Missile Or Spacecraft Guidance Patents (Class 342/62)
  • Patent number: 8258999
    Abstract: A method for onboard determination of a roll angle of a projectile.
    Type: Grant
    Filed: November 22, 2009
    Date of Patent: September 4, 2012
    Assignee: Omnitek Partners LLC
    Inventors: Jahangir S. Rastegar, Carlos M. Pereira
  • Patent number: 8242950
    Abstract: A delineated collision avoidance system may comprise a processor for executing one or more instructions that implement one or more functions of the collision avoidance system, a transceiver for transmitting information from and receiving information for the host aircraft, and memory for storing the one or more instructions for execution by the processor to implement the one or more functions of the collision avoidance system to: receive from the transceiver information from another aircraft, generate from the received information a track for the other aircraft, and determine whether the track will intersect within a predefined period of time a region of interest around the host aircraft. In a variation, the system may include a display and the memory may include instructions to: determine whether a predefined condition is satisfied and change an appearance of a symbol shown on the display to indicate that the predefined condition is satisfied.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: August 14, 2012
    Assignee: Aviation Communication & Surveillance Systems, LLC
    Inventors: Cyro A. Stone, Gregory T. Stayton, Charles C. Manberg
  • Publication number: 20120200449
    Abstract: Embodiments of an adaptive electronically steerable array (AESA) system suitable for use on a vehicle and method for communicating are generally described herein. In some embodiments, the AESA system includes a plurality of arrays of radiating elements and control circuitry to configure the arrays for multi-band and multi-aperture operations to maintain data links with communication stations.
    Type: Application
    Filed: January 25, 2012
    Publication date: August 9, 2012
    Applicant: Raytheon Company- Waltham, MA
    Inventor: Michael S. Bielas
  • Patent number: 8217828
    Abstract: Systems and methods communicate sensor data pertaining to detected weather between aircraft. An exemplary system has at least one sensor on a transmitting aircraft that is configured to detect weather and configured to output sensor data, and a transceiver that is configured to receive a query from a requesting aircraft for the sensor data and that is configured to transmit a signal with the sensor data for receipt by the requesting aircraft in response to receiving the query. Upon receipt by the requesting aircraft, the received sensor data of the transmitting aircraft may then be fused with sensor data of the requesting aircraft for a geographic region of interest to extend the effective sensor coverage and to resolve at least one of a location conflict and a severity conflict between the sensor data of the transmitting aircraft and the requesting aircraft.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: July 10, 2012
    Assignee: Honeywell International Inc.
    Inventor: James C. Kirk
  • Publication number: 20120169524
    Abstract: The disclosed approach provides a low-cost approach by employing a single channel receiver for a direction-finding missile, rather than a conventional four-channel system. It employs interferometry techniques. The proposed approach leverages orthogonal waveforms and pseudorandom noise (PN) codes. This is a low-cost approach for a single channel direction finding system by leveraging orthogonal waveforms and interferometric techniques.
    Type: Application
    Filed: December 29, 2010
    Publication date: July 5, 2012
    Inventors: Mark B. Yeary, James R. Toplicar, Paul E. Doucette, Eleanor Foltz
  • Patent number: 8212714
    Abstract: A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: July 3, 2012
    Assignee: Sandia Corporation
    Inventors: Armin W. Doerry, Jay D. Jordan, Theodore J. Kim
  • Patent number: 8207888
    Abstract: Systems include at least one electronic waveform processor operatively associated with at least one reflected signal electronic sensor and configured and programmed to generate an estimate of the range from an object to a target and an estimate of the closing velocity of the object to the target using a reflected signal. Systems use a non-linear swept electromagnetic FM signal.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: June 26, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Shaun David Weatherford
  • Patent number: 8204677
    Abstract: A method for tracking a moving platform (MP) wherein the MP uses an on-board navigation system (NS). Data provided by the navigation system on board the moving platform (MP) is merged with data obtained using a tracking system that tracks the MP from another location. A typical navigation system on board the moving platforms is an inertial navigation system (INS). State data of one or more MP is sent to a processing facility and state data of one or more electromagnetic tracking (EMT) is collected by one or more processing facility. The collected states data from the sources are processed, using the one or more processing facilities for calculating tracking data are used to direct one or more antennas for MP tracking. The state data from one or more MP's are sent using a communications channel.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: June 19, 2012
    Assignee: Rafael—Armament Development
    Inventors: Daniel Rosenfeld, Ofer Salama
  • Patent number: 8184041
    Abstract: Radar beams for searching a volume are selected by determining the central angle and azimuth and elevation extents to define an acquisition face. The number of beams NMBA required to cover the acquisition face is determined by N MBA = ( 2 ? n + 1 ) ? ( m + 1 2 ) + ( - 1 ) n + m 2 ( 2 ) The number of beams NMBA is multiplied by the dwell per beam to determine the total search time, which is compared with a maximum time; (a) if the total search time is greater than the permissible time, the acquisition face is partitioned, and (b) if the total search time is less, the acquisition face information is applied to a radar processor for filling the unextended acquisition face with the number NMBA of beams in a particular pattern.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: May 22, 2012
    Assignee: Lockheed Martin Corporation
    Inventor: Mark A. Friesel
  • Patent number: 8173945
    Abstract: There is disclosed an apparatus and a method for guidance of a projectile. The method for guidance of a projectile, includes emission from the launching position of the projectile of beams pointing to the vertexes of a regular polygon, emission from the launching position of a beam encompassing the preceding beams, determination of position of the projectile relative to the beams, the determined position enabling to correct the projectile trajectory to maintain the projectile the closer to the center of the polygon formed by the beams.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: May 8, 2012
    Assignee: Thales Nederland B.V.
    Inventor: Henk Mentink
  • Patent number: 8169360
    Abstract: A system(s) and method(s) of tracking a target(s). Systems include at least one electronic waveform processor operatively associated with an apparent emitted signal electronic sensor and a reflected signal electronic sensor and configured and programmed to generate an estimate of the range from an object to the target and an estimate of the closing velocity of the object to the target by processing a semi-active mode apparent emitted signal and a reflected signal.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: May 1, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Shaun David Weatherford
  • Patent number: 8153943
    Abstract: A tornado disarming network includes a command center, tornado detection systems, and tornado busting missile launch sites in communications with the command center. Tornado busting missiles are at the tornado busting missile launch sites. Each tornado busting missile includes a radar, a guidance system and a solid rocket motor for propelling the missile toward the tornado. A thruster control system causes the tornado busting missile to travel upward within the tornado upon reaching the tornado. An explosive discharge system explodes within the tornado to generate heat for causing the air within the tornado to expand, thereby weakening the tornado.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: April 10, 2012
    Inventor: Riley H. Nelson
  • Patent number: 8138965
    Abstract: A method, Kinematic Algorithm for Rocket Motor Apperception (KARMA), for processing radar returns for identifying the type of a missile target includes generating tracks representing the missile, and applying the tracks to a set of plural template-based filters, each representing one missile hypothesis, to generate plural sets of missile states, one set for each hypothesis. The missile states are processed to generate kinematic parameter likelihood values (LLHs). The LLH values for each filter hypothesis are normalized and weighted. A weighted maximum likelihood value (WMLH) is calculated for each hypothesis. The correct hypothesis is deemed to be the one having the maximum WMLH, thus identifying the missile type.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: March 20, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Thu-Van T. Luu, Jeffrey B. Boka
  • Patent number: 8134103
    Abstract: A system senses the presence of a boosting missile or target and processes the information by comparison of the data with a plurality of predetermined templates of nominal missile characteristics, in order to determine the state of the missile. The processing includes estimation of burnout time and of early thrust termination. Both are determined by generating current stage state estimates including position, velocity, time index error into the thrust template, and motor scale factor error. The change in motor scale factor is compared with a threshold to determine if early thrust termination has occurred. The estimated burnout time of the current stage is calculated from the burnout times of the current and the previous stage processed with the estimated motor scale factor and with state estimates from a filter.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: March 13, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Thu-Van T. Luu, Jeffrey B. Boka, Michael J. Harcourt, Purusottam Mookerjee
  • Patent number: 8130137
    Abstract: A method and a system for sensing a boosting target missile, estimate position and velocity and boost acceleration parameters of the target missile, and control an interceptor missile to the target missile. A boost-phase missile target state estimator estimates at least acceleration, velocity, and position using an acceleration template for the target vehicle. The nominal template is incorporated into an extended Kalman filter which corrects the nominal template acceleration with the filter states to predict future thrust acceleration, velocity and position. The correction can compensate for motor burn variations and missile energy management (lofted/depressed trajectory).
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: March 6, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Thu-Van Luu, Jeffrey B. Boka, Purusottam Mookerjee, Michael J. Harcourt
  • Patent number: 8120526
    Abstract: Measurements of the differential and/or absolute time-of-arrival of separable signals transmitted from a set of spatially-distributed (SD) transmitters are obtained by one or more receivers. The signals transmitted by each transmitter are made separable by encoding them in a manner that enables each signal to be distinguished from the others by the receiver or receivers. An accurate time-of-arrival of each signal at the receiver is determined, from which the path lengths from the transmitters to the receiver and from the receiver to the object are determined based on the known propagation speed of the signals. Any Doppler frequency shifts in each signal can also be determined from this information. From all of this information, the receiver is able to determine its own position, motion and orientation (roll, pitch and yaw), as well as the position and motion of the moving object being tracked by the receiver.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: February 21, 2012
    Inventor: Ernest Jefferson Holder
  • Patent number: 8119957
    Abstract: A submunition is formulated for destroying a target in a target area. Accommodated in a casing are a signal processing unit connected to a radar antenna and/or an infrared sensor and/or another target-detecting sensor. The submunition further has target recognition software and a charge provided with a covering. To increase the versatility of use and to simultaneously improve detection and decision certainty and reliability, the target recognition software has a software interface for the transfer of at least one parameter specific to the target area.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: February 21, 2012
    Assignee: Diehl BGT Defence GmbH & Co. KG
    Inventor: Harald Wich
  • Patent number: 8115148
    Abstract: Current targeting approaches involve guiding to a spatially derived guidepoint of a group of objects likely to be the preferred object. This method may not allow the intercepting missile to contain the preferred, or other probable object(s), within its divert capability. The guidepoint is shifted closer to the preferred object using specific energy and angular momentum, constants of orbital motion, which describe properties of an object's trajectory. Guiding to the specific energy derived guidepoint does not offer significant benefit over guiding to the spatially derived guidance point. However, computing the spatial rate of change of specific energy within the plane formed by the guidance objects establishes a vector pointing close to the preferred object. This is the direction to shift the guidepoint in order to contain the preferred object within the interceptor's divert capability.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: February 14, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Jonathan Alan Boardman, Naresh Raman Patel, Jeffrey Bruce Boka
  • Patent number: 8106340
    Abstract: A method for guiding a multistage interceptor missile toward a target missile that may transition from a boost mode to a ballistic mode during the engagement. The method comprises the steps of tracking the position of the target missile with a sensor, generating a predicted intercept point and time, and loading the predicted intercept point and time into the interceptor missile guidance system. The interceptor missile is launched and transition is made to the second stage of propulsion of the interceptor missile. Second-stage midcourse guidance acceleration commands are generated in response to an elevated predicted intercept point generated using the Runge-Kutta integration method working on predicted target missile position, velocity, and acceleration. During third stage propulsion said interceptor missile is guided toward an updated predicted intercept point of the target missile. During fourth stage, the kinetic warhead effects a hit-to-kill intercept of the target missile.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: January 31, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Frederick U. Diaz, Jeffrey B. Boka
  • Patent number: 8098191
    Abstract: An apparatus and method for protecting against incoming projectiles comprising transmitting two radar waveforms, the first waveform comprising a pulsed continuous wave waveform, and the second waveform comprising a pulsed linear chirp waveform over a bandwidth, and based on returned radar data, causing deployment of a defense mechanism to intercept a detected incoming projectile.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: January 17, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Albert N. Pergande, Lloyd Dan Griffin, Jr., Steven G. Gray, Hung Q. Le, Steve T. Nicholas
  • Patent number: 8094937
    Abstract: A system and method for labeling feature clusters in frames of image data for optical navigation uses distances between feature clusters in a current frame of image data and feature clusters in a previous frame of image data to label the feature clusters in the current frame of image data using identifiers associated with the feature cluster in the previous frame of image data that have been correlated with the feature clusters in the current frame of image data.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: January 10, 2012
    Assignee: Avago Technologies ECBU IP (Singapore) Pte. Ltd.
    Inventors: Edward Kah Ching Teoh, Zi Hao Tan
  • Patent number: 8085186
    Abstract: A computer-implemented method for probabilistically classifying an occurrence of an event, a change in the state of a target, includes measuring feature data of the target simultaneously processing the measured feature data through first and second filters. The first filter is suited for a situation in which the target is in a first state and generates a first residual and a first residual covariance for the measured feature data. The second filter is suited for a situation in which the target is in a second state and generates a second residual and a second residual covariance for the feature data. By determining a probability of the occurrence of the event and the probability of the non-occurrence of the event and comparing the two probabilities with at least one threshold value the occurrence or non-occurrence of the event is determined.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: December 27, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Kourken Malakian, Christopher J. Dahmen, Sabrina M. Chowdhury
  • Patent number: 8084724
    Abstract: By sharing tasks between the CV and the KVs, the MKV interceptor provides a cost-effective missile defense system capable of intercepting and killing multiple targets. The placement of the acquisition and discrimination sensor and control sensor on the CV to provide target acquisition and discrimination and mid-course guidance for all the KVs avoids the weight and complexity issues associated with trying to “miniaturize” unitary interceptors. The placement of either a short-band imaging sensor and headlamp or a MWIR sensor on each KV overcomes the latency, resolution and bandwidth problems associated with command guidance systems and allows each KV to precisely select a desirable aimpoint and maintain track on that aimpoint to impact. An implicit divert and attitude control system (DACS) using tow or more divert thrusters performs KV divert and attitude maneuvers to respond to the command guidance pre-handover and to maintain track on the aimpoint to terminal intercept post-handover.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: December 27, 2011
    Assignee: Raytheon Company
    Inventors: R. Glenn Brosch, Darin S. Williams, Kent P. Pflibsen, Thomas M. Crawford
  • Patent number: 8085188
    Abstract: A method of determining a deviation of a path of a projectile from a predetermined path. The method uses an image of a target area in which the desired path or direction is pointed out. Subsequently, the real direction or path is determined and the deviation determined.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: December 27, 2011
    Assignee: Trackman A/S
    Inventor: Fredrik Tuxen
  • Patent number: 8076621
    Abstract: A method for guiding a moving object to a target. The method comprising: transmitting a signal from one or more illuminating sources defined in a reference coordinate system; receiving the signal at three or more cavity waveguides disposed on the moving object; using one or more forward observers to determine the position of the target; fixing the one or more illuminating sources to the one or more forward observers; determining a position and/or orientation of the object in the reference coordinate system based on a strength of the signal received in the three or more cavity waveguides; and guiding the moving object to the target based on the determined position and/or orientation.
    Type: Grant
    Filed: August 30, 2009
    Date of Patent: December 13, 2011
    Assignee: Omnitek Partners LLC
    Inventors: Jahangir S. Rastegar, Thomas Spinelli
  • Patent number: 8063347
    Abstract: A method for engaging a target uses sensors to generate target track(s). The tracks are projected forward in time and associated with a track quality measure. The maximum seeker look angle and beamwidth, acceleration, and net radar sensitivity characteristics are listed for each type of interceptor. A plurality of target intercept times are generated for each interceptor type. The probability that the interceptor can acquire the target is determined from the projected target tracks, the quality measure, and the characteristics. The probability of hitting the target is determined from the probability of acquisition and acceleration of the interceptor type. The probabilities of acquisition and of hitting the target are aggregated, and the type of interceptor to use is the type having (a) an extreme value of the aggregation or (b) the earliest intercept time from among the interceptors having an aggregation value above a threshold value.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: November 22, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Leonardo F. Urbano, Gregory F. Bock, Ivy T. Moffett
  • Patent number: 8044841
    Abstract: A method of selecting a sub-set of a plurality of available sensors to guide an interceptor to a target is described. The method includes characterizing a quality of position estimate received from each of the plurality of available sensors, projecting the positioning errors of the sensors onto a plane normal to a line-of-sight of the interceptor, and selecting the sub-set of the plurality of available sensors based on the projection of positioning errors.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: October 25, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Jonathan Alan Boardman, Naresh Raman Patel, Jeffrey Bruce Boka
  • Patent number: 8010244
    Abstract: A system and method for efficient intervisibility determination. The intervisibility determination method of the present invention provides a multiple threat processing capability within a specified area of terrain using a common database. Computation is simplified through the method of processing data posts in the terrain elevation database. By taking integer steps and incrementing distance, x or y, and a predicted elevation value at each step, a small number of operations may be performed. Recomputing a change in elevation value may be reduced. An umbra database provides an enhanced look-up capability for displaying and updating the intervisibility display information. The systems and methods of the present invention may be suitable for use on a vehicle and in mission management activities.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: August 30, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Mark Allstadt, Marc Blais, Ira S. Glickstein, Peter N. Stiles, Ronald Vienneau
  • Patent number: 8004453
    Abstract: There is disclosed an elevation null command generator (ENCG) for use in airborne monopulse radar, and a novel missile guidance system made possible by use of the ENGC. The ENCG provides an accurate means of directing the elevation monopulse plane of a radar antenna at a patch of ground defined by a range signal generated within the radar or its associated equipment. It is shown that within the system range can define the elevation angle of concern. The ENCG includes a central range gate centered at the command range and a plurality of pairs of range gates, the two gates of each pair being time spaced before and after the central range gate, and has circuit means for normalizing the output of the range gates to eliminate the bias effects of strong targets adjacent to the monopulse null plane and ground surface intersection.
    Type: Grant
    Filed: October 16, 1972
    Date of Patent: August 23, 2011
    Assignee: Raytheon Company
    Inventors: Andrew E. Vall, Frederick C. Williams
  • Patent number: 7999212
    Abstract: A guidance system for actively guiding a projectile, such as a bullet after it has been fired from a gun. The guidance system includes a radar unit that includes a plurality of receiver arrays. An optical scope is also mounted to the gun for optically sighting a target. An inertial measurement unit provided on the gun locks onto the target after it has been sighted by the scope, and provides a reference location at the center of the receiver arrays from which the bullet can be directed. The receiver arrays receive radar monopulse beacon signals from the bullet. The signals from the bullet are used to identify the position of the bullet and the roll of the bullet. The signals sent to the bullet provide flight correction information that is processed on the bullet, and used to control actuators that move steering devices on the bullet.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: August 16, 2011
    Assignee: EMAG Technologies, Inc.
    Inventors: Jack H. Thiesen, Karl F. Brakora
  • Patent number: 7999726
    Abstract: A system for estimating an antenna boresight direction. The novel system includes a first circuit for receiving a Doppler measurement and a line-of-sight direction measurement corresponding with the Doppler measurement, and a processor adapted to search for an estimated boresight direction that minimizes a Doppler error between the Doppler measurement and a calculated Doppler calculated from the estimated boresight direction and the line-of-sight direction measurement. The line-of-sight direction measurement is measured relative to the true antenna boresight, and the calculated Doppler is the Doppler calculated for a direction found by applying the line-of-sight direction measurement to the estimated boresight direction. In a preferred embodiment, the first circuit receives a Doppler measurement and a line-of-sight direction measurement from each of a plurality of pixels, and the processor searches for an estimated boresight direction that minimizes a sum of squares of Doppler errors for each of the pixels.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: August 16, 2011
    Assignee: Raytheon Company
    Inventors: Ralph Guertin, David Faulkner, John Treece, Donald Bruyere
  • Patent number: 7977613
    Abstract: A method for onboard measurement of a deviation in orientation of an object from a desired orientation of the object. The method including: transmitting a polarized RF signal from a reference source, with a predetermined polarization plane: receiving the signal at a pair of polarized RF sensor cavities positioned symmetrical on the object with respect to the predetermined polarization plane: analyzing an output of the pair of polarized RF sensor cavities resulting from the received signal: and determining the deviation in orientation of the object relative to the predetermined plane based on the analysis. The method can further include controlling the object based on the determined deviation in orientation.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: July 12, 2011
    Assignee: Omnitek Partners LLC
    Inventors: Jahangir S. Rastegar, Carlos M. Pereira
  • Patent number: 7977614
    Abstract: An interception system for intercepting incoming missiles and/or rockets including a launch facility, a missile configured to be launched by the launch facility, the missile having a fragmentation warhead, a ground-based missile guidance system for guiding the missile during at least one early stage of missile flight and a missile-based guidance system for guiding the missile during at least one later stage of missile flight, the missile-based guidance system being operative to direct the missile in a last stage of missile flight in a head-on direction vis-a-vis an incoming missile or rocket.
    Type: Grant
    Filed: September 3, 2007
    Date of Patent: July 12, 2011
    Assignee: E.C.S. Engineering Consulting Services-Aerospace Ltd.
    Inventor: Dov Raviv
  • Patent number: 7953524
    Abstract: A method of navigating a mobile platform. A reflectable electronic signal is transmitted. A reflection of the reflectable signal is received. A position of the mobile platform is determined based upon the reflection of the reflectable signal. A platform position signal is transmitted to the mobile platform. The platform position signal provides the mobile platform the determined position of the mobile platform. The mobile platform is navigated based upon the platform position signal.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: May 31, 2011
    Assignee: Rockwell Collins, Inc.
    Inventor: Brian R. Roggendorf
  • Patent number: 7947936
    Abstract: The invention described herein provides an apparatus and a method to cooperatively track and intercept a plurality of highly maneuvering asymmetric threats using networks of small, low-cost, lightweight, airborne vehicles that dynamically self-organize into an ad hoc network topology. This is accomplished using distributed information sharing to maintain cohesion and avoid vehicle collisions, while cooperatively pursuing multiple targets.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: May 24, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: James Bobinchak, Gary Hewer
  • Patent number: 7911373
    Abstract: A radar system, including: a compact, active phased array antenna for transmission and reception of a focused radiation beam, circuits for providing signals to produce or detect a radiation beam by the phased array antenna and to control or detect the direction of the radiation beam, and wherein the radar is adapted to be mounted on a missile and scan a selected area proceeding the direction of motion of the missile.
    Type: Grant
    Filed: August 3, 2008
    Date of Patent: March 22, 2011
    Inventors: Hillel Weinstein Weinstein, Alberto Milano
  • Patent number: 7875837
    Abstract: A method for engaging a hostile missile with an interceptor missile includes mathematically dividing an estimated target trajectory into portions, the junction of each portion with the next defining a possible intercept point. The engagement for each possible intercept point is modeled, to generate a probability of lethal object discrimination which is processed to generate a probability of intercept for each of the possible intercept points. The intercept point having the largest probability of intercept defines a selected intercept point from which intercept missile launch time is calculated, interceptor missile guidance is initialized, and the interceptor is launched at the calculated launch time and under the control of the interceptor missile guidance. Also, a method for estimating discrimination performance of a system of sensors includes generating sensor data signal-to-noise ratio and an aspect angle between the sensor and a lethal object.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: January 25, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Renee Szabo, Christian E. Pedersen, Wade E. Cooper
  • Patent number: 7858910
    Abstract: A method and apparatus for remotely sensing the content in a field of view are disclosed. The method includes transmitting a coherent optical signal into a field of view; receiving and detecting a reflection of the optical signal from a portion of the field of view bounded by the platform's boresight; correcting the first instance of the detected reflection; and resolving the content of a plurality of cells in the field of view up to the platform's boresight. The apparatus comprises a radome; an optical signal generator; an optical transmission channel; an optical receiver channel; and a plurality of electronics capable of receiving the representative signal and: correcting the first instance of the detected reflection; and resolving the content of a plurality of cells in the field of view up to the boresight from the corrected first instance of the reflection.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: December 28, 2010
    Assignee: Lockheed Martin Corporation
    Inventor: Brett A Williams
  • Patent number: 7847724
    Abstract: A computer software program which plots radar video data on a display screen for viewing by a user in a format that emulates a real display. The radar video data the program plots on the display screen is either recorded radar video data generated by a missile radar video seeker or telemetered radar video data generated by the radar video seeker. The display screen display multiple radar scans of video data in the form of a graph or plot on the display screen.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: December 7, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Christian L. Houlberg
  • Patent number: 7847725
    Abstract: A computer software program which plots radar video data on a display screen for viewing by a user in a format that emulates a real display. The radar video data the program plots on the display screen is either recorded radar video data generated by a missile radar video seeker or telemetered radar video data generated by the radar video seeker. The display screen display multiple radar scans of video data in the form of a graph or plot on the display screen.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: December 7, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Christian L. Houlberg
  • Publication number: 20100295720
    Abstract: A method for guidance of a moving object towards a target. The method including: providing reference signals from RF reference sources to illuminate RF sensors on the moving object; positioning the RF reference sources to form a reference coordinate system; determining position information designating a position of the target in the reference coordinate system by a forward observer; fixing at least one of the RF reference sources at the forward observer in the reference coordinate system; determining a position and orientation of the moving object in the reference coordinate system on board the moving object based on signals received at the RF sensors from the RF reference sources and based on the positions of the RF reference sources; and guiding the moving object to the target at least based on the determined position and orientation of the moving object and the determined position information of the designated target.
    Type: Application
    Filed: May 21, 2009
    Publication date: November 25, 2010
    Applicant: OMNITEK PARTNERS LLC
    Inventor: Jahangir S. Rastegar
  • Patent number: 7825853
    Abstract: The present invention is a man-portable counter-mortar radar (MCMR) radar system that detects and tracks enemy mortar projectiles in flight and calculates their point of origin (launch point) to enable and direct countermeasures against the mortar and its personnel. In addition, MCMR may also perform air defense surveillance by detecting and tracking aircraft, helicopters, and ground vehicles. MCMR is a man-portable radar system that can be disassembled for transport, then quickly assembled in the field, and provides 360-degree coverage against an enemy mortar attack.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: November 2, 2010
    Assignee: Syracuse Research Corporation
    Inventors: Steven E. Bruce, Thomas A. Wilson
  • Patent number: 7825848
    Abstract: Method, tracking system, and intercept missile for tracking highly maneuverable target objects. The method includes estimating the motion of the at least one target object via a mathematical method that includes a filter method relating to a model assumption for estimating at least one of the motion and an orientation of the target object. The filter method includes a semi-martingale algorithm for estimating motion.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: November 2, 2010
    Assignee: LFK-Lenkflugkoerpersysteme GmbH
    Inventor: Alfred Schoettl
  • Patent number: 7791529
    Abstract: The invention relates to a method of determining an estimated speed of an aircraft relative to ground being overflown by the aircraft, in which use is made of the sum of an acceleration measurement of the aircraft plus a difference value, the difference value being obtained from observation data or signals relating to a region of the ground.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: September 7, 2010
    Assignee: Eurocopter
    Inventors: François Xavier Filias, Jean-Paul Petillon, Richard Pire
  • Patent number: 7791006
    Abstract: According to an embodiment of the present invention there is provided a kill-vehicle to be used in an exo-atmospheric anti-missile interceptor aimed at hitting a target, the kill-vehicle having a main body and comprising: an electronic box; a sensor unit coupled to the electronic box and including at least one sensor for tracking the target at a certain field of view; an inertial measurement unit coupled to the sensor unit; and a divert system controlled by the electronic box for providing the kill-vehicle with thrust at a desired direction; said divert system and electronic box constituting said main body, wherein the kill-vehicle further comprises at least one gimbals unit coupled to the main body and to the sensor unit for controllably changing an angle between the sensor unit and the main body, and wherein said electronic box is configured to synchronically operate said divert system and gimbals unit such that the target remains in the field of view of said at least one sensor and the thrust is provided i
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: September 7, 2010
    Assignee: Israel Aerospace Industries Ltd.
    Inventors: Joseph Hasson, Galya Goldner
  • Publication number: 20100220002
    Abstract: A method for onboard measurement of a deviation in orientation of an object from a desired orientation of the object. The method including: transmitting a polarized RF signal from a reference source, with a predetermined polarization plane; receiving the signal at a pair of polarized RF sensor cavities positioned symmetrical on the object with respect to the predetermined polarization plane; analyzing an output of the pair of polarized RF sensor cavities resulting from the received signal; and determining the deviation in orientation of the object relative to the predetermined plane based on the analysis. The method can further include controlling the object based on the determined deviation in orientation.
    Type: Application
    Filed: March 2, 2009
    Publication date: September 2, 2010
    Applicant: Omnitek Partners LLC
    Inventors: Jahangir S. Rastegar, Carlos M. Pereira
  • Patent number: 7786418
    Abstract: There is disclosed a multimode seeker including an imaging infrared seeker and a radio frequency seeker. The imaging infrared seeker and the radio frequency seeker may share an optical system adapted to form an infrared image of an outside scene on a focal plane array image detector and to collimate radio frequency radiation transmitted from a radio frequency transceiver and focus millimeter ware radiation received from the outside scene onto the radio frequency transceiver. The shared optical system may include a plurality of baffles to block sunlight from reaching the focal plane array image detector, each baffle comprising a material that is opaque to infrared radiation and transparent to radio frequency radiation.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: August 31, 2010
    Assignee: Raytheon Company
    Inventors: Byron B. Taylor, David G. Jenkins
  • Patent number: 7782246
    Abstract: Methods and apparatus for selecting a target from radar data according to various aspects of the present invention operate in conjunction with a real-time data source and a countermeasure system. The real-time data source provides tracking information for at least one potential target from which a lead track associated with one target meeting a predetermined threshold requirement may be selected for engagement by the countermeasure system.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: August 24, 2010
    Assignee: Raytheon Company
    Inventor: Patric M. McGuire
  • Patent number: 7769502
    Abstract: A system for suggesting a course of action for a vehicle engaged in a situation includes a portion for identifying condition data that corresponds to conditions sensed from the situation. The system also includes a portion for selecting parameters associated with the condition data. The system further includes a portion for determining a suggested course of action based on the selected parameters.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: August 3, 2010
    Assignee: Lockheed Martin Corporation
    Inventor: Carl R. Herman
  • Patent number: RE41630
    Abstract: A system is provided for generating multiple frequencies in a specified frequency band, with a specified step size between frequencies, in which the spectral purity of the frequencies is assured. The switching speed between frequencies is very fast, limited only by the speed of the switches used. In one embodiment, only five tones are generated as the base for the rest of the synthesis, in which the relationship of the five tones is f0+/??f0 and +/? 1/16f0. The subject system may be utilized in air defense systems for generating the transmit channels to be able to permit a missile seeker to transmit a signal at the appropriate frequency. In one embodiment, spectral purity is achieved by providing a number of stages of up converting, expanding, and dividing down of an input signal.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: September 7, 2010
    Inventor: Michael Koechlin