Doublet Type Patents (Class 343/792)
  • Patent number: 10096952
    Abstract: A cable assembly including a first connector, a second connector, and a cable is disclosed that routes power, and/or information between devices. The cable includes a first group of one or more conductors that are mechanically connected to the first connector and the second connector to route power and/or one or more wired information communications between the devices. The cable also includes a second group of one or more that is mechanically connected to the first connector to provide one or more wireless information communications between the first device and the second device or a third device which is not mechanically connected to the cable assembly.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: October 9, 2018
    Assignee: CSC Holdings, LLC
    Inventor: Kenneth Silver
  • Patent number: 10008778
    Abstract: An antenna array comprising: four dipole antennas configured to function together as a directional, near vertical incidence skywave (NVIS) antenna with reduced side lobes, wherein each dipole antenna comprises two conductive elements and a feed point disposed between the two conductive elements, wherein the conductive elements of each of the four dipole antennas are disposed in an x-y plane of an x-y-z mutually orthogonal axes coordinate system, and wherein the conductive elements are substantially parallel with the x-axis and the x-y plane is substantially parallel with a ground plane; and wherein the feed points of the four dipole antennas are positioned on the x-y plane at approximately (x, 0), (?x, 0), (0, y), and (0, ?y), and wherein the x-y plane is separated from the ground plane by a distance h that is less than or equal to 1/10 the wavelength (?) of an operating frequency.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: June 26, 2018
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Thomas O. Jones, III
  • Patent number: 9954278
    Abstract: A synthesized-beam transceiver system steers a beam of a two-dimensional antenna array by activating a first subset of antenna elements to orient the beam in a first direction and subsequently activating a second subset of the antenna elements to orient the beam in a different direction. The system also electrically connects antenna elements that are inactive, not in the first subset, or not in the second subset to a reference potential of the array.
    Type: Grant
    Filed: October 3, 2015
    Date of Patent: April 24, 2018
    Assignee: IMPINJ, INC.
    Inventors: Vincent Moretti, Omer Onen, Ronald A. Oliver
  • Patent number: 9859614
    Abstract: The present invention relates to an antenna system including at least two antenna modules operable for transmitting and/or receiving radiation in certain common frequency band. The at least two antenna modules are collinearly arranged along a common axis so as to provide low gain along the axis, and are spaced apart from one another along this axis by a distance of at least a few nominal wavelengths of the common frequency band. Each two locally adjacent antenna modules of the at least two antenna modules operate with substantially mutually orthogonal polarizations of radiation, thereby suppressing electromagnetic coupling between the antenna modules in the common frequency band.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: January 2, 2018
    Assignee: ELTA SYSTEMS LTD.
    Inventor: Benyamin Almog
  • Patent number: 9793612
    Abstract: A reduced profile leaky-wave antenna and methods for manufacture therefor can include an inner conductor and an outer conductor. The outer conductor can be arranged in a coaxial relationship around the inner conductor to define an annular waveguide. A helical aperture can be formed in the outer conductor, to establish a leaky-wave antenna configuration. The helical aperture can have a helical pitch, which can be chosen according to the desired physical length of the antenna. For monopole reduced profile leaky-wave antennas, a metallic disk can optionally be placed the distal end of the antenna. For dipole reduced profile leaky-wave antenna embodiments, a metallic disk can be place at both ends of the antenna. The devices and methods of the present invention have the added advantage of allowing for the same feed structure to be used for both monopole antennas and dipole antennas.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: October 17, 2017
    Assignee: The United States of America, as Represented by the Secretary of the Navy
    Inventor: Anirudha Siripuram
  • Patent number: 9774147
    Abstract: A cable assembly including a first connector, a second connector, and a cable is disclosed that routes power, and/or information between devices. The cable includes a first group of one or more conductors that are mechanically connected to the first connector and the second connector to route power and/or one or more wired information communications between the devices. The cable also includes a second group of one or more that is mechanically connected to the first connector to provide one or more wireless information communications between the first device and the second device or a third device which is not mechanically connected to the cable assembly.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: September 26, 2017
    Assignee: CSC Holdings, LLC
    Inventor: Kenneth Silver
  • Patent number: 9710576
    Abstract: An apparatus has an improved antenna pattern for a cross dipole antenna. Such antennas desirably have an omnidirectional antenna pattern. Conventional cross dipole antennas exhibit nulls in their antenna patterns, which can cause antennas to deviate from a standard or specification. Applicant recognized and confirmed that the connection of a coaxial cable to the antenna arms is a cause of the nulls in the antenna pattern, and has devised techniques disclosed herein to compensate or cancel the effects of the connection. In one embodiment, the arms of the cross dipole antenna that are coupled to a center conductor of the coaxial cable remain of conventional length, but the arms of the cross dipole antenna that are coupled to a shield of the coaxial cable are lengthened by a fraction of the radius of the outer diameter of the coaxial cable.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: July 18, 2017
    Assignee: VENTI GROUP, LLC
    Inventor: William Ernest Payne
  • Patent number: 9382788
    Abstract: A system for heating a hydrocarbon resource in a subterranean formation having a wellbore extending therein, the system including a radio frequency (RF) source, an RF antenna configured to be positioned within the wellbore, a transmission line coupling the RF source and the RF antenna, and a compound current choke surrounding the transmission line. The compound current choke includes a plurality of spaced apart, overlapping, electrically conductive sleeves. Each of the plurality of spaced apart, overlapping, electrically conductive sleeves may have a first open end and a second closed end coupled to the transmission line.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: July 5, 2016
    Assignee: HARRIS CORPORATION
    Inventor: Francis Eugene Parsche
  • Patent number: 9350076
    Abstract: An antenna system and related method are disclosed for an electrically small antenna of variable geometry capable of a harmonically pure resonant radiation pattern over a broadband coverage of frequency selection. One geometrical embodiment comprises a multiple loop antenna system is configured to radiate a switched signal via the multiple antenna elements to inhibit transmission of any of the harmonics of the signal. An additional geometrical embodiment comprises a cylindrical shell with one or more interior center conductors to overcome radiation resistance and radiate a signal pattern of desirable toroidal shape free from undesirable harmonics.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: May 24, 2016
    Assignee: Rockwell Collins, Inc.
    Inventor: David W. Cripe
  • Patent number: 9194221
    Abstract: The apparatus includes an RF antenna assembly to be positioned within a wellbore and coupled to an RF source. The RF antenna assembly includes a first tubular dipole element having opposing proximal and distal ends, an RF transmission line extending through the proximal end of the first tubular dipole element and including an inner conductor, an outer conductor, and a dielectric therebetween. The inner conductor extends outwardly beyond the distal end of the first tubular dipole element. The outer conductor is coupled to the distal end of the first tubular dipole element. The RF antenna assembly includes a second tubular dipole element having opposing proximal and distal ends, with the proximal end being adjacent the distal end of the first tubular dipole element and being coupled to the inner conductor, and a tubular balun.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: November 24, 2015
    Assignee: HARRIS CORPORATION
    Inventor: Francis Eugene Parsche
  • Patent number: 9178277
    Abstract: A synthesized-beam transceiver system steers a beam of a two-dimensional antenna array by activating a first subset of antenna elements to orient the beam in a first direction and subsequently activating a second subset of the antenna elements to orient the beam in a different direction. The system also electrically connects antenna elements that are inactive, not in the first subset, or not in the second subset to a reference potential of the array.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: November 3, 2015
    Assignee: Impinj, Inc.
    Inventors: Vincent Moretti, Omer Onen, Ronald A. Oliver
  • Patent number: 9160057
    Abstract: An unsymmetrical dipole antenna includes a grounding element, a radiating element, and a feed-in wire. The grounding element includes a first short side metal plane and a first long side metal plane. The radiating element includes a second short side metal plane and a second long side metal plane. The feed-in wire includes a metal wire, coupled to the second short side metal plane for transmitting a feed-in signal; an insulation layer, covering the metal wire; a metal weave, covering the insulation layer, having one terminal coupled to the first short side metal plane of the grounding element, and another terminal coupled to a system ground of the wireless communication device; and a protective layer, covering the metal weave. A size of the grounding element and a size of the radiating element are irrelative.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: October 13, 2015
    Assignee: Wistron NeWeb Corporation
    Inventors: I-Shan Chen, Jia-Fong Wu, Chia-Hong Lin, Cheng-Hsiung Hsu, Chao-Chun Lin
  • Patent number: 9083076
    Abstract: A dipole antenna assembly may include a first tubular dipole element and a coaxial antenna feed extending through a proximal end of the first tubular dipole element. The coaxial antenna feed may have an inner conductor, an outer conductor, and a dielectric therebetween. The inner conductor may extend outwardly beyond a distal end of the first tubular dipole element. The outer conductor may be coupled to the distal end of the first tubular dipole element. The dipole antenna assembly may further include a second tubular dipole element with a proximal end being adjacent the distal end of the first tubular dipole element, and being coupled to the inner conductor. The second tubular dipole element may include first and second tubular segments and an electrical conductor extending through the first and second tubular sections and being coupled thereto at both the proximal and distal ends.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: July 14, 2015
    Assignee: HARRIS CORPORATION
    Inventor: Francis E. Parsche
  • Patent number: 9035845
    Abstract: A nichrome resistive element is used in a closed electrical circuit to form an antenna.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 19, 2015
    Inventor: Carl Griffitts
  • Patent number: 8922445
    Abstract: A low-profile broadband multiple antenna, comprises: a dipole arranged in the top part of said antenna, said dipole comprising at least one first top antenna element connected to the core of a multi-axial cable comprising a core and n sheaths and the bottom individual element of which is connected to the first sheath adjacent to the core, a connection device positioned between a top element of a dipole and the bottom element of said dipole the top element is connected to the sheath of index (k?1) of the multi-axial cable after the assembly comprising the core and the sheaths of index (1 to k?1) has been wound in Q turns around a magnetic core and the bottom element of the dipole is connected to the sheath of index k, and said connection device comprises at least one single-wire winding of P turns on the same magnetic core linking said bottom element of said dipole to the sheath of index (k?1), at the point corresponding to the start of the winding in order to provide the broadband impedance matching and the p
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: December 30, 2014
    Assignee: Thales
    Inventor: Frédéric Ngo Bui Hung
  • Patent number: 8866691
    Abstract: A multimode antenna structure is provided for transmitting and receiving electromagnetic signals in a communications device. The communications device includes circuitry for processing signals communicated to and from the antenna structure. The antenna structure includes a plurality of antenna ports for coupling to the circuitry; a plurality of antenna elements, each operatively coupled to a different one of the antenna ports; and a plurality of connecting elements. The connecting elements each electrically connect neighboring antenna elements such that the antenna elements and the connecting elements are arranged about the periphery of the antenna structure and form a single radiating structure.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: October 21, 2014
    Assignee: Skycross, Inc.
    Inventors: Mark T. Montgomery, Mark W. Kishler, Li Chen
  • Patent number: 8860620
    Abstract: An electromagnetic wave radiation coaxial cable and a communication system using the same. The electromagnetic wave radiation coaxial cable includes an inner conductor which is formed of a conductor and extends along a cable axis, an insulator covering the inner conductor, and an outer conductor spirally wound around the insulator in a single winding at a predetermined pitch to provide a gap from which a part of the insulator is exposed. Following formula is established: ? r - 1 < ? P < ? r + 1 when ? is a wavelength of a radio frequency signal to be transmitted or received, ?r is a relative dielectric constant of the insulator at the wavelength ?, and P is a winding pitch of the outer conductor along the direction of the cable axis.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: October 14, 2014
    Assignee: Hitachi Metals, Ltd.
    Inventor: Nobuaki Kitano
  • Patent number: 8816925
    Abstract: A multi-band whip antenna having a 30 MHz to 2 GHz bandwidth and an L-band dipole has its coverage extended up to 6 GHz by eliminating nulls and reducing VSWR problems that are cured through the utilization of a sleeve over the feedpoint of the L-band antenna. Chokes in the form of sleeves are provided at either end of the L-band dipole to shorten the L-band antenna for preventing reverse polarity currents at the L-band antenna feedpoint, with the antenna further including the use of double shielded meanderlines to provide improved performance between 410-512 MHz and in which a capacitance sleeve is added at the bottom of the L-band antenna to effectively elongate the antenna below the L-band to permit operation below 700 MHz.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: August 26, 2014
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: John Apostolos, Judy Feng, William Mouyos
  • Patent number: 8791871
    Abstract: A dipole antenna includes a circuit board with a first side and a second side, at least one dipole disposed on the circuit board comprising an upper half and a lower half, a microstrip transmission line disposed on the circuit board coupled to at least one of the upper half and lower half of the at least one dipole, and a choke element disposed on the circuit board. The choke element and the lower half of the at least one dipole form an open slot trap with a high impedance point.
    Type: Grant
    Filed: December 31, 2011
    Date of Patent: July 29, 2014
    Assignee: R.A. Miller Industries, Inc.
    Inventor: John Jeremy Churchill Platt
  • Publication number: 20140159975
    Abstract: An compact manpack format antenna operating over a broad bandwidth. In one arrangement, the antenna is formed from a set of five hollow cylindrical conductive elements. Several cylinders provide, for example, a VHF/UHF radiator section and other cylinders form an L-band radiator section. A bottom leg of the L-band section operates as part of the VHF/UHF section via coupling between that lower L-band leg and the VHF/UHF section. This coupling arrangement reduces the required overall physical length of the antenna.
    Type: Application
    Filed: August 13, 2013
    Publication date: June 12, 2014
    Applicant: AMI Research & Development, LLC
    Inventors: John T. Apostolos, Brian Molen, Benjamin McMahon, William Mouyos
  • Patent number: 8665169
    Abstract: Provided is a small monopole antenna, which can generate a plurality of resonant frequencies, have a high antenna efficiency, and be easily installed. The antenna includes a first antenna element formed of a coaxial cable; a second antenna element sealing the first antenna element and sharing a feed point with the first antenna element; and a feeder cable for feeding electric power to the feed point. This antenna is applied as a small antenna.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: March 4, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Je-Hoon Yun, Soon-Young Eom, Joung-Myoun Kim, Yong-Hee Cho, Young-Kwon Hahm, Dae-Young Kim, Soon-Ik Jeon
  • Patent number: 8638270
    Abstract: An apparatus has an improved antenna pattern for a cross dipole antenna. Such antennas desirably have an omnidirectional antenna pattern. Conventional cross dipole antennas exhibit nulls in their antenna patterns, which can cause antennas to deviate from a standard or specification. Applicant recognized and confirmed that the connection of a coaxial cable to the antenna arms is a cause of the nulls in the antenna pattern, and has devised techniques disclosed herein to compensate or cancel the effects of the connection. In one embodiment, the arms of the cross dipole antenna that are coupled to a center conductor of the coaxial cable remain of conventional length, but the arms of the cross dipole antenna that are coupled to a shield of the coaxial cable are lengthened by a fraction of the radius of the outer diameter of the coaxial cable.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: January 28, 2014
    Assignee: Venti Group, LLC
    Inventor: William Ernest Payne
  • Patent number: 8593363
    Abstract: An end-fed sleeve dipole is provided herein with improved impedance match and increased bandwidth by incorporating a ¾-wavelength transformer in the antenna design. The ¾-wavelength transformer is compatible with a number of different choking schemes, including but not limited to, a single ¼-wave choke sleeve, a single ¼-wave choke sleeve with additional ferrite beads, and two or more ¼-wave choke sleeves with or without ferrite beads. In some embodiments, one or more shunt resonators may be used to provide additional impedance compensation.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: November 26, 2013
    Assignee: TDK Corporation
    Inventors: James McLean, Kunio Yata, Robert Sutton, Hidetsugu Sakou, Nobutaka Misawa
  • Publication number: 20130300623
    Abstract: A nichrome resistive element is used in a closed electrical circuit to form an antenna.
    Type: Application
    Filed: March 15, 2013
    Publication date: November 14, 2013
    Inventor: Carl Griffitts
  • Patent number: 8502748
    Abstract: A three-dimensional dual-band antenna including a first radiation portion, a second radiation portion, a connection portion, an impedance matching portion and a feeding portion is provided. The second radiation portion is located under the radiation portion and parallel with the first radiation portion. The connection portion is connected to the first side of the first radiation portion and extended downward vertically, for connecting the first radiation portion and the second radiation portion. The impedance matching portion is connected to a second side of the first radiation portion and extended downward vertically. The first side and the second side are opposite. The feeding portion is connected to the second side and extended downward vertically. The feeding portion receives a feeding signal. The first and the second radiation portion are operated at the first and the second bandwidth respectively, wherein the second bandwidth is in higher frequency than the first bandwidth.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: August 6, 2013
    Assignee: Arcadyan Technology Corporation
    Inventors: Mao-Tse Liang, Shih-Chieh Cheng, Kuo-Chang Lo
  • Patent number: 8462069
    Abstract: An accessory system (202, 402, 502) for a portable radio transceiver (200) includes an accessory device (206) which includes a speaker and/or a microphone disposed external of the portable radio transceiver. A cable (204) containing two or more conductors is provided for operatively connecting the accessory device to the portable radio transceiver. At least one antenna (210, 212) for the portable radio transceiver is integrated within the cable. When the accessory system is used with a multi-band portable radio transceiver, two or more antennas can be included in the cable, each optimized for operation on a particular RF frequency band.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: June 11, 2013
    Assignee: Harris Corporation
    Inventors: Mark A. Tesh, Brian D. Justin, Jr.
  • Patent number: 8462068
    Abstract: Disclosed is a log periodic antenna and a manufacturing method thereof. In the log periodic antenna, antenna elements are attached to an antenna body to thereby simplify a structure of the antenna, the antenna can be manufactured in various designs without restriction to the configuration of the antenna, and the number of contacting points between the antenna element and a feeder is minimized to thereby simplify the manufacturing process. By the antenna, it is possible to produce the log periodic antenna of the simple structure and of various designs without the restriction to the antenna configuration by attaching the signal pattern and ground pattern to the pattern receiving surface.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: June 11, 2013
    Assignees: Menix Co., Ltd., Kim, Keyng Hun
    Inventors: Keyng Hun Kim, Seung Kyo Park, Chan Kuk Kim
  • Patent number: 8451185
    Abstract: A multi-feed dipole antenna and method. Provides a volumetrically efficient antenna with wide radiation pattern bandwidth and wide impedance bandwidth that are relatively independent. Driving the antenna at multiple locations provides for a half wavelength dipole antenna with a wider frequency range than any other known fat dipole of similar volume. The apparatus is constructed from brass or any other suitable metal without requiring dielectric loading and without requiring direct coupling on the outside of the tubes. The apparatus utilizes a parasitic center tube with two end tubes that are driven by a collinearly mounted metal rod that is driven from the midpoint. Insulators hold the parasitic tube to the end tubes. The parasitic tube allows for induced currents to flow on the surface of the tube which allow for operation of the dipole over a wide frequency range.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: May 28, 2013
    Assignee: Antennasys, Inc.
    Inventor: Spencer L. Webb
  • Patent number: 8441406
    Abstract: An apparatus has an improved antenna pattern for a cross dipole antenna. Such antennas desirably have an omnidirectional antenna pattern. Conventional cross dipole antennas exhibit nulls in their antenna patterns, which can cause antennas to deviate from a standard or specification. Applicant recognized and confirmed that the connection of a coaxial cable to the antenna arms is a cause of the nulls in the antenna pattern, and has devised techniques disclosed herein to compensate or cancel the effects of the connection. In one embodiment, the arms of the cross dipole antenna that are coupled to a center conductor of the coaxial cable remain of conventional length, but the arms of the cross dipole antenna that are coupled to a shield of the coaxial cable are lengthened by a fraction of the radius of the outer diameter of the coaxial cable.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 14, 2013
    Assignee: Venti Group, LLC
    Inventor: William Ernest Payne
  • Patent number: 8390526
    Abstract: Antenna elements operable to radiate different patterns are provided. A particular apparatus includes a first antenna element having a plurality of radiating elements. Each of the radiating elements includes a first member having a first end and a second end. The first end is coupled to an antenna interface and the second end extends a length of the first member from the first end. Each of the radiating elements further includes a second member having a third end and a fourth end. The third end is electrically coupled to the first member at a point partway along the length of the first member. The fourth end extends away from the first member. When a first radiating element is radiating in the presence of a second radiating element, a null is generated in a radiation pattern of the first radiating element.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: March 5, 2013
    Assignee: The Boeing Company
    Inventors: John B. O'Connell, Bruce L. Blaser
  • Publication number: 20130009835
    Abstract: The present invention relates to a small cobra antenna that has a high performance as an antenna gain, and minimizes the effect of the length of the coaxial wire. An antenna element and a coaxial wire are connected to a junction that is a feeding point. The antenna element has a length corresponding to the frequency of a broadcast wave to be received. Further, a ferrite core is positioned at a location a length identical to the length of the antenna element away from the junction. The coaxial wire is wound around the ferrite core about once to three times. A high frequency interrupting part for interrupting the high-frequency current from the coaxial wire is provided at the front side of a connecter of a receiver to which the other end of the coaxial wire is connected.
    Type: Application
    Filed: March 14, 2011
    Publication date: January 10, 2013
    Applicant: Sony Corporation
    Inventors: Yoshitaka Yoshino, Satoru Tsuboi
  • Patent number: 8344960
    Abstract: A compact antenna for transmitting or receiving a radio frequency signal includes a metal wire extending from a first location to a second location, an insulation layer extending from the first location to a third location, for covering a portion of the metal wire from the first location to the third location, a metal weave extending from the first location to a fourth location, for covering a portion of the insulation layer from the first location to the fourth location, and a grounding metal tube extending from a fifth location to the third location, for covering a portion of the metal weave from the fifth location to the fourth location, and covering a portion of the insulation layer from the fourth location to the third location.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: January 1, 2013
    Assignee: Wistron Corporation
    Inventor: Chen-Yu Chou
  • Patent number: 8325101
    Abstract: An apparatus has an improved antenna pattern for a cross dipole antenna. Such antennas desirably have an omnidirectional antenna pattern. Conventional cross dipole antennas exhibit nulls in their antenna patterns, which can cause antennas to deviate from a standard or specification. Applicant recognized and confirmed that the connection of a coaxial cable to the antenna arms is a cause of the nulls in the antenna pattern, and has devised techniques disclosed herein to compensate or cancel the effects of the connection. In one embodiment, the arms of the cross dipole antenna that are coupled to a center conductor of the coaxial cable remain of conventional length, but the arms of the cross dipole antenna that are coupled to a shield of the coaxial cable are lengthened by a fraction of the radius of the outer diameter of the coaxial cable.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: December 4, 2012
    Assignee: Venti Group, LLC
    Inventor: William Ernest Payne
  • Patent number: 8259025
    Abstract: A multi-band antenna assembly that is operable to receive and/or transmit signals at one or more frequencies generally includes at least two radiating elements, a transmission line coupled to each of the at least two radiating elements, and a tunable match resonator coupled to the transmission line. The tunable match resonator is operable to vary input impedance of a signal received and/or transmitted by the antenna assembly by changing an electrical field within the tunable match resonator.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: September 4, 2012
    Assignee: Laird Technologies, Inc.
    Inventors: Imad M. Swais, Rafael Haro
  • Publication number: 20120194401
    Abstract: An end-fed sleeve dipole is provided herein with improved impedance match and increased bandwidth by incorporating a ¾-wavelength transformer in the antenna design. The ¾-wavelength transformer is compatible with a number of different choking schemes, including but not limited to, a single ¼-wave choke sleeve, a single ¼-wave choke sleeve with additional ferrite beads, and two or more ¼-wave choke sleeves with or without ferrite beads. In some embodiments, one or more shunt resonators may be used to provide additional impedance compensation.
    Type: Application
    Filed: January 27, 2011
    Publication date: August 2, 2012
    Applicant: TDK CORPORATION
    Inventors: James McLean, Kunio Yata, Robert Sutton, Hidetsugu Sakou, Nobutaka Misawa
  • Patent number: 8228257
    Abstract: A broadband antenna system is disclosed. The antenna system relates to a modified conical structure, wherein the feed region of the cone is cut away to form a hollow “coneless” cylinder, and the distribution of one or more tapered feed points around the circumference of the cylinder allows a plurality of feed lines, cables, piping, or other structures to be run through the center of the antenna without interfering with the performance of the antenna system. The invention further relates to a stacked broadband antenna system wherein additional coneless elements, as well as other types of antennas or devices, may be stacked collinearly on, or disposed coaxially to, the cylindrical antenna structure, and fed, powered or operated via the plurality of feed lines, cables, piping or other structures. The overall system may thus provide a wide range of transmitting, receiving, sensing and other capabilities.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: July 24, 2012
    Assignee: FIRST RF Corporation
    Inventor: Farzin Lalezari
  • Publication number: 20120182196
    Abstract: A low-profile broadband multiple antenna, comprises: a dipole arranged in the top part of said antenna, said dipole comprising at least one first top antenna element connected to the core of a multi-axial cable comprising a core and n sheaths and the bottom individual element of which is connected to the first sheath adjacent to the core, a connection device positioned between a top element of a dipole and the bottom element of said dipole the top element is connected to the sheath of index (k?1) of the multi-axial cable after the assembly comprising the core and the sheaths of index (1 to k?1) has been wound in Q turns around a magnetic core and the bottom element of the dipole is connected to the sheath of index k, and said connection device comprises at least one single-wire winding of P turns on the same magnetic core linking said bottom element of said dipole to the sheath of index (k?1), at the point corresponding to the start of the winding in order to provide the broadband impedance matching and the p
    Type: Application
    Filed: February 23, 2010
    Publication date: July 19, 2012
    Applicant: THALES
    Inventor: Frédéric Ngo Bui Hung
  • Publication number: 20120154236
    Abstract: A multi-band whip antenna having a 30 MHz to 2 GHz bandwidth and an L-band dipole has its coverage extended up to 6 GHz by eliminating nulls and reducing VSWR problems that are cured through the utilization of a sleeve over the feedpoint of the L-band antenna. Chokes in the form of sleeves are provided at either end of the L-band dipole to shorten the L-band antenna for preventing reverse polarity currents at the L-band antenna feedpoint, with the antenna further including the use of double shielded meanderlines to provide improved performance between 410-512 MHz and in which a capacitance sleeve is added at the bottom of the L-band antenna to effectively elongate the antenna below the L-band to permit operation below 700 MHz.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 21, 2012
    Inventors: John Apostolos, Judy Feng, William Mouyos
  • Patent number: 8164534
    Abstract: A multi-band antenna comprising a conductive structure and a plurality of current probes coupled around the conductive structure is disclosed. An existing antenna capable of generating H fields having a first signal line is converted into a multi-signal line antenna with increased frequency capabilities, by mounting a first current probe having a designated frequency range about a periphery of the existing antenna; coupling a second signal line to the first current probe; and performing at least one of transmitting and receiving via at least one of the first and second signal lines, wherein the mounting of the first current probe to the existing antenna improves a voltage standing wave ratio (VSWR) of the existing antenna and the second signal line operates as an independent signal line for signal reception/transmission within the designated frequency range.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: April 24, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Daniel W. S. Tam
  • Patent number: 8081130
    Abstract: A shortened multi-band antenna includes in-line dipoles, selected elements of which having shielded meanderline chokes to be able to switch from an extended dipole at the lower VHF frequencies to a shortened dipole for the UHF band. Additionally, the staggered asymmetric meanderline configuration permits overall size reduction, whereas antenna construction includes an intermediate fiberglass layer over which conductive foil is placed for tuning and for parasitic radiator purposes to improve the gain of the UHF dipole in the upper regions of the band at 450 megahertz. Additionally, at the low end of the 30 megahertz band a sleeve is positioned between the base of the lowest dipole element and ground, with the sleeve provided with two parallel RLC circuits tuned to different bands to improve VSWR at the low end of the VHF band and to eliminate unwanted nulls.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: December 20, 2011
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: John T. Apostolos, Judy Feng, William Mouyos
  • Patent number: 8054236
    Abstract: A lossless broadband dipole antenna of length L having three collinear parts including a central part and two external parts. The parts are separated by slits, with a first feeding point for the antenna being located at a first end of one of the external parts nearest the slits, and a second feeding point being located at a second end of the other external part nearest the slits. The two feeding points of the antenna at the slits are arranged at a distance d from each other along the length L of the antenna, d/L being chosen such that d L = 0.37 ± 0.04 .
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: November 8, 2011
    Assignee: Totalfösvarets Forskningsinstitut
    Inventor: Torleif Martin
  • Publication number: 20100283699
    Abstract: A shortened multi-band antenna includes in-line dipoles, selected elements of which having shielded meanderline chokes to be able to switch from an extended dipole at the lower VHF frequencies to a shortened dipole for the UHF band. Additionally, the staggered asymmetric meanderline configuration permits overall size reduction, whereas antenna construction includes an intermediate fiberglass layer over which conductive foil is placed for tuning and for parasitic radiator purposes to improve the gain of the UHF dipole in the upper regions of the band at 450 megahertz. Additionally, at the low end of the 30 megahertz band a sleeve is positioned between the base of the lowest dipole element and ground, with the sleeve provided with two parallel RLC circuits tuned to different bands to improve VSWR at the low end of the VHF band and to eliminate unwanted nulls.
    Type: Application
    Filed: May 6, 2009
    Publication date: November 11, 2010
    Applicant: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: John T. APOSTOLOS, Judy FENG, William MOUYOS
  • Publication number: 20100220026
    Abstract: The present invention relates to a broadband lossless dipole antenna which is supplied at two supply points (M1, M2, S1, S2) which are symmetrically positioned along the length L of the antenna and at such a distance from each other that d L = 0 , 37 ± 0 , 04.
    Type: Application
    Filed: May 18, 2006
    Publication date: September 2, 2010
    Inventor: Torleif Martin
  • Patent number: 7755553
    Abstract: Antenna assembly 100 to be worn by a user includes a low-band dipole antenna (310) and at least one high band dipole antenna (312, 612). The high-band dipole antenna is comprised of a high-band dipole feed (102, 602) interposed at a location along a length of a low-band dipole element (105, 110). The high-band dipole feed divides the first low-band dipole element into a first high-band dipole element (128) and a second high-band dipole element (130). One of the high-band dipole elements (130) is formed as a flexible electrically conductive sleeve. An RF control device (308) is provided for selectively directing RF energy in a high-band to the high-band dipole feed (102), and for selectively directing RF energy in a low-band to the low-band dipole feed (202). A transmission line (113) extends from the RF control device (308) to the high-band dipole feed (102).
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: July 13, 2010
    Assignee: Harris Corporation
    Inventors: Malcolm Packer, Pablo Diez
  • Patent number: 7692597
    Abstract: A multi-feed dipole antenna and method. Provides a volumetrically efficient antenna with wide radiation pattern bandwidth and wide impedance bandwidth that are relatively independent. Driving the antenna at multiple locations provides for a half wavelength dipole antenna with a wider frequency range than any other known fat dipole of similar volume. The apparatus is constructed from brass or any other suitable metal without requiring dielectric loading and without requiring direct coupling on the outside of the tubes. The apparatus utilizes a parasitic center tube with two end tubes that are driven by a collinearly mounted metal rod that is driven from the midpoint. Insulators hold the parasitic tube to the end tubes. The parasitic tube allows for induced currents to flow on the surface of the tube which allow for operation of the dipole over a wide frequency range.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: April 6, 2010
    Assignee: Antennasys, Inc.
    Inventor: Spencer L. Webb
  • Publication number: 20100045559
    Abstract: A microwave antenna assembly is disclosed. The microwave antenna assembly includes a feedline having an inner conductor, an outer conductor and an inner insulator disposed therebetween and a radiating portion including a dipole antenna having an operative length and an inductor. The inductor is adapted to adjust the operative length of the dipole antenna based on the frequency of the microwave energy supplied to the dipole antenna.
    Type: Application
    Filed: August 25, 2008
    Publication date: February 25, 2010
    Inventor: Francesca Rossetto
  • Patent number: 7573432
    Abstract: In one example, an antenna is disclosed comprising a first, outer conductor, at least one inner conductor within the first outer conductor, and a second outer conductor surrounding the first outer conductor. The second outer conductor may define a plurality of holes therethrough. The at least one inner conductor may comprise a plurality of inner conductors. At least two of the plurality of inner conductors may be connected to each other in series, across a capacitor. At least two of the plurality of inner conductors may be connected to each other in parallel, across a capacitor. The at least one inner conductor may be sufficiently surrounded by the first outer conductor to shield the inner conductor from receiving a radiofrequency signal.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: August 11, 2009
    Assignee: Fonar Corporation
    Inventors: Gregory Eydelman, Raymond Damadian, Anthony Giambalvo
  • Patent number: 7548205
    Abstract: In one embodiment, wafer-scale antenna module is provided that includes: a substrate having a first surface and an opposing second surface; a plurality of conductive contact regions extending from the first surface into the substrate towards the second surface; active circuitry formed in the substrate adjacent the second surface, the active circuitry electrically coupled to the conductive contact regions; an insulating layer adjacent the first surface, the insulating layer forming a plurality of vias arranged corresponding to the plurality of conductive contact regions, each via forming an opening at the corresponding conductive contact region; and a plurality of antennas formed on the insulating layer corresponding to the plurality of vias; wherein each via contains an electrical conductor to electrically couple the corresponding contact region to the antenna corresponding to the via, whereby a resulting separation between the driving circuitry and the antennas aids an electrical isolation of the driving cir
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: June 16, 2009
    Inventor: Farrokh Mohamadi
  • Patent number: 7538739
    Abstract: A flat antenna includes a substrate, a first antenna module having a first grounding unit, a first radiating unit, a first feeding unit and a second radiating unit, and a second antenna module having a second grounding unit, a third radiating unit, a second feeding unit and a fourth radiating unit. The second antenna module is disposed abreast with the first antenna module. The first and the second grounding units, and the first and the third radiating units are disposed on a first surface of the substrate. The first and the second feeding units, and the second and the fourth radiating units are disposed on a second surface of the substrate. The first, the second, the third and the fourth radiating units, which have a first, a second, a third and a forth openings respectively, are electrically connected with the first grounding unit, the first feeding unit, the second grounding unit and the second feeding unit.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: May 26, 2009
    Assignee: Arcadyan Technology Corporation
    Inventor: Wen-Szu Tao
  • Patent number: RE47024
    Abstract: The apparatus includes an RF antenna assembly to be positioned within a wellbore and coupled to an RF source. The RF antenna assembly includes a first tubular dipole element having opposing proximal and distal ends, an RF transmission line extending through the proximal end of the first tubular dipole element and including an inner conductor, an outer conductor, and a dielectric therebetween. The inner conductor extends outwardly beyond the distal end of the first tubular dipole element. The outer conductor is coupled to the distal end of the first tubular dipole element. The RF antenna assembly includes a second tubular dipole element having opposing proximal and distal ends, with the proximal end being adjacent the distal end of the first tubular dipole element and being coupled to the inner conductor, and a tubular balun.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: September 4, 2018
    Assignee: HARRIS CORPORATION
    Inventor: Francis Eugene Parsche