Return Signal Controls External Device Patents (Class 342/61)
  • Patent number: 9615006
    Abstract: Infrared camera systems and related methods for facilitating target position acquisition are provided for various applications. For example, a system may include a portable imaging/viewing subsystem having a target position finder and may also include a fixed mount camera subsystem having a camera and a camera positioner. A communications link may be configured to communicate a signal from the target position finder to the camera positioner. The signal may be representative of a position of a target being imaged/viewed with the portable imaging/viewing subsystem. The camera positioner may aim the camera toward the target in response to the signal. The target may, for example, be a man overboard. Thus, the system and related method may be useful in search and rescue operations.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: April 4, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: William A. Terre, Jeffrey D. Frank, James T. Woolaway, Austin A. Richards, Patrick B. Richardson, Nicholas Hogasten
  • Patent number: 9482573
    Abstract: A sensing system comprising a radar-based vibration sensor and processing unit used to collect and process vibration information from a machine of interest. The radar-based vibration sensor obtains vibration data from mechanical operation of a component or series of components in the machine, and may be steered toward specific regions of interest of the machine. The processing unit analyzes the data, and may fuse data from a plurality of vibration sensors, such as radar-based vibration sensors and multiple machine-mounted sensors such as accelerometers. From this analysis, indications related to a status of the mechanical operation of the components in the machine of interest may be provided to relevant users.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: November 1, 2016
    Assignee: Honeywell International Inc.
    Inventors: Andy Peczalski, Dinkar Mylaraswamy
  • Patent number: 9019149
    Abstract: One or more micro-impulse radars (MIRs) are configured to determine the movement of at least one person. Media can be output to the person responsive to the movement.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: April 28, 2015
    Assignee: The Invention Science Fund I, LLC
    Inventors: Mahalaxmi Gita Bangera, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K. Y. Jung, Jordin T. Kare, Eric C. Leuthardt, Nathan P. Myhrvold, Elizabeth A. Sweeney, Clarence T. Tegreene, David B. Tuckerman, Thomas A. Weaver, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 8902408
    Abstract: A method for measuring three-dimensional coordinates of a probe center includes: providing a spherically mounted retroreflector; providing a probe assembly; providing an orientation sensor; providing a coordinate measurement device; placing the spherically mounted retroreflector on the probe head; directing the first beam of light from the coordinate measurement device to the spherically mounted retroreflector; measuring the first distance; measuring the first angle of rotation; measuring the second angle of rotation; measuring the three orientational degrees of freedom based at least in part on information provided by the orientation sensor; calculating the three-dimensional coordinates of the probe center based at least in part on the first distance, the first angle of rotation, the second angle of rotation, and the three orientational degrees of freedom; and storing the three-dimensional coordinates of the probe center.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: December 2, 2014
    Assignee: Faro Technologies Inc.
    Inventor: Robert E. Bridges
  • Patent number: 8849522
    Abstract: A system incorporating one or more interrogators or readers on heavy construction equipment (e.g., loaders) detect signals emanating from signal transmitters on clothing or equipment of construction workers. Responsive to the detection of a signal emanating from behind the heavy equipment, or in another position relative to the heavy equipment, the driver is notified audibly of the danger such that the driver may stop the movement of the heavy equipment or causes the brakes to be applied and transmission to be disengaged automatically without operator involvement.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: September 30, 2014
    Inventor: Robert L. Mendenhall
  • Patent number: 8830116
    Abstract: A radar wave sensing apparatus including a rotation element, a nanosecond pulse near-field sensor and a control unit is provided. The nanosecond pulse near-field sensor emits an incident radar wave and receives a reflection radar wave of the incident radar wave hitting on a surface of the rotation element to obtain a repetition frequency variation of the reflection radar wave corresponding to the incident radar wave. The control unit calculates a vibration of the rotation element according to the repetition frequency variation.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: September 9, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Kuang-I Chang, Sheng-Hang Wang, Yu-Jen Su, Mu-Yu Tsai, Jyun-Long Chen
  • Patent number: 8830090
    Abstract: Systems and methods are disclosed for displaying the current trends (i.e., turning or going straight) or the future positions of vehicles of interest on a traffic display unit. The position, orientation and geometry of the displayed symbology is a function of parametric information broadcast by the vehicles of interest and processed by a computer system that controls the traffic display unit. In particular examples disclosed herein, the traffic display unit is a navigation display on an aircraft or a traffic display unit at a traffic controller's station. However, the methods disclosed herein have application to vehicular traffic other than aircraft, such as boats or ships.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: September 9, 2014
    Assignee: The Boeing Company
    Inventor: Syed Tahir Shafaat
  • Patent number: 8773299
    Abstract: An exemplary embodiment relates to an aircraft system for detecting wires. The system includes a processor configured to actively sense a presence of a first object and a second object. The processor determines a location of the first object and the second object. The processor determines a potential location of a wire between the first object and the second object. The processor actively senses the wire by providing electromagnetic energy to the potential location.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: July 8, 2014
    Assignee: Rockwell Collins, Inc.
    Inventors: Daniel L. Woodell, Richard D. Jinkins, Richard M. Rademaker
  • Patent number: 8773301
    Abstract: A method of determining an angle within the beam to a target using an airborne radar includes receiving first data associated with first returns associated with a first portion of an antenna. The method further includes receiving second data associated with second returns associated with a second portion of an antenna, wherein the first portion is not identical to the second portion. The method further includes determining the angle within the beam to the target using the first and second data.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: July 8, 2014
    Assignee: Rockwell Collins, Inc.
    Inventor: Daniel L. Woodell
  • Patent number: 8742977
    Abstract: A bistatic radar receiver is located on a wind turbine and surrounded by multiple bistatic transmitters to detect and precisely track the positions of nearby birds. Bird target reflections from multiple transmitters are received by the radar receiver and their position and track determined from the transmitter locations, receiver location, and measured transmitter-to-target-to-receiver ranges. Target position and altitude accuracy is similar to GPS. When birds are detected to be on a collision course with the wind turbine, a deterrent is activated to scare them away. Deterrents can be flashing strobe lights, intense sound, air cannon, or any other effective bird deterrent.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: June 3, 2014
    Inventor: Gregory Hubert Piesinger
  • Publication number: 20140139367
    Abstract: A method for producing at least information for track association and fusion includes: collecting measurement values of targets for each sensing period; predicting state variables for the targets and error covariances for the state variables by using the collected measurement values and tracking the targets by using a reformed target tracking algorithm; transmitting track information including only data of the error covariance largest occupied among the error covariances to a fusion center; calculating similarity between the pre-stored fused track and the transmitted track information; sorting the track information by using the calculated similarity; and carrying out the track fusion based on the sorted track information.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 22, 2014
    Applicant: AGENCY FOR DEFENSE DEVELOPMENT
    Inventors: Taeklyul SONG, Jeonhee YOO, Seungjin PARK, Hyoekjin CHOI
  • Publication number: 20140139368
    Abstract: A device for judging a likelihood of a collision between a vehicle and a target is provided. The device comprises: a target detection sensor and an ECU. The ECU comprises: a CPU; an orientation determining unit configured to enable the CPU to determine the orientation of a target relative to a reference vehicle in which the device for judging a likelihood of a collision is mounted, using information which is detected by the target detection sensor; a change-amount detecting unit configured to enable the CPU to detect an amount of temporal change in the orientation of the target; and a determining unit configured to enable the CPU to determine a likelihood of a collision between the reference vehicle and the target under a condition that the amount of temporal change in the orientation of the target is a predetermined threshold or less.
    Type: Application
    Filed: November 15, 2013
    Publication date: May 22, 2014
    Applicant: DENSO CORPORATION
    Inventor: Ryo Takaki
  • Patent number: 8698058
    Abstract: A ranging seeker apparatus includes an RF antenna and a bistatic ranging detector operatively connected with the RF antenna. The RF antenna and bistatic ranging detector are operative for detecting one or more guidance objects in a RF band and providing angle and range data to the missile. Also, a missile including a missile body, a missile propulsion system disposed in or on the missile body, and the ranging bistatic RF seeker disposed in or on the missile body.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: April 15, 2014
    Assignee: Lockheed Martin Corporation
    Inventor: Ronald H. LaPat
  • Patent number: 8686326
    Abstract: In certain aspects, this invention is a “control system” that detects and minimizes (or otherwise optimizes) an angle between vehicle centerline (or other reference axis) and vehicle velocity vector—as for JDAM penetration. Preferably detection is exclusively by optical flow (which herein encompasses sonic and other imaging), without data influence by navigation. In other aspects, the invention is a “guidance system”, with optical-flow subsystem to detect an angle between the vehicle velocity vector and line of sight to a destination—either a desired or an undesired destination. Here, vehicle trajectory is adjusted in response to detected angle, for optimum angle, e.g. to either home in on a desired destination or avoid an undesired destination (or rendezvous), and follow a path that's ideal for the particular mission—preferably by controlling an autopilot or applying information from navigation.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: April 1, 2014
    Assignee: Arete Associates
    Inventors: John C. Dennison, David C. Campion
  • Patent number: 8665138
    Abstract: A system for preventing light pollution includes one or more radar units that monitor for vehicles in a volume surrounding or containing one or more obstructions having one or more obstruction lights. A master radar detection processing unit receives sensed radar detection information from the one or more radar units with associated radar signal processing units and determines whether a vehicle is present within the monitored volume. A plurality of obstruction light controller units are interconnected in a network, such as a wireless network. Each obstruction light controller unit turns on an obstruction light when a vehicle enters the monitored volume or a failure condition exists, and turns off the obstruction light when the vehicle has vacated the monitored volume and no failure condition exists. The one or more radar units can transmit sensed radar detection information to a master radar detection processing unit via the network.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: March 4, 2014
    Assignee: Laufer Wind Group LLC
    Inventor: Eric David Laufer
  • Patent number: 8664575
    Abstract: A miniature lightweight high-maneuverability missile (10) has a missile body (12) with three sets of at least two aerodynamic control surfaces (14, 16, 18) for independent control of roll, pitch and yaw of the missile. Each set of control surfaces (14, 16, 18) is independently controlled by a corresponding actuator (20) deployed within the missile body (12). Other preferred features include selection of an elevation angle of incidence at a target, and switching between explosive and kinetic modes of operation.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: March 4, 2014
    Assignee: Rafael Advanced Defense Systems Ltd.
    Inventors: Yariv Bril, Yakov Hetz, Oded Yehezkeli, Ehud Chishinsky
  • Patent number: 8638253
    Abstract: Embodiments disclosed herein include a radar sensor device for detecting movement and velocity of external objects within or around a particular radar sensor field. The radar sensor field can use an array or cluster or radar sensors, including compact (portable by hand) radar sensors that function as network nodes within a wireless, low-energy ad hoc network. Radar sensor devices can use vibration as a means of communicating power status, functionality, and progress of installation of a particular radar unit. Such a vibration can be executed at a particular predefined cadence, rhythm, or other pattern, to indicate a powered-on state, active network connectivity, and other device states. Such a radar sensor device provides silent and non-visible status indication for quick and efficient deployment.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: January 28, 2014
    Assignee: BBN Technologies Corp.
    Inventor: Paul Dryer
  • Patent number: 8637798
    Abstract: A method for determining a position of a device in a reference coordinate system. The method including: receiving, at the device, less than all of GPS signals necessary to determine the position of the device in the reference coordinate system; transmitting a signal from a? illuminating source defined in the reference coordinate system; receiving the signal at a cavity waveguide disposed on the device; and determining the position of the device in the reference coordinate system based on the GPS signals and the signal received in the cavity waveguide. The signal received in the cavity waveguide can also be used to confirm a position determined by the GPS signals.
    Type: Grant
    Filed: December 11, 2011
    Date of Patent: January 28, 2014
    Assignee: Omnitek Partners LLC
    Inventor: Jahangir S. Rastegar
  • Patent number: 8610041
    Abstract: A system for engaging hostile air or space threats with a defensive missile, where the defensive missile comprises an antenna for receiving global positioning system (GPS) signals. A global positioning system receiver is coupled to said antenna, for receiving global positioning system signals directly from global positioning system satellites and global positioning system signals reflected from the threat. A processing arrangement processes the direct and reflected global positioning system signals for determining the position and velocity of the threat. Vectoring controls are coupled to the processing arrangement, and are responsive to the location of the threat for directing the defensive missile toward the threat. In a particular embodiment, the antenna of the defensive missile is directionally controllable, and the defensive missile includes an antenna direction controller responsive to the processor for directing at least a beam of the antenna toward the threat.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: December 17, 2013
    Assignee: Lockheed Martin Corporation
    Inventor: Jonathan A. Boardman
  • Patent number: 8598501
    Abstract: A sensor system uses ground emitters to illuminate a projectile in flight with a polarized RF beam. By monitoring the polarization modulation of RF signals received from antenna elements mounted on the projectile, both angular orientation and angular rate signals can be derived and used in the inertial solution in place of the gyroscope. Depending on the spacing and positional accuracies of the RF ground emitters, position information of the projectile may also be derived, which eliminates the need for accelerometers. When RF signals of ground emitter/s are blocked from the guided projectile, the sensor deploys another plurality of RF antennas mounted on the projectile nose to determine position and velocity vectors and orientation of incoming targets.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: December 3, 2013
    Assignee: Northrop Grumman Guidance an Electronics Co., Inc.
    Inventors: A. Douglas Meyer, Mostafa A. Karam, Charles A. Lee, Charles H. Volk
  • Publication number: 20130314270
    Abstract: A device and software utilizing Global Positioning Satellite (GPS) technologies for monitoring and recovering portable computing devices and, a method and system for acquiring such devices, protecting data on such devices, and for compensating owners of devices. A GPS mechanism of the invention provides real time tracking of missing devices that may be coordinated with security agencies to intercept and recover missing computing devices. When a stolen device is unrecoverable, the invention may receive a signal to initiate data recovery where a wireless network is available to recover data for the owner. Alternatively, the GPS mechanism instructs the device to encrypt or destroy stored data files to prevent commercial espionage or privacy violations. The invention discloses a software system and method for computing a purchase price of the GPS mechanism, computing compensation for loss of the device and lost data.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 28, 2013
    Applicant: Apogee Technology Consultants, LLC
    Inventors: John J. Madsen, Michael J. Coker
  • Publication number: 20130307718
    Abstract: A radar device according to an embodiment includes a transmission unit, a reception unit, and a processing unit. The transmission unit emits a transmission wave relating to a frequency-modulated transmission signal. The reception unit receives a reflected wave acquired by reflecting the transmission wave on an object as a reception signal. The processing unit detects object data corresponding to the object from the reception signal, outputs the object data to the vehicle control device that controls the vehicle, and removes object data satisfying the removal condition that is a condition used for determining whether or not object data is to be removed from an output target for the vehicle control device and includes at least the distance and the relative speed of the object data with respect to the speed of the vehicle as conditions from output targets for the vehicle control device.
    Type: Application
    Filed: March 20, 2013
    Publication date: November 21, 2013
    Applicant: FUJITSU TEN LIMITED
    Inventor: FUJITSU TEN LIMITED
  • Patent number: 8586901
    Abstract: Embodiments of a guidance section that compensates for boresight error (BSE) caused by effects of a composite radome. The guidance section includes a BSE compensation element to add high-pass filtered noise to compensated BSE data. The guidance section also includes and a Kalman filter to generate line-of-sight rate (LOSR) BSE noise from the compensated BSE data and the added high-pass filtered noise. In some embodiments, a method for generating a revised BSE correction matrix is provided. The revised BSE correction matrix may compensate for BSE caused by effects in the composite radome and may correct for relative target velocity error.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: November 19, 2013
    Assignee: Raytheon Company
    Inventor: Robert L. Kesselring
  • Patent number: 8587473
    Abstract: A method for onboard determination of a roll angle of a projectile. The method including: transmitting a polarized RF signal from a reference source, with a predetermined polarization plane; receiving the signal at a pair of polarized RF sensor cavities positioned symmetrical on the projectile with respect to a reference roll position on the projectile; measuring a difference between an output of the pair of polarized RF sensor cavities resulting from the received signal to determine zero output roll positions of the projectile; and comparing an output of the pair of polarized RF sensor cavities at each of the zero output positions to determine when the projectile is parallel to the predetermined polarization plane. The method can also include analyzing an output of at least one third sensor positioned on the projectile to determine whether the roll angle position of the projectile is up as compared to the horizon.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: November 19, 2013
    Assignee: Omnitek Partners LLC
    Inventors: Jahangir S. Rastegar, Carlos M. Pereira
  • Patent number: 8581161
    Abstract: A molded dichroic mirror and a seeker comprising a molded dichroic mirror are provided. The dichroic mirror may be molded from polysiloxane or lithia potash borosilicate and may be coated to reflect an infrared signal and configured to transmit a radio frequency signal between 33 GHz and 37 GHz.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: November 12, 2013
    Assignee: Raytheon Company
    Inventors: Byron B. Taylor, W. Howard Poisl
  • Patent number: 8575527
    Abstract: A vehicle including electro-optic (EO) imaging has a vehicle body having an outer surface including a front portion and a side portion, wherein the side portion includes a plurality of portholes. A propulsion source is within the vehicle body for moving the vehicle. A fixed EO imaging system having a field-of-regard (FOR) includes a plurality of fixed EO imaging sub-systems arrayed within the vehicle body. The fixed EO imaging sub-systems each have a different field-of-view (FOV) for providing a portion of the FOR and include a camera affixed within the vehicle body and an optical window secured to one of the portholes for transmitting electromagnetic radiation received from one of the portions of the FOR to the camera, wherein the cameras each generate image data representing one of the portions of the FOR therefrom. A processor is coupled to receive the image data from the plurality of fixed EO imaging sub-systems for combining the image data to provide composite image data spanning the FOR.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: November 5, 2013
    Assignee: Lockheed Martin Corporation
    Inventor: James A. Fry
  • Patent number: 8569669
    Abstract: A SAR image recorded by a reconnaissance system is transferred as a reference edge image together with the data of the trajectory as a reference. The signal of the infrared seeker head of the missile is converted into a virtual SAR edge image and compared to the SAR reference image to calculate the precise position of the missile.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: October 29, 2013
    Assignee: LFK-Lenkflugkoerpersysteme GmbH
    Inventors: Michael Holicki, Nikolaus Schweyer, Juergen Zoz
  • Patent number: 8558731
    Abstract: A method of determining an angle within the beam to a target using an airborne radar includes receiving first data associated with first returns associated with a first portion of an antenna. The method further includes receiving second data associated with second returns associated with a second portion of an antenna, wherein the first portion is not identical to the second portion. The method further includes determining the angle within the beam to the target using the first and second data.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: October 15, 2013
    Assignee: Rockwell Collins, Inc.
    Inventor: Daniel L. Woodell
  • Patent number: 8519883
    Abstract: A motion detector system includes the ability to detect motion through the use of a Doppler radar sensor or a combination of PIR sensors and a Doppler radar sensor. The system includes an outdoor light fixture having one or more lamps and a housing coupled to the outdoor light fixture. The housing includes a Doppler radar sensor and a microprocessor for analyzing the signals received by the Doppler radar sensor. Alternatively, the housing includes a combination of PIR sensors and a Doppler radar sensor and a microprocessor for analyzing the signals received from these sensors. The lamps in the light fixture are activated when either the PIR sensor or the Doppler radar sensor generates a signal indicating motion within the monitored area. Alternatively, the lamps can be activated when either the PIR sensor or the Doppler radar sensor senses predetermined number of motion activities over a limited time period.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: August 27, 2013
    Assignee: Cooper Technologies Company
    Inventors: George Michael Drake, Ryan Crist, Tyler Fleig, Milton Dallas, Scott Kroeger, Norm Siegel, Charlie Ketelhohn
  • Patent number: 8502730
    Abstract: A method detects a bird or an object flying level with a single wind turbine, using a device for radio wave detection of at least one bird or another flying object, in the form of at least one radar. The analog image from each radar is transformed into a digital image and an outer safety area and an inner safety area is defined for the image. A safety space for each radar is defined and an action is performed in the event of a detection within the safety areas.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: August 6, 2013
    Inventor: Henri-Pierre Roche
  • Patent number: 8497456
    Abstract: Embodiments of a guided munition are provided, as are embodiments of a method for equipping a guided munition with an interlocking dome cover. In one embodiment, the guided munition includes a munition body, a seeker dome coupled to the munition body, and an interlocking dome cover. The interlocking dome cover includes a plurality of detachable dome cover sections collectively enclosing the seeker dome and a dome cover deployment device coupled to the plurality of detachable dome cover sections. When actuated, the dome cover deployment device initiates separation of the plurality of detachable dome cover sections to expose the seeker dome.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: July 30, 2013
    Assignee: Raytheon Company
    Inventor: Rudy A. Eisentraut
  • Patent number: 8487226
    Abstract: Guided airborne weapons fired in a salvo against multiple targets are deconflicted by performing a scene correlation of multiple cued targets to TLOs acquired by the seeker's imaging sensor to track a target package. If the weapon is provided with a multimode seeker, target cues for a common designated target and a common SAL code are provided to each weapon. Each weapon uses its SAL sensor to detect and process a SAL return to verify the common SAL code and augment their scene correlations by fixing the TLO track file of the common designated target to the cued track file associated with the designated target. At terminal, each weapon commits to a particular target by referencing its assigned target to the tracked target package. Correlation to multiple targets in the target package makes the acquisition and tracking process more robust and reduces targeting ambiguity. Furthermore, a single SAL designation can improve the tracking of all the weapons to their respective targets.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: July 16, 2013
    Assignee: Raytheon Company
    Inventor: Brian L. Biswell
  • Patent number: 8471186
    Abstract: In a CLOS missile guidance system, target and missile tracking data e.g. video image data are acquired on a UAV and transmitted to the missile where they are processed to provide guidance control data to the missile. Alternatively the video image data may be transmitted to a command station where the guidance control data is generated and transmitted to the missile, preferably via the UAV.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: June 25, 2013
    Assignee: MBDA UK Limited
    Inventor: Graham Patrick Wallis
  • Patent number: 8471760
    Abstract: An automotive radar system to determine a sweep pattern to be transmitted as an output radar waveform in a multiuser transmission environment is disclosed. The system includes: a receiver to receive noise signals; a signal generator to generate a plurality of different frequency sweep signals; a signal combiner to combine each frequency sweep signal with a received noise signal; an interference classifier to identify combined signals corresponding to one or more received noise signals including frequency chirp signals and to determine the respective noise levels of the identified combined signals corresponding to one or more received noise signals including frequency chirp signals; a selector to select a plurality of frequency sweep signals in dependence upon the noise levels determined by the interference classifier; and a control unit to determine a sweep pattern comprising the selected plurality of frequency sweep signals to be transmitted as an output radar waveform.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: June 25, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventor: Wieslaw Jerzy Szajnowski
  • Patent number: 8464949
    Abstract: A method including detecting a threat incoming to a vehicle, the vehicle having a plurality of countermeasures including a primary armament and an active protection system, communicating the detected threat to a controller, activating, with the controller, a first sensor in response to the detecting, the first sensor tracking the incoming threat and generating tracking data, routing, with the controller, the tracking data to a plurality of fire control processors, each of the plurality of fire control processors being associated with a respective one of the plurality of countermeasures, and the plurality of fire control processors simultaneously computing respective firing solutions using the tracking data, and determining, with the controller, a preferred countermeasure out of the plurality of countermeasures with which to counter the incoming threat.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: June 18, 2013
    Assignee: Raytheon Company
    Inventors: Mark A. Namey, James F. Kviatkofsky, James R. Toplicar
  • Publication number: 20130147653
    Abstract: A radar wave sensing apparatus including a rotation element, a nanosecond pulse near-field sensor and a control unit is provided. The nanosecond pulse near-field sensor emits an incident radar wave and receives a reflection radar wave of the incident radar wave hitting on a surface of the rotation element to obtain a repetition frequency variation of the reflection radar wave corresponding to the incident radar wave. The control unit calculates a vibration of the rotation element according to the repetition frequency variation.
    Type: Application
    Filed: June 8, 2012
    Publication date: June 13, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kuang-I Chang, Sheng-Hang Wang, Yu-Jen Su, Mu-Yu Tsai, Jyun-Long Chen
  • Patent number: 8451164
    Abstract: In one embodiment, a radar communication system includes a plurality of radars having a communication range and being capable of operating at a sensing frequency and a reporting frequency, wherein the reporting frequency is different than the sensing frequency, each radar is adapted for operating at the sensing frequency until an event is detected, each radar in the plurality of radars has an identification/location frequency for reporting information different from the sensing frequency, a first radar of the radars which senses the event sends a reporting frequency corresponding to its identification/location frequency when the event is detected, and all other radars in the plurality of radars switch their reporting frequencies to match the reporting frequency of the first radar upon detecting the reporting frequency switch of a radar within the communication range. In another embodiment, a method is presented for communicating information in a radar system.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: May 28, 2013
    Assignee: Lawrence Livermore National Security, LLC.
    Inventors: Farid Dowla, Faranak Nekoogar
  • Patent number: 8415596
    Abstract: A method for determining a location of a flying target included identifying and measuring the target by at least two seeker systems disposed at a distance from one another. The position of the target relative to at least one of the two seeker systems is determined from measurement data derived therefrom. The position of the target is measured inconspicuously and without active radiation, in that the seeker systems are data-networked, passive target tracking systems for missiles, which autonomously track the target and align the missile with the target. The measurement data determined by the data-networked seeker systems are combined, and the location of the target is determined from the combined data.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: April 9, 2013
    Assignee: Diehl BGT Defence GmbH & Co. KG
    Inventors: Raimund Dold, Thomas Kuhn, Wilhelm Hinding
  • Patent number: 8401830
    Abstract: A method and a device are provided for performing channel simulation. The device includes a radio channel simulation block and a memory and it is configured to simulate a radio connection between a transmitter and a receiver in real time. The device is further configured to simulate a radio connection between at least one interfering signal source and the receiver in real time, and to store the simulation result in the memory, and to read the stored simulation results in real time from the memory and add the results read to the simulation during simulation of the radio connection between the transmitter and the receiver.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: March 19, 2013
    Assignee: Elektrobit System Test Oy
    Inventor: Timo Sarkkinen
  • Patent number: 8384586
    Abstract: A Mixer structure (210) for Doppler radar applications and a Doppler radar sensor (30) having an oscillator input port (LO) for output signals from an electric oscillator (32), having a radio frequency input port (RF) for output signals from receiving means (34), having an output port (IF) for an overall output intermediate signal produced in the mixer structure (210) and having two mixer branches (12a, 12b) each with a diode (18a, 18b). The mixer branches (12a, 12b) are connected to the oscillator input port (LO) and to the radio frequency input port (RF) in such a manner that intermediate signals (IF1, IF2), which are produced in these mixer branches (12a, 12b) and correspond to a Doppler shift between the oscillator signal and the radio frequency signal, are processed to the overall output signal.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: February 26, 2013
    Assignee: BEA SA
    Inventor: Yves Borlez
  • Patent number: 8373590
    Abstract: The invention relates to a method of processing an image sensed by an image sensor on board an aircraft fitted with an obstacle-locator system, in which the position and the extent of a zone in the sensed image, referred to as the zone of interest, is determined as a function of obstacle location data delivered by the obstacle-locator system, after which at least one parameter for modifying the brightness of points/pixels in said zone of interest is determined to enable the contrast to be increased in said zone of interest, and as a function of said modification parameter, the brightness of at least a portion of the image is modified.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: February 12, 2013
    Assignee: Eurocopter
    Inventor: Richard Edgard Claude Piré
  • Patent number: 8368586
    Abstract: A system includes a multi-system approach to detecting concealed weapons and person borne improvised explosive devices (PBIED). A first and second radar system operate at different center frequencies to provide, respectively, isolation of a target of interest from clutter and fine detail information on the target, such as whether the target is a living person, whether a concealed object may be present, material composition of the object, and shape, size, and position of the target relative to the system. Circular polarized radar beam may be used to distinguish a suspect object from within a crowd of people. Radar image of the object may be overlaid on visual image of a person carrying the object. Radar tracking of the object is coordinated with visual tracking of the target provided by a camera system, with visual display and tracking of the target overlaid with the radar information.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: February 5, 2013
    Assignee: Tialinx, Inc.
    Inventors: Farrokh Mohamadi, Mikko Oijala, Mohsen Zolghadri, Paul Strauch
  • Patent number: 8358238
    Abstract: A hostile missile is identified as being of a type which maneuvers aerodynamically within the atmosphere when it performs an exoatmospheric maneuver which significantly changes its specific energy. When the determination is made that the hostile missile is an atmospheric maneuvering missile, the hostile missile is engaged with an interceptor which is guided toward a predicted intercept point (PIP) assuming horizontal hostile missile flight at an altitude above a specified minimum altitude.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: January 22, 2013
    Assignee: Lockheed Martin Corporation
    Inventor: Daniel L. Friedman
  • Patent number: 8321070
    Abstract: In order to target and intercept a desired object within a number of objects detected in an environment, detection data is received from two different sensors, where the detection data includes spatial coordinates. A set of four-point subsets (tetrahedra) are selected from each set of spatial coordinates. A number of correlation maps are determined between the first set of spatial coordinates and the second set of spatial coordinates based on the plurality of four-point subsets. The mean sphericity for each corresponding plurality of four-point subsets in the plurality of correlation maps is determined, and a threat object map based on the correlation map having the greatest mean sphericity is created. The desired object is targeted based on the correlation map.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: November 27, 2012
    Assignee: Raytheon Company
    Inventor: Steven J. Manson
  • Patent number: 8288696
    Abstract: A method for engaging a target missile includes sensing the position of the target and of an interceptor missile, and determining time-to-go to intercept and direction of thrust of the interceptor. A one-step intercept solution is determined based on position estimates of the target and the interceptor and is used to iteratively estimate at least two components of a three-dimensional unit thrust vector, and apply updated guidance commands to the interceptor. A system for thrust vector control of an interceptor against a target missile includes a processor for receiving sensed target signals, determining a one-step initial solution to produce time-to-go and current direction of thrust of the interceptor, iteratively estimating at least two components of a three-dimensional unit thrust vector, and producing a guidance vector for application to the interceptor.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: October 16, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Jeffrey B. Boka, Purusottam Mookerjee, Naresh R. Patel
  • Patent number: 8288697
    Abstract: A method for commanding an attitude change of a boosting missile to tend to maintain good communication link quality includes the step of precalculating attenuation of a link between the boosting missile and a ground station in the presence and absence of multiple missile plumes. If the actual link attenuation is less than the precalculated attenuation in the absence of multiple missile plumes, no attitude change is commanded. If the actual link attenuation exceeds the precalculated value, the actual link attenuation is compared with the calculated attenuation in the presence of multiple missile plumes. If the calculated multiple plume RF attenuation is less than the actual link attenuation, the attenuation is deemed to be caused by some factor other than multiple plume attenuation, and produces a flag for commanding a change in attitude.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: October 16, 2012
    Assignee: Lockheed Martin Corporation
    Inventor: David E. Wolf
  • Patent number: 8279108
    Abstract: The general field of the invention is that of viewing systems of the synthetic vision type SVS, for a first aircraft, the said system comprising at least one cartographic database of a terrain, position sensors, for the said aircraft, an air traffic detection system calculating the position and the danger rating of at least one second aircraft exhibiting a risk of collision with the said first aircraft on the basis of data originating from sensors or systems such as TCAS or ADS-B, an electronic computer, a man-machine interface means and a display screen, the computer comprising means for processing the various items of information originating from the database, sensors and interface means, the said processing means arranged so as to provide the display screen with a synthetic image of the terrain comprising a representation of the said second aircraft.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: October 2, 2012
    Assignee: Thales
    Inventors: Christian Nouvel, Corinne Bacabara, Jean-Noel Perbet
  • Patent number: 8258999
    Abstract: A method for onboard determination of a roll angle of a projectile.
    Type: Grant
    Filed: November 22, 2009
    Date of Patent: September 4, 2012
    Assignee: Omnitek Partners LLC
    Inventors: Jahangir S. Rastegar, Carlos M. Pereira
  • Patent number: 8244424
    Abstract: The invention relates to a database and a method of generating a database containing topographical information on obstacles distributed over a geographic area subdivided into cells. The method includes reading topographical data obtained from heterogeneous sources. Topographical data are generated which relate to pointlike obstacles from the information collected from the topographical data. Topographical data are generated which relate to linear obstacles from the information collected from the topographical data. The obstacle database is created. Each cell contains a link to the obstacles whose coordinates in the geographic area covered by the cell are recorded with an uncertainty value. In particular, the invention applies to the generation of a database on board an aircraft.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: August 14, 2012
    Assignee: Thales
    Inventors: Michel Subelet, Sylvain Fontaine
  • Patent number: 8237607
    Abstract: A method and system for coordinating air-to-air tracking and air-to-ground tracking for an airborne tracked target that is landing or performing an airdrop. Air-to-air tracking data is analyzed to detect if the tracked target is landing, and a predicted landing location is computed. An air-to-ground sensor is activated, via a separate air-to-ground tracking module or via a mode change, and the air-to-ground tracking is initiated at the predicted landing location of a detected target. Both automated and manually-assisted air-to-ground activation are supported.
    Type: Grant
    Filed: December 25, 2008
    Date of Patent: August 7, 2012
    Assignee: Elta Systems Ltd.
    Inventor: Yahali Merhav