Active Sleeve Surrounds Feed Line Patents (Class 343/790)
  • Patent number: 11799196
    Abstract: An antenna apparatus has a sleeve antenna. The sleeve antenna has an internal conductive member, an external conductive member, an insulating member, and a mountain-shaped conductive member that is electrically connected to the external conductive member. The mountain-shaped conductive member expands radially from an upper edge towards a lower edge. The internal conductive member protrudes higher than the external conductive member above the upper edge of the mountain-shaped conductive member.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: October 24, 2023
    Assignee: Yokowo Co., Ltd.
    Inventors: Tomohiko Yamase, Satoshi Iwasaki, Kazuya Matsunaga
  • Patent number: 11394123
    Abstract: A microstrip collinear array includes a bearing member, two first antenna assemblies, two second antenna assemblies, a first connecting line, and a second connecting line. The two first antenna assemblies are juxtaposed on the bearing member. Each of the first antenna assemblies includes several first planar antennas. The two second antenna assemblies are juxtaposed on the bearing member and are respectively and correspondingly located on an opposite side of the two first antenna assemblies. Each of the second antenna assemblies includes several second planar antennas. The first connecting line and the second connecting line are disposed on the bearing member. The second connecting line is located on an opposite side of the first connecting line and is electrically connected to the first connecting line. The first connecting line is electrically connected to the first antenna assemblies. The second connecting line is electrically connected to the second antenna assemblies.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: July 19, 2022
    Assignee: ACCTON TECHNOLOGY CORPORATION
    Inventors: I-Ru Liu, Yen-Lin Liao
  • Patent number: 11362438
    Abstract: In accordance with one or more embodiments, a guided wave launcher includes an array of antennas configured to generate near field signals. A controller is configured to: select, in response to a first control signal, at least one of a plurality of guided wave modes; and adjust beam steering parameters of the array of antennas according to the selected one(s) of the plurality of guided wave modes. The near field signals combine to induce a guided electromagnetic wave having the selected one(s) of the plurality of guided wave modes, wherein the first guided electromagnetic wave is guided by the transmission medium and propagates along the transmission medium without requiring an electrical return path.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: June 14, 2022
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Paul Shala Henry, Robert Bennett, Donald J. Barnickel, Harold Lee Rappaport, Giovanni Vannucci, Farhad Barzegar, Irwin Gerszberg, Thomas M. Willis, III
  • Patent number: 11211715
    Abstract: An antenna apparatus having directivity includes an antenna portion having a power feeding portion, a plate-like first antenna element, and a second antenna element connected to a side of the first antenna element through the power feeding portion, the second antenna element having a width smaller than that of the first antenna element; and a plate-like parasitic element disposed opposite to the antenna portion. The parasitic element has a length that is approximately one-half or more of a wavelength of an operating frequency. The second antenna element has a length that is shorter than one-fourth of the wavelength of the operating frequency. The antenna portion and the parasitic element have a distance capable of being connected electromagnetically to each other.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: December 28, 2021
    Inventor: Suguru Kojima
  • Patent number: 11069979
    Abstract: The invention discloses a vertically polarized omnidirectional antenna that is fed by a coaxial line including an inner conductor and an outer conductor. The vertically polarized omnidirectional antenna includes a main vibrator, an insulating medium, and a reference ground which are sequentially stacked and sequentially connected in a top-down manner. The main vibrator includes two vibrator pieces arranged in a crisscross, a straight line where an intersecting line between the vibrator pieces is located perpendicularly passes through the center of the reference ground, a base angle of each vibrator piece is set to be a corner cut, the inner conductor passes through the center of the reference ground and the insulating medium and is connected with the bottom of the main vibrator, and the outer conductor is connected with the reference ground.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: July 20, 2021
    Assignee: SHENZHEN ANTOP TECHNOLOGY LIMITED
    Inventor: Ruidian Yang
  • Patent number: 11043739
    Abstract: The invention relates to an antenna structure for transmitting and/or receiving wavelengths of metric frequency or decimetric frequency, characterised in that it comprises n collinear antennas, each antenna comprising a radiating portion comprising a first succession of i coaxial radiating elements about a first axis alternating with at least an additional succession of i radiating elements about another axis, each antenna being independently powered by a coaxial cable, each antenna comprising at least one lower quarter-wave trap and at least one upper quarter-wave trap, at least a first antenna comprising at least one hollow core being configured to receive a coaxial cable intended for powering of another antenna collinear with the first antenna, at least one intermediate quarter-wave trap being arranged between two consecutive collinear antennas around a coaxial cable, and a terminal element.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: June 22, 2021
    Assignee: TDF
    Inventor: Sébastien Palud
  • Patent number: 10950947
    Abstract: A dipole antenna includes a feed line, first and second microstrip probes, a first signal transmission line coupled to the feed line and to the first microstrip probe, and a second signal transmission line coupled to the feed line and to the second microstrip probe. The first signal transmission line includes a first transmission line including a first signal conductor and a first ground conductor and a second transmission line including a second signal conductor and a second ground conductor. The first signal conductor is electrically coupled to the feed line and to the second ground conductor and the second signal conductor is electrically coupled to the first microstrip probe and the first ground conductor.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: March 16, 2021
    Assignee: COMMSCOPE TECHNOLOGIES LLC
    Inventors: Changfu Chen, Hangsheng Wen, YueMin Li
  • Patent number: 10939305
    Abstract: A passive radio-frequency redirector device is provided that includes: a polarized antenna configured to produce a radiation pattern in an azimuthal plane; and a directional antenna configured to produce a directional radiation pattern that is substantially complementary to the radiation pattern of the polarized antenna, wherein the directional radiation pattern is substantially cross-polarized relative to the radiation pattern of the polarized antenna, and the polarized antenna and the directional antenna are passively coupled together.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: March 2, 2021
    Assignee: MOTOROLA SOLUTIONS, INC.
    Inventors: Antonio Faraone, Robert J. Sileo, Giorgi Bit-Babik
  • Patent number: 10916837
    Abstract: Provided are examples of circularly polarized omni-directional antennas and methods of fabrication. In one aspect, an antenna comprises a cylindrical cover comprising a cap and a base including an inner cylinder portion having an interior surface and an exterior surface. The base and the cap form a cavity interior to the inner cylinder portion. A cable extends through the base such that a first end of the cable is located within the cavity and a second end of the cable is located external to the cover. The cable is aligned with a center axis of the cover. A plurality of conducting elements is spaced equidistantly about a circumference around the center axis of the cover. Each element of the plurality of conducting elements is curved about the circumference around the center axis and includes an angle of tilt from horizontal.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: February 9, 2021
    Assignee: VIDEO AERIAL SYSTEMS, LLC
    Inventor: Charles A. Greve
  • Patent number: 10485611
    Abstract: Various catheters with expandable and contractible fluid pathways extending therethrough, and methods of use, are provided herein. In an exemplary embodiment, a catheter is provided with an elongate body having an electrode at the distal end thereof. One or more expandable members or wings can extend between the electrode and the distal end of the elongate body. The catheter can also include an actuator extending therethrough and coupled to the electrode such that movement of the actuator is effective to advance and retract the electrode, thereby moving the one or more expandable members between a collapsed configuration and an expanded configuration. The catheter can also include a fluid sealed lumen formed therein and configured to receive fluid and to deliver fluid to one or more pathways formed in the electrode. The actuator can extend through the fluid sealed lumen, however it can be fluidly separated from the lumen.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: November 26, 2019
    Assignee: Sirona Medical Technologies, Inc.
    Inventors: Ali Haghighi-Mood, Richard Jonathan Cohen
  • Patent number: 9985350
    Abstract: A multiband antenna for transmitting and receiving a range of frequencies substantially between 150 MHz and 6 GHz of the type having: a base plate-like conductive element connected to a connected-mass conductive surface; a first radiant element configured to transmit and receive in a frequency range substantially between 698 MHz and 6 GHz; a second radiant element connected—at the upper part—to said first radiant element and configured so as to collaborate with the first radiant element to transmit and receive in a frequency range substantially between 400 MHz and 500 MHz; a radiant unit configured to transmit and receive in the frequency range substantially between 216 MHz and 223 MHz and in the frequency range substantially between 159 MHz and 163 MHz; an electrical connector with an external device, mechanically and electrically connected to the vertex of the first radiant element.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: May 29, 2018
    Assignee: Polomarconi Telsa SPA
    Inventors: Massimo Nannetti, Alberto Panizza, Michele Picerno
  • Patent number: 9761944
    Abstract: A radiating system of a wireless device transmits and receives electromagnetic wave signals in a frequency region and comprises an external port, a radiating structure, and a radiofrequency system. The radiating structure includes: a ground plane layer with a connection point; a radiation booster with a connection point and being smaller than 1/30 of a free-space wavelength corresponding to a lowest frequency of the frequency region; and an internal port between the radiation booster connection point and the ground plane layer connection point. The radiofrequency system includes: a first port connected to the radiating structure's internal port; and a second port connected to the external port. An input impedance at radiating structure's disconnected internal port has a non-zero imaginary part across the frequency region. The radiofrequency system modifies impedance of the radiating structure to provide impedance matching to the radiating system within the frequency region at the external port.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: September 12, 2017
    Assignee: Fractus Antennas, S.L.
    Inventors: Jaume Anguera Pros, Aurora Andujar Linares, Carles Puente Baliarda, Josep Mumbru
  • Patent number: 9362616
    Abstract: A dipole antenna comprises a hollow dielectric whip, a coaxial center feed extending therethrough, and a pair of conductive dipole elements comprising an upper element and a lower element. The dipole antenna further comprises an upper element lead connecting the upper element to a first portion of the coaxial center feed at a feed point and a lower element lead connecting the lower element to a second portion of the coaxial center feed at the feed point. The dipole antenna further comprises a feed point strengthening means to mechanically strengthen the feed point against disconnection when the whip is impacted. Additionally, the dipole antenna may be a dual dipole antenna.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: June 7, 2016
    Assignee: R.A. Miller Industries, Inc.
    Inventor: Paul A. Bogdans
  • Patent number: 9301804
    Abstract: A system for generating microwave energy includes a microwave generator that generates first and second microwave signals, a transmission line and a dual antenna microwave device. The transmission line transmits the first and second microwave signals to the microwave device. The microwave device includes a first antenna proximal a second antenna and a dual-sided choke positioned therebetween. The first antenna receives the first microwave signal from the transmission line between a first conductor and a second conductor and the second antenna receives the second microwave signal between the second conductor and a third conductor. The dual-sided choke includes a first and a second antenna choke circuit. The first antenna choke circuit limits the propagation of electromagnetic fields generated by the first antenna toward the second antenna and the second antenna choke circuit limits the propagation of electromagnetic fields generated by the second antenna toward the first antenna.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: April 5, 2016
    Assignee: Covidien LP
    Inventor: Kenlyn S. Bonn
  • Patent number: 9276307
    Abstract: A radiating system of a wireless device transmits and receives electromagnetic wave signals in a frequency region and comprises an external port, a radiating structure, and a radiofrequency system. The radiating structure includes: a ground plane layer with a connection point; a radiation booster with a connection point and being smaller than 1/30 of a free-space wavelength corresponding to a lowest frequency of the frequency region; and an internal port between the radiation booster connection point and the ground plane layer connection point. The radiofrequency system includes: a first port connected to the radiating structure's internal port; and a second port connected to the external port. An input impedance at radiating structure's disconnected internal port has a non-zero imaginary part across the frequency region. The radiofrequency system modifies impedance of the radiating structure to provide impedance matching to the radiating system within the frequency region at the external port.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: March 1, 2016
    Assignee: Fractus Antennas, S.L.
    Inventors: Jaume Anguera Pros, Aurora Andujar Linares, Carles Puente Baliarda, Josep Mumbru
  • Patent number: 9209506
    Abstract: A resonant circuit includes a plurality of cables, each of which including: an outer conductor made of a conductive material in a cylindrical manner; an inner conductor, made of a conductive material in an elongated manner, and disposed inside of the outer conductor; and an insulator disposed between the outer conductor and the inner conductor. The plurality of cables is disposed in series in a circular manner. The inner conductor, provided in one of adjacently disposed cables among the plurality of cables, is conductively connected to the outer conductor of another of the adjacently disposed cable.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: December 8, 2015
    Assignee: Central Japan Railway Company
    Inventors: Junichi Kitano, Haruo Ikeda, Shunsaku Koga
  • Patent number: 9178282
    Abstract: A system for coupling teraherz (THz) radiation to a coaxial waveguide comprises an antenna that generates THz radiation having a mode that matches the mode of the waveguide. The antenna may comprise a pair of concentric electrodes, at least one of which may be affixed to or formed by one end of the waveguide. The radiation may have wavelengths between approximately 30 ?m and 3 mm. The waveguide may comprise an inner core and an outer wall defining an annular region. A terahertz sensor system may comprise a terahertz antenna comprising first and second concentric electrodes, means for generating a field across the trodes and means for triggering the emission of terahertz radiation, a first waveguide having first and second ends, said first end being coupled to said antenna so as to receive at least a portion of said terahertz radiation, and a sensor for detecting said terahertz radiation.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: November 3, 2015
    Assignee: William Marsh Rice University
    Inventors: Daniel M. Mittleman, Kanglin Wang
  • Patent number: 9130259
    Abstract: The invention refer to an antennaless wireless handset or portable device that may include a user interface module, a processing module, a memory module, a communication module, and a power management module. The communication module may include a radiating system capable of transmitting and receiving electromagnetic wave signals in a first frequency region. The radiating system may include a radiating structure comprising or consisting of at least one ground plane layer including a connection point, at least one radiation booster including a connection point, and an internal port wherein the internal port is defined between the connection point of the at least one radiation booster and the connection point of the at least one ground layer.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: September 8, 2015
    Assignee: Fractus, S.A.
    Inventors: Jaume Anguera, Aurora Andujar, Carles Puente, Josep Mumbru
  • Patent number: 9041616
    Abstract: Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: May 26, 2015
    Assignee: Covidien LP
    Inventors: Mani N. Prakash, Francesca Rossetto, Anthony C. Lee, Steven Kim, Ted Su, Jonathan L. Glassman
  • Patent number: 9007270
    Abstract: A compact dual-channel antenna operating at least in two frequency bands, comprises at least the following elements: a coaxial cable connected to a reference ground, an antenna element designed to operate in the high-frequency band, having a length Linf, a counter-skirt with a length roughly corresponding to Linf and arranged around said antenna element, said duly surrounded antenna element being placed between the ground plane and an antenna element designed to operate in the low-frequency band, the assembly having a length Lsup designed to operate in the low-frequency band and consisting of the antenna element and the counter-skirt, fed via the core of said coaxial surrounding a magnetic element to form a winding, said antenna element being fed via a braid of the sheath of said coaxial.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: April 14, 2015
    Assignee: Thales
    Inventor: Frédéric Ngo Bui Hung
  • Publication number: 20150048987
    Abstract: To provide a sleeve antenna that can be attached to a chassis while maintaining favorable antenna gain even when using a small circuit board, and a wireless communication device. The sleeve antenna includes: a coaxial feed line 12; a radiating portion 14 that has a predetermined length and results from removing an outer conductor 30 at a tip portion of the coaxial feed line 12; and a sleeve 10 that has a predetermined length and covers the coaxial feed line 12 from a proximal end of the radiating portion 14 toward a direction opposite to the radiating portion 14. At least one of the radiating portion 14 and the sleeve 10 has a bent portion 36 in at least a portion thereof.
    Type: Application
    Filed: March 13, 2013
    Publication date: February 19, 2015
    Applicant: Seiko Epson Corporation
    Inventor: Shunsuke Koyama
  • Patent number: 8947311
    Abstract: An antenna is realized by a simple mechanism without use of a dedicated antenna element. An antenna includes a first conductor 2b (2d) that has a first line length from a start point 4 to a folded point 3; and a second conductor 2b (2d) that has a second line length in a direction from the folded point 3 to the start point 4 and is electrically connected to the first conductor at the folded point 3. A first received signal with a first frequency is received with a first antenna length including both the first line length and the second line length. A second received signal with a second frequency is received with a second antenna length including only one of the first line length and the second line length.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: February 3, 2015
    Assignee: Sony Corporation
    Inventors: Yoshitaka Yoshino, Satoru Tsuboi, Tadashi Imai, Akira Ishizuka
  • Patent number: 8922445
    Abstract: A low-profile broadband multiple antenna, comprises: a dipole arranged in the top part of said antenna, said dipole comprising at least one first top antenna element connected to the core of a multi-axial cable comprising a core and n sheaths and the bottom individual element of which is connected to the first sheath adjacent to the core, a connection device positioned between a top element of a dipole and the bottom element of said dipole the top element is connected to the sheath of index (k?1) of the multi-axial cable after the assembly comprising the core and the sheaths of index (1 to k?1) has been wound in Q turns around a magnetic core and the bottom element of the dipole is connected to the sheath of index k, and said connection device comprises at least one single-wire winding of P turns on the same magnetic core linking said bottom element of said dipole to the sheath of index (k?1), at the point corresponding to the start of the winding in order to provide the broadband impedance matching and the p
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: December 30, 2014
    Assignee: Thales
    Inventor: Frédéric Ngo Bui Hung
  • Patent number: 8860620
    Abstract: An electromagnetic wave radiation coaxial cable and a communication system using the same. The electromagnetic wave radiation coaxial cable includes an inner conductor which is formed of a conductor and extends along a cable axis, an insulator covering the inner conductor, and an outer conductor spirally wound around the insulator in a single winding at a predetermined pitch to provide a gap from which a part of the insulator is exposed. Following formula is established: ? r - 1 < ? P < ? r + 1 when ? is a wavelength of a radio frequency signal to be transmitted or received, ?r is a relative dielectric constant of the insulator at the wavelength ?, and P is a winding pitch of the outer conductor along the direction of the cable axis.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: October 14, 2014
    Assignee: Hitachi Metals, Ltd.
    Inventor: Nobuaki Kitano
  • Patent number: 8832927
    Abstract: A method of manufacturing a surgical antenna includes bonding a trocar screw and a conductor together and overmolding the trocar screw with a puck material to form a puck assembly. A trocar is coupled to the trocar screw, which forms a distal radiating section, and a proximal antenna member is coupled to the puck assembly, which forms a proximal radiating section.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: September 16, 2014
    Assignee: Covidien LP
    Inventors: Ian Smith, Joseph D. Brannan
  • Patent number: 8803752
    Abstract: The omnidirectional antenna of the present invention comprises a dielectric core 20 of ceramic material which has a longitudinal hole 21 formed in the center; a strip line 30 which is bent to fit the circumference of the dielectric core 20 by a press-forming method and is covered over the upper outer circumference of the dielectric core; a lower cap 40 which is inserted over the bottom end of the dielectric core and has a hole formed at the center of the bottom; a feeder 50 which is passed through and inserted from down to up into the holes formed in the bottom cap and the dielectric core and the top end of which is connected with the strip line 30 on the upper surface of the dielectric core; and a strip line fixing means 60 for combining the lower cap and strip line to the dielectric core.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: August 12, 2014
    Inventor: Sung-Chul Lee
  • Patent number: 8791871
    Abstract: A dipole antenna includes a circuit board with a first side and a second side, at least one dipole disposed on the circuit board comprising an upper half and a lower half, a microstrip transmission line disposed on the circuit board coupled to at least one of the upper half and lower half of the at least one dipole, and a choke element disposed on the circuit board. The choke element and the lower half of the at least one dipole form an open slot trap with a high impedance point.
    Type: Grant
    Filed: December 31, 2011
    Date of Patent: July 29, 2014
    Assignee: R.A. Miller Industries, Inc.
    Inventor: John Jeremy Churchill Platt
  • Publication number: 20140176385
    Abstract: A cylindrically symmetric satellite antenna that provides directional and omnidirectional operating modes in a compact form factor. Feed points located at the top of the cylindrical structure provide increased platform isolation. Combining networks, disposed below or within the cylindrical structure, may be replaced with inexpensive baluns composed of coaxial line sections.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 26, 2014
    Applicant: AMI Research & Development, LLC
    Inventors: John T. Apostolos, William Mouyos, Brian Molen, Benjamin McMahon
  • Patent number: 8730084
    Abstract: A dual mode ground penetrating radar includes an enclosure which houses radar electronics. The dual mode ground penetrating radar includes an enclosure housing radar electronics. The dual mode ground penetrating radar further includes a first antenna feed having ferrite loading and extending outside of the enclosure. The dual mode ground penetrating radar further includes a second antenna feed spaced apart from the first antenna feed, the second antenna feed having ferrite loading and extending outside of the enclosure. An RF signal is provided in at least one of the first and second antenna feeds by the radar electronics.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: May 20, 2014
    Assignee: King Abdulaziz City For Science and Technology
    Inventors: Tariq A. Al-Khalefah, Khaled F. R. Almutairi, Arne V. Utsi
  • Patent number: 8681059
    Abstract: Antenna apparatuses and methods used in wireless communication devices are disclosed. The antenna includes a first portion configured to be coupled to a communication device. The antenna also includes a second portion configured to be coupled to the first portion. The first portion and second portion are coupled by overlapping the first portion and second portion so as to produce an omnidirectional radiation pattern and a vertical radiation pattern.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: March 25, 2014
    Assignee: Motorola Solutions, Inc.
    Inventors: Ovadia Grossman, Moshe Ben-Ayun, Maksim Berezin, Mark Rozental
  • Patent number: 8674894
    Abstract: An antenna core design. An antenna assembly is provided for use in tracking and locating equipment used to track and locate tools with underground drilling systems. The antenna assembly comprises an elongate core, a plurality of metal strips supported on an external surface of the core, an insulating material adapted to insulate each of the plurality of metal strips from the other metal strips and the core, and a wire disposed around the external surface of the strips. Alternatively the antenna assembly comprises an elongate core, an insulating material disposed around a perimeter of the core, and a wire disposed around the insulating material. The core has a plurality of slots cut from one end of the core so that the core defines a plurality of metal strips. A support ring is disposed on the internal surface of the core to support the metal strips.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: March 18, 2014
    Assignee: The Charles Machine Works, Inc.
    Inventors: David J. Harak, Sean A. McLain
  • Patent number: 8665168
    Abstract: A mutually inductive resonant antenna receiving radio waves of dual frequency bands improves a conventional antenna series-connected to a uniaxial wire. The mutually inductive resonant antenna receives FM or TMC radio waves and comprises a first antenna and a second antenna. The first antenna has a first conductive core wire and a first insulating layer. The first insulating layer encloses the first conductive core wire. The second antenna has a second mesh-like conductive layer and a second insulating layer. The second mesh-like conductive layer encloses a section of the first antenna such that another section of the first antenna is exposed. The second insulating layer encloses the second mesh-like conductive layer. A section of the second mesh-like conductive layer is extended from the first antenna and electrically connected to a signal transmission line. The second mesh-like conductive layer is not in contact with the first conductive core wire.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: March 4, 2014
    Assignee: Yi Chang Hsiang Industrial Co., Ltd.
    Inventor: Gary Wang
  • Patent number: 8643561
    Abstract: Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: February 4, 2014
    Assignee: Covidien LP
    Inventors: Mani N. Prakash, Francesca Rossetto, Anthony C. Lee, Steven Kim, Ted Su, Jonathan L. Glassman
  • Publication number: 20140015726
    Abstract: Disclosed herein are embodiments of a radiofrequency circuit assemblies and dielectrically-loaded antennas for use in the assembly, the assembly and the antenna being for operation at a frequency in excess of 200 MHz. The disclosed assemblies and antennas should not be construed as limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and subcombinations with one another.
    Type: Application
    Filed: July 11, 2013
    Publication date: January 16, 2014
    Inventor: Andrew Robert Christie
  • Publication number: 20130300623
    Abstract: A nichrome resistive element is used in a closed electrical circuit to form an antenna.
    Type: Application
    Filed: March 15, 2013
    Publication date: November 14, 2013
    Inventor: Carl Griffitts
  • Publication number: 20130234906
    Abstract: Methods and apparatuses for antennas in head worn devices are disclosed. In one example, a boom assembly includes an integrated sleeve dipole antenna. A first boom component is configured as a sleeve radiating element and a second boom component is configured as a radiating element.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 12, 2013
    Applicant: Plantronics, Inc.
    Inventor: Doug Rosener
  • Patent number: 8487827
    Abstract: An antenna device includes: a shielded cable having a first connection portion on one end side and a second connection portion on the other end side; and an antenna element which is connected to the second connection portion of the shielded cable, wherein the shielded cable includes an inner conductor, a first insulator, a first outer conductor, a second insulator, and a second outer conductor, which are coaxially disposed in this order from an inner side, and is covered at its outer circumference by an insulation sheath, the first connection portion of the shielded cable is formed such that the inner conductor is supplied with power and the first outer conductor is connected to a ground, and in the second connection portion of the shielded cable, the first outer conductor is connected to the antenna element, and the inner conductor is connected to the second outer conductor.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: July 16, 2013
    Assignee: Sony Corporation
    Inventors: Koichi Mukai, Yoshitaka Yoshino, Chisato Komori
  • Patent number: 8451185
    Abstract: A multi-feed dipole antenna and method. Provides a volumetrically efficient antenna with wide radiation pattern bandwidth and wide impedance bandwidth that are relatively independent. Driving the antenna at multiple locations provides for a half wavelength dipole antenna with a wider frequency range than any other known fat dipole of similar volume. The apparatus is constructed from brass or any other suitable metal without requiring dielectric loading and without requiring direct coupling on the outside of the tubes. The apparatus utilizes a parasitic center tube with two end tubes that are driven by a collinearly mounted metal rod that is driven from the midpoint. Insulators hold the parasitic tube to the end tubes. The parasitic tube allows for induced currents to flow on the surface of the tube which allow for operation of the dipole over a wide frequency range.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: May 28, 2013
    Assignee: Antennasys, Inc.
    Inventor: Spencer L. Webb
  • Patent number: 8391784
    Abstract: A communication device includes a communication circuit unit processing a high-frequency signal, a transmission path connected to the communication circuit, a ground, a coupling electrode supported so as to face the ground and to be separated by a height negligible with respect to a wavelength of the high-frequency signal, a resonating unit increasing a current flowing into the coupling electrode via the transmission path, and an extended section formed of a conductor disposed near a front of the coupling electrode with an angle ? formed relative to a direction of a microdipole being approximately 0 degree, the microdipole being formed of a line segment connecting a center of charges stored in the coupling electrode and a center of mirror-image charges stored in the ground, the conductor extended in a lateral direction approximately orthogonal to a propagating direction of an electric-field signal occurring from the front of the coupling electrode.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: March 5, 2013
    Assignee: Sony Corporation
    Inventor: Takanori Washiro
  • Patent number: 8390526
    Abstract: Antenna elements operable to radiate different patterns are provided. A particular apparatus includes a first antenna element having a plurality of radiating elements. Each of the radiating elements includes a first member having a first end and a second end. The first end is coupled to an antenna interface and the second end extends a length of the first member from the first end. Each of the radiating elements further includes a second member having a third end and a fourth end. The third end is electrically coupled to the first member at a point partway along the length of the first member. The fourth end extends away from the first member. When a first radiating element is radiating in the presence of a second radiating element, a null is generated in a radiation pattern of the first radiating element.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: March 5, 2013
    Assignee: The Boeing Company
    Inventors: John B. O'Connell, Bruce L. Blaser
  • Patent number: 8378913
    Abstract: A dual-band antenna unit, comprising: a first radiation unit; a second radiation unit; a first signal feed-in unit electrically connected to the first radiation unit; and a second signal feed-in unit, electrically connected to the second radiation unit; wherein the first radiation unit, the second radiation unit, the first signal feed-in unit and the second signal feed-in unit are disposed in the dual-band antenna unit. Therefore, the number of antennas can be reduced to achieve lower cost while remaining the signal transmission quality.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: February 19, 2013
    Assignee: Arcadyan Technology Corporation
    Inventors: Wen-Szu Tao, Sy-Been Wang
  • Publication number: 20120319914
    Abstract: An antenna that can be used in a wide band and can arbitrarily adjust the working frequency band to a higher or lower frequency band includes a resonant conductor tube located on the outside of a feeding section of an unbalanced feed member and covering the feeding section, a ground conductor tube located on the outside of a passive section of the unbalanced feed member and covering the passive section, and a connection conductor guide located between the conductor tubes and the unbalanced feed member. In the antenna, the conductor tubes and the unbalanced feed member are electrically fixed to the connection conductor guide via a fixing unit, and the feeding section of the unbalanced feed member has an exposed portion with a predetermined size, the exposed portion exposed from the resonant conductor tube outward in the length direction thereof.
    Type: Application
    Filed: March 11, 2011
    Publication date: December 20, 2012
    Inventor: Masao Sakuma
  • Publication number: 20120268336
    Abstract: An electromagnetic wave radiation coaxial cable and a communication system using the same. The electromagnetic wave radiation coaxial cable includes an inner conductor which is formed of a conductor and extends along a cable axis, an insulator covering the inner conductor, and an outer conductor spirally wound around the insulator in a single winding at a predetermined pitch to provide a gap from which a part of the insulator is exposed. Following formula is established: ? r - 1 < ? P < ? r + 1 when ? is a wavelength of a radio frequency signal to be transmitted or received, ?r is a relative dielectric constant of the insulator at the wavelength ?, and P is a winding pitch of the outer conductor along the direction of the cable axis.
    Type: Application
    Filed: March 27, 2012
    Publication date: October 25, 2012
    Applicant: Hitachi Cable, Ltd.
    Inventor: Nobuaki KITANO
  • Publication number: 20120249390
    Abstract: There is provided an antenna comprising: a ground conductor; and an antenna element portion for sending and receiving electromagnetic wave signals, the antenna element portion comprising: a coaxial cable including a center conductor and an outer conductor; a feeding point connected to a feeding system and disposed between the ground conductor and a first end of one of the center and outer conductors; a short-circuit portion electrically connecting the ground conductor and a first end of the other one of the center and outer conductors; and a conductor connection portion electrically connecting second ends of the center and outer conductors each other. In addition, an overall length of the coaxial cable is not more than ½ of a wavelength corresponding to the minimum series resonance frequency; and a distance between the center and outer conductors is not more than 1/100 of a wavelength corresponding to the minimum operation frequency.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 4, 2012
    Inventors: Yohei Shirakawa, Kazuhiro Fujimoto, Masamichi Kishi, Naoto Teraki, Yoshitake Ageishi
  • Patent number: 8259025
    Abstract: A multi-band antenna assembly that is operable to receive and/or transmit signals at one or more frequencies generally includes at least two radiating elements, a transmission line coupled to each of the at least two radiating elements, and a tunable match resonator coupled to the transmission line. The tunable match resonator is operable to vary input impedance of a signal received and/or transmitted by the antenna assembly by changing an electrical field within the tunable match resonator.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: September 4, 2012
    Assignee: Laird Technologies, Inc.
    Inventors: Imad M. Swais, Rafael Haro
  • Patent number: 8238824
    Abstract: A communication system includes the following elements: a transmitter including a transmission circuit unit configured to generate an RF signal for transmitting data and an electric-field-coupling antenna configured to transmit the RF signal as an electrostatic field; a receiver including an electric-field-coupling antenna and a reception circuit unit configured to receive and process the RF signal received by the electric-field-coupling antenna; and a surface-wave propagation medium configured to provide a surface-wave transmission line to transmit a surface wave emanating from the electric-field-coupling antenna of the transmitter with low propagation loss.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: August 7, 2012
    Assignee: Sony Corporation
    Inventor: Takanori Washiro
  • Publication number: 20120106770
    Abstract: One or more antennas within an earphone arrangement used in an electronic device includes a plurality of coaxial cables, a first antenna unit, a second antenna unit, and a third antenna unit. The coaxial cables carry radio frequency (RF) signals of different frequency bands. The first antenna unit, the second antenna unit, and the third antenna unit each include a radiating member. Each radiating member can receive and transmit RF signals of at least one frequency band, and the coaxial cables carry the RF signals to the device for processing.
    Type: Application
    Filed: September 6, 2011
    Publication date: May 3, 2012
    Applicant: Foxconn Communication Technology Corp.
    Inventors: CHIH-YANG TSAI, HAO-YING CHANG
  • Publication number: 20120004650
    Abstract: A microwave antenna assembly is disclosed. The antenna assembly includes an elongated member defining a longitudinal axis and having proximal and distal ends. The antenna assembly also includes an outer conductor and an inner conductor each disposed within the elongated member and extending along the longitudinal axis. A portion of the inner conductor is deployable relative to the outer conductor such that the antenna assembly may transition from a first configuration to a second configuration. The antenna assembly also includes an expandable sheath at least partially disposed about a distal portion of the inner conductor and defining at one or more lumens configured to couple to a supply of dielectric material used to regulate the expansion of the expandable sheath.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Inventors: Brian Shiu, Kenlyn S. Bonn, Mani N. Prakash, Tao Nguyen
  • Patent number: 8035570
    Abstract: Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: October 11, 2011
    Assignee: Vivant Medical, Inc.
    Inventors: Mani N. Prakash, Francesca Rossetto, Anthony C. Lee, Steven Kim, Ted Su, Jonathan L. Glassman
  • Patent number: 8023890
    Abstract: A communication system includes the following elements: a transmitter including a transmission circuit unit configured to generate an RF signal for transmitting data and an EFC antenna configured to transmit the RF signal as an electrostatic field or an induced electric field; a receiver including an EFC antenna and a reception circuit unit configured to receive and process the RF signal received by the EFC antenna; and an impedance snatching unit configured to make an impedance of the EFC antenna of the transmitter equal to an impedance of the EFC antenna of the receiver. The RF signal is transmitted by electric-field coupling between the EFC antennas, facing each other, of the transmitter and the receiver.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: September 20, 2011
    Assignee: Sony Corporation
    Inventor: Takanori Washiro