Return Signal Controls Radar System Patents (Class 342/73)
  • Patent number: 8159384
    Abstract: To suppress cross-ambiguities in the examination of an ice region or dry region by means of aircraft- or aerospace-supported radar echo sounding, the region to be examined is overflown by a radar sensor (6) by multiple compatible radar sensors of the same operating wavelength on multiple spatially separated, substantially parallel paths, wherein the radar signal data received on each path are recorded. The radar signal data recorded for each of the different paths are summed coherently and using a weighting to form a radargram, wherein an adaptive complex-valued weighting for each of the individual paths is performed using a geometrical model which takes into account the topography of the environment of the region to be examined. The weighting for every depth of the examined region is determined by solving a system of linear equations from which is calculated a synthetic antenna pattern which has zeros in the direction of the ambiguities.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: April 17, 2012
    Assignee: Deutsches Zentrum fur Luft-und Raumfahrt E.V.
    Inventor: Rolf Scheiber
  • Patent number: 8144051
    Abstract: A motion compensation method and system is included in a radar antenna system mounted on a moving platform which is subject to pitch, yaw and roll. The radar antenna system includes a main array antenna, and an auxiliary antenna. The auxiliary channel associated with the auxiliary antenna utilizes roll, pitch and yaw angle motion compensations as its auxiliary antenna always steers a horizontal fan shape beam at the horizon to blank any surface (land or sea) based EM interferences. Such motion compensations are provided by a ship motion compensator component and process included within the antenna system. The ship motion compensator component in response to platform motion signals indicative of changes in platform motion angles generates new sets of values using an initial set of weighting coefficient values as a function of such angle motion changes.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: March 27, 2012
    Assignee: Raytheon Company
    Inventors: Yuchoi F. Lok, Kaichiang Chang, Jerome H. Pozgay
  • Patent number: 8134491
    Abstract: A method is provided for controlling an aircraft-mounted radar system configured to project radar beams and to receive radar returns relating to the projected radar beams. The method includes providing at least one output to the radar system that causes the radar system to sweep the radar beam horizontally to create a horizontal sweep set. The method further includes providing at least one output to the radar system that causes the radar system to conduct two vertical sweeps during the horizontal sweep set, the two vertical sweeps offset from a center horizontal location by at least one beam width, and wherein each of the two vertical sweeps are on opposite sides of the center horizontal location.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: March 13, 2012
    Assignee: Rockwell Collins, Inc.
    Inventors: Nathanael A. Meyer, Daniel L. Woodell
  • Patent number: 8130137
    Abstract: A method and a system for sensing a boosting target missile, estimate position and velocity and boost acceleration parameters of the target missile, and control an interceptor missile to the target missile. A boost-phase missile target state estimator estimates at least acceleration, velocity, and position using an acceleration template for the target vehicle. The nominal template is incorporated into an extended Kalman filter which corrects the nominal template acceleration with the filter states to predict future thrust acceleration, velocity and position. The correction can compensate for motor burn variations and missile energy management (lofted/depressed trajectory).
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: March 6, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Thu-Van Luu, Jeffrey B. Boka, Purusottam Mookerjee, Michael J. Harcourt
  • Publication number: 20120050090
    Abstract: A device and method for wide area surveillance of a geographic region includes identifying a search space associated with a geographic region having a plurality of sub-regions. The search space is divided into a plurality of search cells and observation data is collected for each of the plurality of search cells based on a scan of the geographic region. An event generation rate is calculated for each of the search cells based on the collected observation data. One or more of the sub-regions are identified as a region(s) of interest based on the calculated event generation rates. A coverage pattern is estimated for each of the sub-regions and a desired revisit rate is calculated for the region of interest based on the estimated coverage pattern. The desired revisit rate is then output for scanning the region of interest.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 1, 2012
    Inventors: William Rudnisky, Guillermo Jimenez, James J. Hiroshige
  • Patent number: 8098193
    Abstract: An ultra wide band (UWB) millimeter (mm) wave radar system includes a signal source having a control input, a GHz signal output and a frequency controlled output. A control loop is coupled between the GHz signal output and the control input including a frequency divider and a digitally controlled PLL that provides a locked output coupled to the control input of the signal source to provide frequency locked output signals that are discrete frequency swept or hopped. A frequency multiplier is coupled to the frequency controlled output of the signal source for outputting a plurality of mm-wave frequencies. An antenna transmits the mm-wave frequencies to a surface to be interrogated and receives reflected mm-wave signals therefrom. A mixer mixes the reflected mm-wave signals and mm-wave frequencies and processing circuitry determines at least one parameter relating to the surface from the mixing output.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: January 17, 2012
    Assignee: Honeywell International Inc.
    Inventors: Bin Sai, Laurent Mauduit
  • Patent number: 8098192
    Abstract: A terrain awareness system includes a processor for receiving radar returns and providing terrain and/or obstacle alerts or warnings in response to the radar returns. The processor receives information from a database and the information is used to select the radar transmit function and/or the radar reception function to optimize the performance of the system.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: January 17, 2012
    Assignee: Rockwell Collins, Inc.
    Inventors: Joel M. Wichgers, Richard D. Jinkins, Richard M. Rademaker, Daniel L. Woodell
  • Patent number: 8089393
    Abstract: An exemplary system and method are for tracking a target in a decentralised network having a plurality of sensing nodes. Each node makes observations of a target, performs a multiple models tracking algorithm based on the observations, and updates tracking information stored therein. Each node communicates the updated track information to selected other nodes in the network. In response to receiving track information from another node, each node fuses the receiving track information with local track information.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: January 3, 2012
    Assignee: BAE Systems PLC
    Inventors: Eric William Nettleton, Christopher Mark Lloyd
  • Patent number: 8041317
    Abstract: A system includes a radio frequency transceiver. A baseband processor includes an automatic gain control module. The automatic gain control module has a gain that changes from and subsequently returns to a predetermined value each time the radio frequency transceiver receives a radio frequency signal. The baseband processor is configured to selectively generate an interrupt signal each time a radio frequency signal is received based on a magnitude of the change in the gain of the automatic gain control module and a length of time in which the gain returns to the predetermined value. A control module is configured to identify a radio frequency signal received by the radio frequency transceiver as a radar signal in response to the baseband processor having generated a plurality of interrupt signals at substantially equal time intervals.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: October 18, 2011
    Assignee: Marvell World Trade Ltd.
    Inventors: Milind Kopikare, Hui Yao Lin, James Yee, Chuong Vu
  • Patent number: 8022860
    Abstract: An Advanced Focal Plane Array (“AFPA”) for parabolic dish antennas that exploits spatial diversity to achieve better channel equalization performance in the presence of multipath (better than temporal equalization alone), and which is capable of receiving from two or more sources within a field-of-view in the presence of multipath. The AFPA uses a focal plane array of receiving elements plus a spatio-temporal filter that keeps information on the adaptive FIR filter weights, relative amplitudes and phases of the incoming signals, and which employs an Interference Cancelling Constant Modulus Algorithm (IC-CMA) that resolves multiple telemetry streams simultaneously from the respective aero-nautical platforms. This data is sent to an angle estimator to calculate the target's angular position, and then on to Kalman filters FOR smoothing and time series prediction. The resulting velocity and acceleration estimates from the time series data are sent to an antenna control unit (ACU) to be used for pointing control.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: September 20, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Ryan Mukai, Victor A. Vilnrotter
  • Patent number: 7999726
    Abstract: A system for estimating an antenna boresight direction. The novel system includes a first circuit for receiving a Doppler measurement and a line-of-sight direction measurement corresponding with the Doppler measurement, and a processor adapted to search for an estimated boresight direction that minimizes a Doppler error between the Doppler measurement and a calculated Doppler calculated from the estimated boresight direction and the line-of-sight direction measurement. The line-of-sight direction measurement is measured relative to the true antenna boresight, and the calculated Doppler is the Doppler calculated for a direction found by applying the line-of-sight direction measurement to the estimated boresight direction. In a preferred embodiment, the first circuit receives a Doppler measurement and a line-of-sight direction measurement from each of a plurality of pixels, and the processor searches for an estimated boresight direction that minimizes a sum of squares of Doppler errors for each of the pixels.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: August 16, 2011
    Assignee: Raytheon Company
    Inventors: Ralph Guertin, David Faulkner, John Treece, Donald Bruyere
  • Patent number: 7982662
    Abstract: This scanning array scans an area around the array for nearby objects, collision obstructions, and terrain topography. The scanning array can scan for sounds emitted by objects in the vicinity of the scanning array, passive energy receipt sources, or it can also send out an energy beam and scan for reflections from objects within the energy beam. The energy beam can be optical, laser, radar or other energy emitting sources. The scanning array of the invention can be used for helicopter detection and avoidance of collision risk and can be used for other scanning purposes. Scanning of an entire hemisphere or greater is accomplished by manipulating the scanner platform through the coordination of either linear actuators or gimbals so as to produce nutation without rotation. This motion allows transceivers to be directly coupled to transmitting and sensing modules without the losses associated with slip rings and other coupling devices.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: July 19, 2011
    Assignee: Intellex, LLC
    Inventor: James Shaffer
  • Patent number: 7965225
    Abstract: A method of adjusting a position of an antenna to reduce a position error comprises receiving first data associated with first returns associated with a first portion of an antenna. The method further comprises receiving second data associated with second returns associated with a second portion of the antenna, wherein the first portion is different than, intersects with, or includes the second portion. The method further comprises determining the angle to the terrain using the first and second data, whereby the angle is used to adjust or compensate for the position error of the antenna.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: June 21, 2011
    Assignee: Rockwell Collins, Inc.
    Inventors: Charles J. Dickerson, Daniel L. Woodell
  • Patent number: 7928896
    Abstract: A method and apparatus for target focusing and ghost image removal in synthetic aperture radar (SAR) is disclosed. Conventional SAR is not designed for imaging targets in a rich scattering environment. In this case, ghost images due to secondary reflections appear in the SAR images. We demonstrate, how, from a rough estimate of the target location obtained from a conventional SAR image and using time reversal, time reversal techniques can be applied to SAR to focus on the target with improved resolution, and reduce or remove ghost images.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: April 19, 2011
    Assignee: Carnegie Mellon University
    Inventors: Yuanwei Jin, José M. F. Moura
  • Patent number: 7929802
    Abstract: A computer system for registering synthetic aperture radar (SAR) images includes a database for storing SAR images to be registered, and a processor for registering SAR images from the database. The registering includes selecting first and second SAR images to be registered, individually processing the selected first and second SAR images with an anisotropic diffusion algorithm, and registering the first and second SAR images after the processing. A shock filter is applied to the respective first and second processed SAR images before the registering. Elevation data is extracted based on the registered SAR images.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: April 19, 2011
    Assignee: Harris Corporation
    Inventors: Mark Rahmes, Josef Allen, Emile Ganthier, Matthew Winter, Patrick Kelley
  • Patent number: 7898464
    Abstract: A radio frequency (RF) phased array transmitter system comprises a phased array for generating an RF signal. The phased array comprises conductive patches formed in an array, separation gaps, and active sources. Each of the separation gaps is formed between two adjacent ones of the conductive patches, and each of the active sources is formed across its associated one of the separation gaps. The system further comprises an optical source for generating an optical signal and an RF source for generating an RF signal. In addition, the system comprises an optical modulator coupled to the optical source and the RF source. The optical modulator receives an optical signal and an RF signal, and produces an RF modulated optical signal based on the received optical signal and the received RF signal.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: March 1, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: William W. Anderson, William S. Barquist
  • Patent number: 7898460
    Abstract: A radar apparatus includes a transmitting antenna and a receiving antenna that has a plurality of antenna elements, and switches the plurality of antenna elements in synchronization with a modulation period to acquire receiving signals. At this time, the antenna elements are switched in accordance with a combination of a first sub-phase and a second sub-phase in which the antenna elements are sequentially switched in opposite directions to thereby acquire the receiving signals. The radar apparatus calculates an azimuth sine value sin ?1 from the acquired receiving signals of the first sub-phase and calculates an azimuth sine value sin ?2 from the receiving signals of the second sub-phase. Next, the radar apparatus calculates an actual azimuth ? through an averaging process of these azimuth sine values sin ?1 and sin ?2.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: March 1, 2011
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Tetsu Nishimura, Toru Ishii
  • Patent number: 7868818
    Abstract: An antenna is provided, in combination with an associated switch array, the antenna comprising a number of antenna elements mounted above a ground plane for providing coverage over a predetermined range of angles in azimuth using a number of beams. Each of the antenna elements is connected to a switch in the switch array and the switch array is operable to connect selected pairs of the antenna elements to a signal path to thereby generate each of the different beams, at the same time connecting unselected antenna elements to ground.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: January 11, 2011
    Assignee: BAE Systems, PLC
    Inventor: Robert Ian Henderson
  • Patent number: 7761236
    Abstract: In an object recognition apparatus for a vehicle which uses intensities of reflected waves from reflecting objects to make a recognition on whether a reflecting object is a vehicle or a non-vehicle, a plurality of transmission waves are emitted to receive a plurality of reflected waves from the reflecting objects, and a decision is made as to whether or not the reflecting object producing the plurality of reflected waves is a unitary reflecting object. If the decision shows a unitary reflecting object, the highest intensity of intensities of the reflected waves from the unitary reflecting object is compared with a reference intensity to makes a decision on whether the reflecting object is a vehicle or a non-vehicle. This enables univocally making a decision for each unitary reflecting object as to whether the reflecting object is more likely to be a vehicle or to be a non-vehicle, thus improving the recognition accuracy.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: July 20, 2010
    Assignee: DENSO CORPORATION
    Inventors: Yoshie Samukawa, Toyohito Nozawa, Hiroshi Ohkata, Keiji Matsuoka, Yoshiaki Hoashi, Tsutomu Natsume, Eiji Teramura
  • Patent number: 7706978
    Abstract: A method for estimating unknown parameters (pan angle (?), instantaneous tilt angle (?) and road geometry of an upcoming road segment) for a vehicle object detection system. The vehicle object detection system is preferably a forward looking, radar-cued vision system having a camera, a radar sensor and an processing unit. The method first estimates the pan angle (?), then corrects the coordinates from a radar track so that pan angle (?) can be treated as zero, and finally solves a least squares problem that determines best estimates for instantaneous tilt angle (?) and road geometry. Estimating these parameters enables the vehicle object detection system to identify, interpret and locate objects in a more accurate and efficient manner.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: April 27, 2010
    Assignee: Delphi Technologies, Inc.
    Inventors: Jan K. Schiffmann, David A. Schwartz
  • Patent number: 7705767
    Abstract: A synthetic aperture radar to provide high resolution in the azimuth direction under the predetermined conditions of wide observation swathwidth in the range direction, stripmap observation and free PRF (Pulse Repetition Frequency) comprises a transmission antenna 102 for a single system and receiving antennae 104a, 104b for two systems. The beam width in the azimuth direction of a transmission beam 103 from the transmission antenna 102 is set equal to twice as wide as the beam width of each of the receiving antennae 104a, 104b. Moreover, a receiving antenna beam 105a is directed to the moving direction, while the other receiving antenna beam 105b is directed to opposite to the moving direction. The transmission antenna 102 and the receiving antennae 104a, 104b for two systems are used in common by dividing a single array antenna in the elevation direction to configure the receiving antennae 104a, 104b.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: April 27, 2010
    Assignee: NEC Corporation
    Inventor: Takashi Fujimura
  • Patent number: 7702291
    Abstract: A single chip radio transceiver includes circuitry that enables detection of radar signals to enable the radio transceiver to halt communications in overlapping communication bands to avoid interference with the radar transmitting the radar pulses. A method in a radio transceiver includes grouping a plurality of pulse data entries, generating a first list of pulse repetition intervals having pulses with a pulse width within a specified range, counting a number of most and second most common pulse interval values and determining whether a radar signal is present. Generally, the method includes determining a radar is present in one of three different ways, namely, determining whether the number of the most common pulse interval values exceeds a specified value, determining a radar signal is present with an extra pulse and finally, determining a radar is present with a missing pulse.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: April 20, 2010
    Assignee: Broadcom Corporation
    Inventor: Christopher J. Hansen
  • Patent number: 7696921
    Abstract: A system and method of displaying an indication of a hazard associated on an aircraft display in an avionics system provides first radar pulses at a first pulse repetition frequency or having a first compression signature or carrier frequency. The system and method also provides second radar pulses at a second pulse repetition frequency higher than the first pulse repetition frequency or having a second compression signature or carrier frequency. The system and method receive radar returns associated with the first radar pulses and the second radar pulses and provide a turbulence assessment in response to the radar returns.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: April 13, 2010
    Assignee: Rockwell Collins, Inc.
    Inventors: Jeffery A. Finley, Daniel L. Woodell, John G. Conkling
  • Patent number: 7653464
    Abstract: A hybrid air-ground vehicle design that cycles through a regenerative energy phase during a ground-based trajectory. The regenerative ground-based trajectory, in turn, produces energy for purposes of implementing another air-based trajectory cycle. The design significantly improves the versatility and endurance of robotic position-adaptive sensor designs. The radar (or electro-optic) sensors on the platform perform surveillance operations during both the ground and air trajectories of the hybrid air/ground vehicle.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: January 26, 2010
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventor: Atindra K. Mitra
  • Patent number: 7598902
    Abstract: A method of detecting weather using a weather radar onboard an aircraft. A range is selected at which weather is to be detected. A tilt angle of the weather radar is changed to detect weather below an altitude of the aircraft at a selected range when the selected range includes a maritime environment.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: October 6, 2009
    Assignee: Rockwell Collins, Inc.
    Inventors: Daniel L. Woodell, Roy E. Robertson
  • Publication number: 20090224959
    Abstract: An obstacle detecting system for a vehicle detects an obstacle by transmitting a transmitting wave and receiving a receiving wave, which is a reflection of the transmitting wave by the obstacle. The system calculates a S distance to the obstacle. The system varies directivity of the transmitting wave in accordance with the calculated distance The directivity is lowered when the calculated distance is less than a predetermined reference distance, than when the calculated distance is greater than the predetermined reference distance.
    Type: Application
    Filed: March 3, 2009
    Publication date: September 10, 2009
    Applicant: DENSO CORPORATION
    Inventor: Norifumi MATSUKAWA
  • Patent number: 7557747
    Abstract: According to typical practice of an inventive radar system, a switching device is capable of activating a receiver array one at a time so that when a receiver is activated the remaining receivers are inactivated. A switch control circuit is pre-programmed with control logic that is based on the counting of radio pulses that are emitted by a signal generator (for transmission by a transmitter). The control logic dictates, via the switching device, the rapid sequential cycling through of the arrayed receivers so that each receiver is activated for the same prescribed period of time, which corresponds to a pre-programmed number N of emitted radio pulses wherein N=[the number of frequencies in the wave table]×[the number of pulse integrations in the wave table]×[1 polarization or 2 polarizations]. Radio pulse input from the receivers is interleaved in a manner associable with individual receivers.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: July 7, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jerry Rosson Smith, Jr., Donald G. Morgan, Paul E. Ransom, Jr.
  • Patent number: 7551121
    Abstract: The multi-target tracking and discrimination system (MOST) fuses with and augments existing BMDS sensor systems. Integrated devices include early warning radars, X-band radars, Lidar, DSP, and MOST which coordinates all the data received from all sources through a command center and deploys the GBI for successful interception of an object detected anywhere in space, for example, warheads. The MOST system integrates the optics for rapid detection and with the optical sensor array delivers high-speed, high accuracy positional information to radar systems and also identifies decoys. MOST incorporates space situational awareness, aero-optics, adaptive optics, and Lidar technologies. The components include telescopes or other optical systems, focal plane arrays including high-speed wavefront sensors or other focal plane detector arrays, wavefront sensor technology developed to mitigate aero-optic effects, distributed network of optical sensors, high-accuracy positional metrics, data fusion, and tracking mounts.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: June 23, 2009
    Assignee: Oceanit Laboratories, Inc.
    Inventors: Daniel G. O'Connell, Ken C. K. Cheung
  • Patent number: 7548194
    Abstract: A hostile intention assessment system and method wherein a tracking sensor subsystem (e.g., radar) tracks targets relative to a critical asset. Determinations are made to assess if a first target is approaching a second target, and to assess if the second target is approaching the critical asset. If the first target is approaching the second target to hide in the radar shadow thereof and the second target is approaching sufficiently close to the critical asset, an alert is generated.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: June 16, 2009
    Assignee: Raytheon Company
    Inventor: Thomas E. Wood
  • Patent number: 7535410
    Abstract: A weight calculation method begins by storing a target reflection signal of a radar pulse received via an antenna in cells corresponding to positions along with a reception timing for a plurality of processing range cells having lengths equivalent to prescribed ranges on a time axis. The method continues by calculating weights by stage for the phase and amplitude of the target reflection signal to form a reception composite beam so that arrival directions of spurious elements become zero to an arrival direction of the target reflection signal by using values stored in the plurality of processing cells. The calculating of the weights monitors changes of specific variables indicating correlation values among stages in the plurality of processing stages to stop a shift to the next processing stage at the time when the variables exceed a reference value.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: May 19, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Junichiro Suzuki
  • Publication number: 20090109082
    Abstract: In one embodiment, the disclosure relates to a method for estimating and predicting a target emitter's kinematics, the method including the steps of: (a) passively sampling, at a first sampling rate, an emitter signal to obtain at least one passively measured signal attribute for estimating the target kinematics; (b) inputting the passively measured signal attribute to an estimator at a first sampling rate; (c) determining a radar duty cycle for active radar measurements as a multiple of the first sampling rate, the multiple defining a duration between radar transmissions; (d) directing a radar system to make active target measurements at the determined duty cycle; (e) inputting to the estimator the active target measurements at the determined duty cycle, while continuously inputting the passively measured signal attributes.
    Type: Application
    Filed: October 24, 2007
    Publication date: April 30, 2009
    Applicant: Northrop Grumman Systems Corporation
    Inventor: Conrad Rose
  • Patent number: 7522092
    Abstract: A radar apparatus including units for transmitting and receiving an electric wave to detect a target, a unit for detecting wave interference caused by surroundings, a unit for controlling the modulation state of the transmitted wave, a communication unit for acquiring modulation state information being used by the other radar apparatuses, and a unit for selecting such a modulation state as to avoid interference with the modulation state information when the wave interference detecting unit detects the wave interference.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: April 21, 2009
    Assignee: Hitachi, Ltd.
    Inventors: Fumihiko Okai, Hiroshi Kuroda
  • Patent number: 7519395
    Abstract: An improved base station which cancels the effects of known fixed interference sources produces a signal substantially free from the interference sources thereby increasing total channel capacity. The adaptive interference canceller base station includes a main antenna for receiving signals from other communication stations and at least one directional antenna directed toward an interference source. The main and directional antennas are coupled together such that an output signal substantially free from the interference is generated.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: April 14, 2009
    Assignee: Interdigital Technology Corporation
    Inventors: David K. Mesecher, Fatih Ozluturk
  • Patent number: 7519332
    Abstract: A radiocommunication apparatus includes a transmitting device and a receiving device. The transmitting device includes a first local oscillation section for selecting a frequency for a first local oscillation signal from a plurality of predetermined frequencies in order to output the first local oscillation signal, and a first frequency mixing section for mixing an input signal and the first local oscillation signal, thereby forming a transmission signal. The receiving device includes a second local oscillation section for selecting a frequency for a second local oscillation signal from the plurality of predetermined frequencies in order to output the second local oscillation signal, and a second frequency mixing section for mixing a received signal and the second local oscillation signal, thereby forming an output signal.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: April 14, 2009
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Eiji Suematsu
  • Patent number: 7509217
    Abstract: A vehicle detector includes a detecting apparatus and a determining apparatus. If a plurality of detection points detected by the detecting apparatus forms a group of detection points, the determining apparatus sets a determining virtual window encompassing the group of detection points and determines whether the group of detection points is likely to represent the one vehicle based on a state of movement of the group of detection points with respect to the determining virtual window.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: March 24, 2009
    Assignee: Alpine Electronics, Inc.
    Inventor: Kenjiro Endoh
  • Publication number: 20090033542
    Abstract: Methods and systems are disclosed for investigating a region of interest with a radar. A radar signal is propagated to the region of interest. Sampled time-domain radar data scattered within the region of interest are collected. A likelihood function is calculated with the sampled time-domain data within a parametric model of the region of interest for a defined set of parameters. The set of parameters in varied to find an extremum of the likelihood function.
    Type: Application
    Filed: July 30, 2007
    Publication date: February 5, 2009
    Applicant: Colorado State University Research Foundation
    Inventors: Chandrasekaran Venkatachalam, Dmitriy Moiseev, Cuong Nguyen
  • Patent number: 7486219
    Abstract: A method of detecting weather on an aircraft uses a weather radar system. The method adapts the weather radar system in accordance with a seasonal parameter, a time-of-day parameter, or a location parameter. The method includes determining the particular parameter and automatically adjusting the weather radar system to display the weather in response to the parameter. The system can be implemented in hardware or software and advantageously can more precisely predict and identify weather and/or weather hazards.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: February 3, 2009
    Assignee: Rockwell Collins, Inc.
    Inventors: Daniel L. Woodell, Roy E. Robertson
  • Patent number: 7474255
    Abstract: The present invention relates to a target tracking method of radar with frequency modulated continuous wave, which transmits a transmitted signal to receive a return wave of the transmitted signal that is used for detecting the target and obtaining the relative distance between the target and the radar. The target tracking method includes transmitting a frequency modulated continuous wave and receiving the reflected wave; getting a reflected wave corresponding to the target by detecting the reflected wave; getting a range gate error by seeking the plurality of the range gates corresponding to the reflected wave; and getting a position and a speed of the target at next time by knowing the position of the target at present time basis of the range gate error. Hence, the relative distance between the radar and the target is got.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: January 6, 2009
    Assignee: Chung Shan Institute of Science and Technology, Armaments Bureau, M.N.D.
    Inventors: Hung-Tao Hsieh, Feng-Ling Liu, Yao-Hwa Wen
  • Patent number: 7463185
    Abstract: A radar apparatus wherein transmission beams are set such that reception intensities corresponding to the transmission beams are gradually reduced from a center direction toward an edge direction of a scanning-angle range. For example, when a vehicle serving as a target is located in the center direction of a transmission beam, the reception-signal intensity corresponding to an adjacent transmission beam is set higher than the reception intensity in the center direction corresponding to the transmission beam. When the scanning-angle distributions of reception-signal intensities corresponding to transmission beams are detected, a scanning angle exhibiting a peak reception-signal intensity is nearer the center of the scanning-angle range than the azimuth angle at which the target is actually located. Thus, a peak reception-signal intensity corresponding to a target located in a region that is a predetermined amount outside the scanning-angle range of a transmission beam appears inside the scanning-angle range.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: December 9, 2008
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Motoi Nakanishi
  • Patent number: 7460060
    Abstract: An electric wave transmitting/receiving module includes: a waveguide including a conductive member and an opening facing a transmitting side and/or a receiving side; a dielectric substrate disposed on a side opposite to the opening of the waveguide; and transmitting/receiving means. The transmitting/receiving means includes a core line, a transmitting/receiving element, and a wire. The core line and the transmitting/receiving element are horizontally disposed on the dielectric substrate. The core line transmits the transmitting electric wave and/or receives the receiving electric wave. The transmitting/receiving element outputs a transmitting/receiving signal corresponding to the transmitting electric wave and/or the receiving electric wave. The wire sends the transmitting/receiving signal from the transmitting/receiving element to an external circuit.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: December 2, 2008
    Assignee: Denso Corporation
    Inventor: Yutaka Aoki
  • Publication number: 20080266169
    Abstract: A radar device capable of detecting a target object by itself only in a range required by a vehicle control system by changing the detection angle depending on the distance without changing the hardware structure is provided. The radar device includes transmitting means for transmitting an electromagnetic wave as a transmission signal, receiving means for receiving the electromagnetic wave reflected from the target object as a reception signal, and signal processing means for detecting a target object existing around the vehicle from the transmission signal and the reception signal, and calculating the relative position and the relative speed between the object and the vehicle. The detection angle is changed depending on the distance for measurement, so that the target object is detected only in a region necessary in operating the vehicle control system.
    Type: Application
    Filed: August 21, 2007
    Publication date: October 30, 2008
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Kenichi AKITA
  • Patent number: 7432847
    Abstract: An ultra-wideband transceiver that includes a selection mechanism for selecting an internal or an external pulse repetition frequency generator, the output of which is used in the generation of very short duration UWB RF pulses. A detection mechanism is electrically isolated from the oscillator but shares access to a single port that is used for both transmission and reception (e.g. a physical layer transmit/receiver port) of RF signals. The detection mechanism detects changes in the received signal by comparing the received signal to a reference, amplifying these changes, removing high frequency noise and sending the resulting signal for subsequent signal processing, for example a digital signal processing system.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: October 7, 2008
    Assignee: Wireless 2000 RF & UWB Technologies Ltd.
    Inventors: Dmitry Fedotov, Alexander Sudakov
  • Patent number: 7417579
    Abstract: A weather radar system includes processing electronics. The processing electronics sense weather and determine significant weather based upon the altitude of the weather. The altitude of the weather can be compared to a flight path to determine its significance. A display can provide visual indicia of the significant weather in response to the processing electronics.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: August 26, 2008
    Assignee: Rockwell Collins, Inc.
    Inventor: Daniel L. Woodell
  • Publication number: 20080191929
    Abstract: Methods and apparatus to provide Log-Amp-detected radar sea clutter voltage modeled by a polynomial, such as a cubic polynomial, and using that model as a basis for sea clutter reduction filtering. In an exemplary embodiment, a navigational radar includes an STC filter design based on the cubic sea clutter modeling.
    Type: Application
    Filed: February 8, 2007
    Publication date: August 14, 2008
    Inventor: Thomas E. Wood
  • Publication number: 20080158897
    Abstract: A vehicular lamp 1 including a lamp chamber 7, which is formed with a lamp body 3 and a transparent front cover 5 attached to the front opening of the lamp body, and a lamp unit 13, which includes a reflector 9 and a light source 11 and is provided in the lamp chamber 7 so that the optical axis direction of the lamp unit is adjusted by a tilting movement adjustment mechanism 15, wherein a millimeter wave radar device 25 is attached to the lamp body, and a reflection mirror 31 that reflects, toward the front of the lamp, a millimeter wave signal 29 emitted by the millimeter wave radar device is attached to a supporting frame 21 which is a part of the tilting movement adjustment mechanism.
    Type: Application
    Filed: December 4, 2007
    Publication date: July 3, 2008
    Inventors: Hiromi Nakamura, Kazuma Mochizuki, Yoshinao Daicho, Hiromi Umehara, Yasuo Teranishi
  • Publication number: 20080100499
    Abstract: A radar target detection method in which an azimuth at which a target is located is detected on the basis of reception signals obtained through antenna elements of an array antenna by detecting a change in levels of spectrum peaks in an azimuth spectrum of reception signal intensities, calculating a level of correlation between the level change of each spectrum peak and a directivity pattern of the array antenna in an azimuth range corresponding to the spectrum peak, and determining an azimuth corresponding to one of the spectrum peaks having the highest corresponding correlation level to be the azimuth at which the target is located.
    Type: Application
    Filed: October 24, 2007
    Publication date: May 1, 2008
    Inventor: Tetsu Nishimura
  • Patent number: 7348918
    Abstract: The present invention is directed towards a ballistic missile detection and defense system. The system of the present invention comprises a ship based interceptor or antiballistic missile, a missile launch detection and tracking system, and a signal processing system capable of receiving said tracking signal calculating an intercept trajectory for an antiballistic missile to intercept a ballistic missile, and further capable of outputting an intercept trajectory program to an antiballistic missile.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: March 25, 2008
    Assignee: Lockheed Martin Corporation
    Inventor: Richard T. Redano
  • Publication number: 20070273573
    Abstract: Systems and methods are disclosed for establishing and conducting communications within a network. The discloses systems and methods may include determining a scheduled time period for communications between a first communication node and a second communication node. Furthermore, the disclosed systems and methods may include determining a direction of transmission for transmitting data from the first communication node to the second transmission node and receiving data transmitted from the second transmission node and determining a direction of transmission for receiving data from the first communication node and transmitting data from the second transmission node to the first transmission node. Moreover, the disclosed systems and methods may include establishing communications between the first communication node and the second communication node.
    Type: Application
    Filed: May 23, 2006
    Publication date: November 29, 2007
    Inventor: Brian J. Tillotson
  • Patent number: 7274324
    Abstract: A path in three-dimensions for an object in flight is determined according to a radar signal reflected by the object. The radar signal is transmitted at an offset angle from horizontal sufficient to capture the object within the transmitted radar signal. The transmitted radar signal is reflected by the object to form a reflected radar signal containing an indication of a position of the object. The reflected radar signal is received and used to determine two-dimensional position information for the object by detection of the indication of the position of the object in the received radar signal. Position information is derived in three-dimensions from the position information in two-dimensions. The path information representative of the path for the object is obtained from the position information in three-dimensions based on an optimization of a curvature of said path information.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: September 25, 2007
    Assignee: Her Majesty the Queen in Right of Canada as Represented by the Minister of National Defense
    Inventors: Rhonda L. Millikin, Joseph R. Buckley
  • Patent number: RE42472
    Abstract: A method for main beam alignment verification includes providing data pertaining to one or more patterns associated with an antenna, measuring power levels of a signal acquired by the antenna, and comparing the measured power levels with the data to determine whether a direction of the signal is incident upon a main beam of the antenna.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: June 21, 2011
    Assignee: The Aerospace Corporation
    Inventors: Robert B. Dybdal, Denny D. Pidhayny