With Spaced Or External Radio Wave Refractor (e.g., Lens) Patents (Class 343/753)
  • Patent number: 11929553
    Abstract: Disclosed herein are reconfigurable antennas based on moiré patterns with new actuation mechanisms to reduce their energy expenditure.
    Type: Grant
    Filed: April 6, 2022
    Date of Patent: March 12, 2024
    Assignee: American University of Beirut
    Inventors: Elie Shammas, Joseph Costantine, Joe Taoum
  • Patent number: 11923607
    Abstract: A transition device for transitioning microwaves from an air-filled waveguide to an antenna. The air-filled waveguide is assumed to have an attachment flange, with the transition device having a compatible transition attachment flange. A rod has an upper portion extending upwardly through the flanges and a lower portion extending downwardly into the air-filled waveguide. The rode is made from a solid piece of high-dielectric material. The rod's outer surfaces of the upper portion (other than its end face) are metal plated, such that the upper portion provides a solid waveguide having a radiating aperture antenna.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: March 5, 2024
    Assignee: Southwest Research Institute
    Inventors: Brad D. Moore, Yilun Luo
  • Patent number: 11909113
    Abstract: A radio frequency antenna array uses lenses and RF elements, to provide ground-based coverage for cellular communication. The antenna array can include two spherical lenses, where each spherical lens has at least two associated RF elements. Each of the RF elements associated with a given lens produces an output beam with an output area. Each lens is positioned with the other lenses in a staggered arrangement. The antenna includes a control mechanism configured to enable a user to move the RF elements along their respective tracks, and automatically phase compensate the output beams produced by the RF elements based on the relative distance between the RF elements.
    Type: Grant
    Filed: January 24, 2023
    Date of Patent: February 20, 2024
    Assignee: Matsing, Inc.
    Inventors: Igor Timofeev, Serguei Matitsine, Leonid Matytsine
  • Patent number: 11894611
    Abstract: A dielectric lens device for shaping a radar beam includes a first and a second plano-convex cylindrical dielectric lens member and a plane-parallel dielectric substrate. The two plano-convex cylindrical dielectric lens members are arranged with their plane surfaces towards a same surface of the plane-parallel dielectric substrate. The plano-convex cylindrical dielectric lens members are interconnected to the plane-parallel dielectric substrate in a material fit.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: February 6, 2024
    Assignee: IEE INTERNATIONAL ELECTRONICS & ENGINEERING S.A.
    Inventors: Una Karahasanovic, Andreas Fox, Claude Watgen, Franck Lemoine, Thomas Stifter, Dimitri Tatarinov
  • Patent number: 11888224
    Abstract: A high-gain and low-RCS (radar cross section) broadband circularly polarized metasurface antenna based on a novel sequential-rotation feeding network includes three layers of dielectric substrates and five metal layers as well as three resistors, which are from top to bottom: a first metal layer, a first dielectric substrate, a second metal layer, a second dielectric substrate, a third metal layer, a fourth metal layer, a third dielectric substrate and a fifth metal layer. The first three metal layers are all metasurface arrays composed of 10*10 metal patches; the fourth metal layer and the third metal layer define a resonant cavity by means of a distance therebetween; the fourth metal layer is provided with four slits having rotational symmetry; and the fifth metal layer is a hybrid feeding network composed of microstrip lines and including three equal power dividers and three resistors.
    Type: Grant
    Filed: August 5, 2022
    Date of Patent: January 30, 2024
    Assignee: Nanjing University of Posts and Telecommunications
    Inventors: Feng Xu, Xiaofei Zhao
  • Patent number: 11855349
    Abstract: A lensed base station antenna includes a first array of radiating elements that are configured to transmit respective sub-components of a first RF signal and an RF lens positioned to receive electromagnetic radiation from a first of the radiating elements. The RF lens includes a lens casing, an RF energy focusing material within the lens casing and a first heat dissipation element that extends through the RF energy focusing material. The RF lens is configured to be at least a three step approximation of a Luneberg lens along a bore sight pointing direction of the first of the radiating elements.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: December 26, 2023
    Assignee: CommScope Technologies LLC
    Inventor: Martin L. Zimmerman
  • Patent number: 11821975
    Abstract: A radar module includes a printed circuit board (PCB) and a semiconductor package mounted on the PCB. The semiconductor package comprises an integrated circuit die and a substrate for electrically connecting the integrated circuit die to the PCB. The substrate comprises an antenna layer integrated into the semiconductor package and electrically connected to the integrated circuit die for at least one of transmitting and receiving radar signals. A discrete pattern-shaping device is mounted on the PCB and is configured to shape a radiation pattern of the radar signals.
    Type: Grant
    Filed: October 6, 2021
    Date of Patent: November 21, 2023
    Assignee: MediaTek Inc.
    Inventors: Yen-Ju Lu, Chih-Ming Hung, Wen-Chou Wu
  • Patent number: 11824247
    Abstract: A set of antenna geometries for use in integrated arrays at terahertz frequencies are described. Two fabrication techniques to construct such antennas are presented. The first technique uses an advanced laser micro-fabrication, allowing fabricating advanced 3D geometries. The second technique uses photolithographic processes, allowing the fabrication of arrays on a single wafer in parallel.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: November 21, 2023
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Goutam Chattopadhyay, Imran Mehdi, Choonsup Lee, John J. Gill, Cecile D. Jung-Kubiak, Nuria Llombart
  • Patent number: 11695203
    Abstract: A solution to the growing customer demand on cell tower signal capacity is needed. As such, a directional antenna for cellular communication, a communications system using the directional antenna, and a method of communicating using the directional antenna are provided herein. In one example, the directional antenna includes: (1) a Luneburg lens having a spherical shape, and (2) a curved substrate that conforms to the spherical shape of the Luneburg lens, the curved substrate having a feed network of signal conveyors affixed to a front side and a ground plane back side, wherein the signal conveyors are aligned with the Luneburg lens to communicate radio frequency signals within a sector.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: July 4, 2023
    Assignee: American Antenna Company, LLC
    Inventor: Ralph E. Hayles, Jr.
  • Patent number: 11675070
    Abstract: A radar wave imaging device includes a radar transmitter unit having at least one radar transmit antenna for transmitting radar waves towards a scene and a radar receiving unit including a plurality of radar receiver members that are arranged as a two-dimensional array, for receiving reflected radar waves. The radar receiving unit includes an imaging radar optics unit for imaging at least a portion of a scene onto at least a portion of the two-dimensional array of radar receiver members. The imaging radar optics unit includes at least a first radar lens that is arranged between the radar receiver members and the scene. The radar receiver members are arranged in direct contact to a surface of the first radar lens that is facing away from the scene.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: June 13, 2023
    Assignee: IEE INTERNATIONAL ELECTRONICS & ENGINEERING S.A.
    Inventors: Thiemo Spielmann, Norbert Herschbach
  • Patent number: 11670863
    Abstract: An antenna system that includes a lens portion having a radiation-side curved surface and a feed-side reception surface, the lens portion structured to focus radio frequency radiations entering from the radiation-side curved surface on a focal point located at the feed reception surface and one or more antenna elements at or near the focal point, the one or more antenna elements being separated from each other by a fractional multiple of a center wavelength of a frequency band of operation, and each antenna element communicatively coupled to one or more radio frequency transmit and/or receive chain and being able to transmit and/or receive data from the radio frequency transmit chain according to a transmission scheme.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: June 6, 2023
    Assignee: Cohere Technologies, Inc.
    Inventor: Shlomo Rakib
  • Patent number: 11670847
    Abstract: Aspects of the subject disclosure may include, for example, a motorized drive assembly that includes a motor and a drive assembly, where the drive assembly has an axle configured to be disposed through a rotatable substrate of a polarization shifter for a dual-polarized radiating element, the axle being further configured to fasten, at a first end of the axle, to a support structure of the polarization shifter, wherein, when the motorized drive assembly is assembled to the polarization shifter, the motor is controllable to impart rotational forces, via movement of the axle, to the polarization shifter to effect polarization adjusting for the dual-polarized radiating element. Other embodiments are disclosed.
    Type: Grant
    Filed: July 7, 2022
    Date of Patent: June 6, 2023
    Assignee: ISCO International, LLC
    Inventors: Amr Abdelmonem, Anthony Teillet, Richard Loy Smith, Jr., David E. Urbasic, Richard David Peacock, Andre F. A. Fournier, Guenadi Miliavski
  • Patent number: 11637364
    Abstract: Disclosed are: a ring-shaped antenna which is formed in the form of a ring mounted between the housing of an ear module and the outer circumference of a coin-shaped battery and communicates with an antenna, mounted on another ear module, via NFMI; and a wireless earphone comprising the ring-shaped antenna. The disclosed ring-shaped antenna comprises: a first terminal sheet and a second terminal sheet, each extending from one side of a base sheet and having a terminal formed thereon; a plurality of front radiation patterns disposed apart from one another on the front surface of the base sheet; and a plurality of rear radiation patterns disposed apart from one another on the rear surface of the base sheet, wherein the plurality of front radiation patterns and the plurality of rear radiation patterns are connected through via-holes and thereby form an antenna pattern wound in the vertical direction of the base sheet.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: April 25, 2023
    Assignee: AMOTECH CO., LTD.
    Inventors: Beom Jin Kim, Jong Ho Park
  • Patent number: 11638164
    Abstract: A wireless signal transceiver includes a main body part, an antenna array, and a refraction element. The antenna array is disposed in the main body part, and is configured to transmit or receive at least one wireless signal beam. The refraction element is disposed at a first end of the main body part, and the first end is opposite to the antenna array. The refraction element is used to receive the wireless signal beam and refracts the wireless signal beam to generate and transmit a plurality of outputted wireless signal beams.
    Type: Grant
    Filed: January 17, 2022
    Date of Patent: April 25, 2023
    Assignee: HTC Corporation
    Inventors: Chun-Yih Wu, Ta-Chun Pu, Yen-Liang Kuo
  • Patent number: 11619567
    Abstract: A multi-mode microwave waveguide blade sensing system includes a transceiver, a waveguide, and a probe sensor. The transceiver generates a microwave energy signal having a first waveguide mode and a different second waveguide mode. The waveguide includes a first end that receives the microwave energy signal. The probe sensor includes a proximate end that receives the microwave energy signal from the transceiver and a distal end including an aperture that outputs the microwave energy signal. The probe sensor directs the microwave energy signal at a first direction based on the first waveguide mode and a different second direction different based on the second waveguide mode. The probe sensor receives different levels of reflected microwave energy based at least in part on a location at which the at least one microwave energy signal is reflected from the machine.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: April 4, 2023
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Jonathan Gilson, Joseph V. Mantese, Gurkan Gok, Goran Djuknic, Coy Bruce Wood, Joseph Zacchio
  • Patent number: 11616309
    Abstract: A dual-mode polarizer for selectively switching between linear polarization and circular polarization includes a first meander-line polarizer, and a second meander-line polarizer spaced apart from the first meander-line polarizer to define a first gap therebetween. A first angular orientation between the first and second meander-line polarizers produces variably-oriented linear polarization of a signal passing through the first and second meander-line polarizers, and a second angular orientation between the first and second meander-line polarizers produces variably-oriented circular polarization of a signal passing through the first and second meander-line polarizers.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: March 28, 2023
    Assignee: ThinKom Solutions, Inc.
    Inventors: William W. Milroy, Shadrokh Hashemi-Yeganeh
  • Patent number: 11588573
    Abstract: A THz waveguide is described, comprising four conductive wires separated by an air gap, the THz waveguide allowing low-loss and dispersion-free propagation of a THz signal. The system for terahertz polarization-division multiplexing comprises at least two THz sources, a THz waveguide and a THz receiver, wherein said THz waveguide comprises four conductive wires separated by an air gap; THz pulses from the THz sources being coupled into the THz waveguide; the THz waveguide transmitting the THz pulses independently, the THz waveguide operating as a broadband polarization-division multiplexer. The method for terahertz polarization-division multiplexing, comprising multiplexing THz pulses from terahertz sources in free-space, coupling resulting multiplexed THz pulses into a THz waveguide comprising four conductive wires separated by an air gap; and demultiplexing the multiplexed THz pulses after propagation in the waveguide.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: February 21, 2023
    Assignee: INSTITUT NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Junliang Dong, Alessandro Tomasino, Giacomo Balistreri, Aycan Yurtsever, José Azaña, Yoann Jestin, Roberto Morandotti
  • Patent number: 11575216
    Abstract: According to an example aspect of the present invention, there is provided an antenna array for a transmit-array antenna system with a fixed feed antenna, comprising an inner radiating surface for receiving a first signal from the fixed feed antenna, an outer radiating surface for emitting a second signal from the antenna array and a platform for electric connection of Radio Frequency, RF, components disposed between the inner and outer radiating surfaces, the platform having a phase shifter for operatively connecting the inner and outer radiating surfaces.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: February 7, 2023
    Assignee: Teknologian tutkimuskeskus VTT Oy
    Inventors: Jouko Aurinsalo, Antti Lamminen
  • Patent number: 11552716
    Abstract: An antenna measurement system includes an array of antennas, an array of reflectors, and a measurement surface. The array of antennas includes a plurality of antenna elements arranged in a straight line; any two adjacent antenna elements in the above antenna elements are separated by a predetermined distance, and each of the antenna elements in the above antenna elements has a radiator and a feed point. The array of reflectors includes at least one reflector and is arranged in a width direction or a height direction, and the array of reflectors is configured to generate a reflection signal according to a signal sent by the array of antennas. An antenna to be measured is configured to perform a measurement operation on the reflection signal on the measurement surface.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: January 10, 2023
    Assignee: National Taiwan University
    Inventors: Zhao He Lin, Hsi Tseng Chou, Chih Wei Chiu
  • Patent number: 11545759
    Abstract: A method and apparatus for transceiving a signal in a wireless communication system is provided. A base station for transceiving a signal in a wireless communication system includes a transceiver and at least one processor. The transceiver includes an antenna unit and a metamaterial unit. The metamaterial unit includes a metamaterial lens unit and a metamaterial lens controller, and the at least one processor is configured to generate a first beam via hybrid beamforming in the antenna unit; transmit the generated first beam to the metamaterial lens unit, generate a second beam from the first beam, by adjusting the metamaterial lens unit, based on a control signal generated by the metamaterial lens controller, and transmit a downlink signal to a terminal by using the generated second beam.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: January 3, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jaehyun Lee, Hyojin Lee
  • Patent number: 11545742
    Abstract: Example aspects of an antenna cap for an antenna node, an antenna assembly, and a method for assembling an antenna assembly are disclosed. The antenna cap for an antenna node can comprise a housing, the housing defining a continuous sidewall, the continuous sidewall defining a first end and a second end, an end wall at the first end, the end wall and continuous sidewall defining an interior cavity for receiving an antenna, an opening at the second end for access to the interior cavity, the continuous sidewall comprising a fastener proximate the second end for attaching the housing to the antenna node.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: January 3, 2023
    Assignee: Mueller International, LLC
    Inventor: Jeremy Alan McCraven
  • Patent number: 11532891
    Abstract: An antenna system includes a lens portion that has a spherical surface, and an antenna feed structure coupled to a surface of the lens portion. The antenna feed structure includes one or more feed tiles supported by an electrical connectivity layer conforming to the spherical surface. The antenna system also includes one or more offset structures positioned between the one or more feed tiles and an outer surface of the antenna system.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: December 20, 2022
    Assignee: Cohere Technologies, Inc.
    Inventors: Robert Fanfelle, Richard Benner
  • Patent number: 11482770
    Abstract: An antenna arrangement for a sensor for plant automation, including for fill level or limit level monitoring, is provided including a primary radiator configured to emit a radar signal, a first lens configured to focus the radar signal, and at least one second lens configured to optimize the focused radar signal, the second lens being disposed at a distance from the first lens and the primary radiator, providing thermal, electrical, or medial decoupling of the primary radiator and the first lens from the second lens.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: October 25, 2022
    Assignee: VEGA GRIESHABER KG
    Inventor: Daniel Schultheiss
  • Patent number: 11476574
    Abstract: Aspects of the subject disclosure may include, for example, a motorized drive assembly that includes a motor and a drive assembly, where the drive assembly has an axle configured to be disposed through a rotatable substrate of a polarization shifter for a dual-polarized radiating element, the axle being further configured to fasten, at a first end of the axle, to a support structure of the polarization shifter, wherein, when the motorized drive assembly is assembled to the polarization shifter, the motor is controllable to impart rotational forces, via movement of the axle, to the polarization shifter to effect polarization adjusting for the dual-polarized radiating element. Other embodiments are disclosed.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: October 18, 2022
    Assignee: ISCO International, LLC
    Inventors: Amr Abdelmonem, Anthony Teillet, Richard Loy Smith, Jr., David E. Urbasic, Richard David Peacock, Andre F. A. Fournier, Guenadi Miliavski
  • Patent number: 11462836
    Abstract: A lensed base station antenna includes a first array that includes a plurality of radiating elements that are configured to transmit respective sub-components of a first RF signal, a second array that includes a plurality of radiating elements that are configured to transmit respective sub-components of a second RF signal and a skeletal RF lens positioned to receive electromagnetic radiation from a first of the radiating elements of the first array and from a first of the radiating elements of the second array. In some embodiments, the skeletal RF lens includes a plurality of layers of dielectric material that are separated by air gaps.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: October 4, 2022
    Assignee: CommScope Technologies LLC
    Inventor: Kumara Swamy Kasani
  • Patent number: 11411318
    Abstract: A satellite includes first and second extensible pantographic trusses, each configured to extend outwardly from the satellite in opposite directions from a stored position to a deployed position, and first and second sets of ribs carried by the respective first and second extensible pantographic trusses. A Radio Frequency (RF) reflective film may be carried by the first and second sets of ribs to define a curved RF reflector surface. The satellite antenna may include first and second sets of phased array antenna feeds carried by the respective first and second extensible pantographic trusses and directed toward the RF reflective film, which in an example may be a RF reflective mesh.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: August 9, 2022
    Assignee: EAGLE TECHNOLOGY, LLC
    Inventor: Robert M. Taylor
  • Patent number: 11394111
    Abstract: A reconfigurable antenna systems includes a set of envelopes of active metamaterial panels, each envelope in the set being shaped to approximate a surface of at least partial revolution of a curve about an axis, wherein the surface defines a focal locus; a wideband antenna array disposed within the focal locus; and a controller, coupled to the panels, configured to activate each one of the panels, so as to control a property of each of the panels, the property selected from the group consisting of transmissivity, reflectivity, absorption, phase, polarization, bandwidth, angle sensitivity, resonant frequency, and combinations thereof.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: July 19, 2022
    Assignee: Notch, Inc.
    Inventor: Shahriar Khushrushahi
  • Patent number: 11394124
    Abstract: A radio frequency antenna array uses lenses and RF elements, to provide ground-based coverage for cellular communication. The antenna array can include two spherical lenses, where each spherical lens has at least two associated RF elements. Each of the RF elements associated with a given lens produces an output beam with an output area. Each lens is positioned with the other lenses in a staggered arrangement. The antenna includes a control mechanism configured to enable a user to move the RF elements along their respective tracks, and automatically phase compensate the output beams produced by the RF elements based on the relative distance between the RF elements.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: July 19, 2022
    Assignee: Matsing, Inc.
    Inventors: Serguei Matitsine, Igor Timofeev, Leonid Matytsine
  • Patent number: 11394121
    Abstract: A nonplanar tracking tag includes a nonplanar complementary patch antenna having an antenna ground plane, a first antenna patch lying in a first plane forming a first angle with the antenna ground plane, and a second antenna patch lying in a second plane forming a second angle with the antenna ground plane. The patch antenna may be formed on a flexible circuit and electrically coupled to a transceiver. The tracking tag may also include a dielectric material shaped and sized to position the first and second antenna patches, when the flexible circuit is wrapped around the dielectric material, in the first and second planes. Advantageously, the radiation pattern produced by the nonplanar complementary patch antenna is biased away from a normal axis of the tracking tag, and therefore can communicate efficiently with receivers when the tracking tag is oriented with its normal axis pointing away from the receivers.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: July 19, 2022
    Assignee: Isolynx, LLC
    Inventor: Alexander T. Farkas
  • Patent number: 11387533
    Abstract: A semiconductor device including an Integrated Circuit (IC) package and a plastic waveguide. The IC package includes a semiconductor chip; and an embedded antenna formed within a Redistribution Layer (RDL) coupled to the semiconductor chip, wherein the RDL is configured to transport a Radio Frequency (RF) signal between the semiconductor chip and the embedded antenna. The plastic waveguide is attached to the IC package and configured to transport the RF signal between the embedded antenna and outside of the IC package.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: July 12, 2022
    Assignee: Infineon Technologies AG
    Inventors: Maciej Wojnowski, Dirk Hammerschmidt, Walter Hartner, Johannes Lodermeyer, Chiara Mariotti, Thorsten Meyer
  • Patent number: 11381002
    Abstract: An assembly comprising a device and an obstacle subjected to an incident electromagnetic wave of wavelength ?. The obstacle is formed from an electrically conductive material and has a substantially cylindrical shape of transverse dimensions r with respect to a longitudinal axis (O, ez). The longitudinal axis is substantially perpendicular to a propagation direction of the incident electromagnetic wave. The obstacle further has a maximum transverse dimension d such that the ration ?/d is less than 1. The device is placed on all or a part of a surface of the obstacle and comprises a sleeve with a dielectric coating of equivalent relative permittivity EREQ, of height hP along a longitudinal axis of the sleeve, substantially equal to formula A, and a sleeve with an electrically conductive coating placed on the periphery of the dielectric coating.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: July 5, 2022
    Assignee: AIRBUS SAS
    Inventors: Gérard-Pascal Piau, André De Lustrac, Tatiana Borissov
  • Patent number: 11374330
    Abstract: A multi-beam telecommunications antenna system with a focusing device including a two-dimensional radiator array generating a plurality of beams simultaneously by setting amplitude-time parameters of the signals for each radiator. The antenna includes: a focusing system having an amplifying lens; a radiating device, for irradiating the amplifying lens and having a two-dimensional radiator array, is disposed at a distance from the amplifying lens and covers a projection area of beams at this distance; and a beam forming system. At least one sub-array of the radiators provides a beam in a set direction. For each beam, the beam forming system provides, for each radiator in the corresponding sub-array, amplitude-time parameters of the signal being transmitted to form a non-planar wavefront, which is equidistant across the amplifying lens to a planar wavefront of the beam. The radiating surface of the radiator array is outside a region of self-intersection of the non-planar wavefronts.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: June 28, 2022
    Inventors: Evgenij Petrovich Basnev, Anatolij Vasilevich Vovk
  • Patent number: 11309635
    Abstract: An antenna unit including an antenna array having a plurality of antennas and a lens plate comprising a mask pattern. The antenna array defines a first plane, and the lens plate defines a second plane. The lens plate is spaced apart from the antenna array, and the second plane is parallel to the first plane. The mask pattern is configured to focus first waves incident on the lens plate through diffraction to a region of the antenna array. The first waves are incident on the lens plate at a first angle relative to an axis normal to the second plane. The mask pattern is configured to focus second waves incident on the lens plate through diffraction to the first region of the antenna array. The second waves are incident on the lens plate at a second angle relative to the axis that is different from the first angle.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: April 19, 2022
    Assignee: Corning Incorporated
    Inventors: Nicholas Francis Borrelli, Wageesha Senaratne, Aramais Robert Zakharian
  • Patent number: 11276931
    Abstract: The invention relates to an antenna device having a printed circuit board and at least one antenna radiator which is arranged on the printed circuit board and can be excited by the printed circuit board or a coupling window arranged thereupon, which radiator is designed in such a manner that it comprises at least two polarisations, which are preferably orthogonal to each other, and at least two resonance frequency ranges which are continuous or different to one another and at an interval from one another, wherein the antenna radiator comprises: at least one first dielectric body mounted on the printed circuit board and designed as a resonator, having a first relative permittivity, at least one second dielectric body designed as, having a second relative permittivity, wherein the first relative permittivity is greater than the second relative permittivity and wherein the second dielectric body is formed in such a manner that it is arranged over the at least one first dielectric body in such a manner that it bu
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: March 15, 2022
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Andreas Vollmer, Maximilian Göttl
  • Patent number: 11223111
    Abstract: Systems and methods for deploying an extendable reflector structure. The methods comprise: transitioning the extendable reflector structure from a stored configuration to a deployed configuration; and causing expansion of a pantograph coupling structure while the extendable reflector structure is being transitioned from the stored configuration to the deployed configuration. The pantograph coupling structure indirectly couples the extendable reflector structure to a boom such that a beam produced by the extendable reflector structure during operation is offset from a focal axis of the extendable reflector structure by a certain amount.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: January 11, 2022
    Assignee: EAGLE TECHNOLOGY, LLC
    Inventors: Robert M. Taylor, Timothy L. Fetterman, Philip J. Henderson
  • Patent number: 11145970
    Abstract: Various embodiments of the present disclosure provide an antenna device, which comprises: a radiator for receiving a power supply signal; multiple tuning units disposed adjacently to or on the radiator, wherein the tuning units are short-circuited to the radiator or adjacent tuning units are selectively short-circuited to each other. The antenna device as described above can be variously implemented according to embodiments.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: October 12, 2021
    Inventors: Kwang-Hyun Baek, Seung-Tae Ko, Yoon-Geon Kim, Won-Bin Hong
  • Patent number: 11129077
    Abstract: Networking devices may allow for directed wireless communication. Such devices may comprise a movable antenna within a spherical housing having different ports associated with different positions, and may direct wireless communication beams in different directions to provide access to different zones by moving the antenna. A user may configure a system to prioritize or restrict zones or devices based on criteria. This prioritization may facilitate tiered services among users or devices.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: September 21, 2021
    Assignee: Comcast Cable Communications, LLC
    Inventors: William Bellis, Christine Compton, Nirav Dave, Adam Eng, David Eng, Brendan Lavery, Tamara Nowakowski, Anupama Vaidya
  • Patent number: 11114750
    Abstract: A satellite antenna includes first and second extensible booms and first and second sets of ribs carried by the respective first and second extensible booms. A Radio Frequency (RF) reflective film is carried by the first and second sets of ribs. First and second phased array antenna feeds are carried by the respective first and second extensible booms and directed toward the RF reflective film. First and second sets of fiducial devices are carried by the respective first and second sets of ribs. At least one camera is directed toward the first and second sets of fiducial devices to sense a physical distortion of the RF reflective film. A controller cooperates with the at least one camera to operate the first and second sets of phased array antenna feeds to account for sensed physical distortion of the RF reflective film.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: September 7, 2021
    Assignee: EAGLE TECHNOLOGY, LLC
    Inventors: Gregory M. Turner, Robert M. Taylor, Timothy L. Fetterman, Richard A. Salyer
  • Patent number: 11114768
    Abstract: An antenna system that includes a lens portion having a radiation-side curved surface and a feed-side reception surface, the lens portion structured to focus radio frequency radiations entering from the radiation-side curved surface on a focal point located at the feed reception surface and one or more antenna elements at or near the focal point, the one or more antenna elements being separated from each other by a fractional multiple of a center wavelength of a frequency band of operation, and each antenna element communicatively coupled to one or more radio frequency transmit and/or receive chain and being able to transmit and/or receive data from the radio frequency transmit chain according to a transmission scheme.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: September 7, 2021
    Assignee: Cohere Technologies, Inc.
    Inventor: Shlomo Rakib
  • Patent number: 11050158
    Abstract: A Luneburg antenna device includes a dielectric lens and an array antenna. The dielectric lens is a laminate of a plurality of disc members having distribution of permittivity varying with respect to its radial direction. Each of the disc members includes a planar section in which a thickness dimension of a radially outer area is smaller than a thickness dimension of a radially inner area and a fin section which extends in a radial manner from a central portion of the planar section toward a radially outer side and in which a radially inner area and a radially outer area have the same thickness dimension.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: June 29, 2021
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Hiroshi Nishida, Ryoichi Kubo
  • Patent number: 11016574
    Abstract: A wearable electromagnetic, EM, apparatus includes: at least one antenna operable in a millimeter-wave-radar-based, MWRB, application; at least one computer processor disposed in signal communication with the at least one antenna; an attachment system configured and adapted to attach to an actor; the at least one antenna and the at least one computer processor disposed in a supported relationship with the attachment system, such that the attachment system with the supported at least one antenna and the at least one computer processor at least partially forms a wearable apparatus that is wearable by the actor.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: May 25, 2021
    Assignee: ROGERS CORPORATION
    Inventors: Shawn P. Williams, Gianni Taraschi, Sara G. Canzano, Kristi Pance, Christopher Brown, Karl E. Sprentall, Roshin Rose George
  • Patent number: 10996252
    Abstract: The present invention relates to a measurement of radio-frequency signals by a measurement arrangement comprising a radio-frequency lens for mapping a vertex of a reflector to a virtual vertex. Accordingly, measurement of radio-frequency signals may be performed either at the vertex of the reflector or the virtual vertex generated by means of the radio-frequency lens.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: May 4, 2021
    Assignee: ROHDE & SCHWARZ GMBH & CO. KG
    Inventors: Corbett Rowell, Vincent Abadie, Adam Tankielun
  • Patent number: 10992052
    Abstract: Antenna lens structures, and antenna systems including the lens structures. In one example, an antenna lens apparatus includes a shell made of a first material having a first dielectric constant, the shell defining an interior cavity, and a second material disposed within and at least partially filling the cavity, the second material having a second dielectric constant higher than the first dielectric constant. The shell defines a shape of the lens, and the second material may be a powder.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: April 27, 2021
    Assignee: ASTRONICS AEROSAT CORPORATION
    Inventors: Eric W. Kratzenberg, Joseph A. Hoell, Jr., John W. Berrigan
  • Patent number: 10971823
    Abstract: Provided herein are artificial dielectric materials comprising a plurality of sheets of a dielectric material and a plurality of short conductive tubes placed in the sheets of the dielectric material, wherein the sheets of the dielectric material containing the short conductive tubes are separated by sheets of the dielectric material without the short conductive tubes, and wherein axes of the tubes are orientated along at least two different directions. Also provided are methods for manufacture of such materials and cylindrical focusing lenses comprising such artificial dielectric materials. The artificial dielectric materials, lenses and their manufacture may provide desirable dielectric properties compared with known materials and manufacturing advantages.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: April 6, 2021
    Assignee: VASANT LIMITED
    Inventor: Victor Aleksandrovich Sledkov
  • Patent number: 10944174
    Abstract: An antenna unit and an antenna device are provided. The antenna unit comprises a first substrate, a signal line, a first electrode, a second electrode, and an auxiliary electrode. The first substrate has a first surface and a second surface opposite to the first surface. The signal line is located on the first surface of the first substrate. The first electrode is located on the second surface of the first substrate. The first electrode is overlapped with the signal line. The first electrode is ring-shape. The second electrode has a through hole. An accommodating space of the through hole is overlapped with the first electrode. The auxiliary electrode is overlapped with the accommodating space of the through hole and the first electrode.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: March 9, 2021
    Assignee: Au Optronics Corporation
    Inventors: Yi-Chen Hsieh, Yi-Hsiang Lai, Ching-Huan Lin
  • Patent number: 10923828
    Abstract: A lens elements array comprises at least two lens elements aligned along an alignment axis. Each lens element includes a spherical lens and a feed element. The feed elements are tilted such that the RF signals generated by the feed elements have major axes form an angle (preferably between 5° and 30°) other than a perpendicular angle with respect to the alignment axis. The combined RF signals produced collectively by these feed elements have amplitude that has minimal dips across the array. The feed elements that are farther away from the center of the array have higher levels of tilts than the feed elements that are closer to the center of the array.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: February 16, 2021
    Assignee: Matsing, Inc.
    Inventors: Serguei Matitsine, Leonid Matytsine, Anthony DeMarco
  • Patent number: 10916825
    Abstract: A technique for a dielectric lens and an antenna assembly. The dielectric lens that includes a for a reference surface and a pattern of varying thicknesses made from a first dielectric. The pattern of varying thicknesses is situated on the reference surface. The thickness differences between adjacent formations of the pattern of varying thicknesses is less than an incident wavelength of electromagnetic energy. The antenna includes mounting fixture, the dielectric lens connected to the mounting fixture, and a transceiver operatively coupled to the mounting fixture. The transceiver is configured to transmit an electromagnetic signal directed to the dielectric lens.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: February 9, 2021
    Assignee: Orbital Composites, Inc.
    Inventor: Cole Nielsen-Cole
  • Patent number: 10916863
    Abstract: Aspects of the subject disclosure may include, for example, an antenna system that includes a selector and a dielectric antenna array. The selector is coupled to a number of dielectric cores and selectively launches electromagnetic waves on a selected dielectric core of the dielectric cores. The selected dielectric core corresponds to one of the dielectric cores, and the electromagnetic waves propagate along the selected dielectric core without requiring an electrical return path. The dielectric antenna array is coupled to the dielectric cores and includes a number of dielectric antennas, wherein a dielectric antenna of the dielectric antennas transmits, in response to the electromagnetic waves received from the selected dielectric core, a controllable beam. Other embodiments are disclosed.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: February 9, 2021
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Paul Shala Henry, William Scott Taylor, Robert Bennett, Farhad Barzegar, Irwin Gerszberg, Donald J. Barnickel, Thomas M. Willis, III
  • Patent number: 10910722
    Abstract: An electromagnetic device includes: a dielectric structure having: a first dielectric portion, FDP, having a proximal end and a distal end, the FDP having a dielectric material other than air; and a second dielectric portion, SDP, having a proximal end and a distal end, the proximal end of the SDP being disposed proximate the distal end of the FDP, the SDP having a dielectric material other than air; and wherein the dielectric material of the FDP has an average dielectric constant that is greater than the average dielectric constant of the dielectric material of the SDP.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: February 2, 2021
    Assignee: ROGERS CORPORATION
    Inventors: Kristi Pance, Gianni Taraschi, Roshin Rose George
  • Patent number: 10868357
    Abstract: Embodiments of the invention include a base station that includes a central transceiver unit (CTU) having a plurality of transceiver cores and a substrate. A printed circuit board (PCB) supports the substrate and at least one antenna unit is coupled to the PCB with at least one of a cable and a waveguide. The at least one antenna unit transmits and receives communications at a frequency of approximately 4 GHz or higher.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: December 15, 2020
    Assignee: Intel Corporation
    Inventors: Georgios C. Dogiamis, Sasha N. Oster, Telesphor Kamgaing