting site to the receiving site.
    Type: Grant
    Filed: December 7, 1995
    Date of Patent: November 7, 2000
    Inventor: Ming-Chiang Li