Impedance Matching Network Patents (Class 343/822)
  • Patent number: 11949168
    Abstract: Aspects of the subject disclosure may include, for example, a motorized drive assembly that includes a motor and a drive assembly, where the drive assembly has an axle configured to be disposed through a rotatable substrate of a polarization shifter for a dual-polarized radiating element, the axle being further configured to fasten, at a first end of the axle, to a support structure of the polarization shifter, wherein, when the motorized drive assembly is assembled to the polarization shifter, the motor is controllable to impart rotational forces, via movement of the axle, to the polarization shifter to effect polarization adjusting for the dual-polarized radiating element. Other embodiments are disclosed.
    Type: Grant
    Filed: April 20, 2023
    Date of Patent: April 2, 2024
    Assignee: ISCO International, LLC
    Inventors: Amr Abdelmonem, Anthony Teillet, Richard Loy Smith, Jr., David E. Urbasic, Richard David Peacock, Andre F. A Fournier, Guenadi Miliavski
  • Patent number: 11936116
    Abstract: The present disclosure includes, in a dual polarized omni-directional antenna and a base station including the same, a plurality of radiating elements disposed to be spaced apart in one direction by the dual polarized omni-directional antenna, and a feed line for providing a feed signal to the plurality of radiating elements, and the plurality of radiating elements include a first radiator for generating one polarization of dual polarization, and a second radiator for generating the other polarization of the dual polarization, respectively, the first radiator is prepared on a first surface, and the second radiator is prepared on a second surface, and a main lobe direction of the first radiator and a main lobe direction of the second radiator are different directions from each other.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: March 19, 2024
    Assignee: KMW INC.
    Inventors: Duk Yong Kim, Young Chan Moon, In Ho Kim, Oh Seog Choi
  • Patent number: 11923625
    Abstract: A patch antenna includes: a substrate; a first radiator disposed on the substrate and having a first shape; a second radiator disposed on the substrate while being spaced a predetermined distance apart from the first radiator, and having a second shape; and a power feeder which supplies a power feed signal to the first radiator, wherein the first radiator includes a first outer edge portion straightly formed in the horizontal direction and second outer edge portions vertically formed from both ends of the first outer edge portion.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: March 5, 2024
    Assignee: ATCODI CO., LTD
    Inventor: Jeong Pyo Kim
  • Patent number: 11923623
    Abstract: A patch antenna structure is disclosed. The patch antenna structure includes a radome; a metal substrate disposed on one side of the radome and kept at a distance from the radome, a side wall of the radome facing to the metal substrate connecting with a feeding patch, or a side wall of the metal substrate facing to the radome connecting with a feeding patch; an antenna radiating patch attached to a side wall of the radome facing to the metal substrate, wherein the antenna radiating patch is kept at a certain distance from the metal substrate to maintain the radio frequency characteristics of the patch antenna.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: March 5, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Lukui Jin, Lei Cai, Bingjian Niu
  • Patent number: 11901604
    Abstract: An antenna for facilitating remote reading of utility meters is disclosed. The antenna includes a metal rod and a printed circuit board (PCB), both enclosed by an envelope that includes a plastic body and a plastic cap. The plastic body includes a channel for receiving the metal rod. The plastic cap is for covering the plastic body. The PCB includes a dielectric layer located between a first and second metal layers. Secured to the PCB, the metal rod is electrically connected to the second metal layer of the PCB, but not the first metal layer of the PCB.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: February 13, 2024
    Inventor: Lawrence Ragan
  • Patent number: 11862879
    Abstract: Antenna elements are described that may include a radiator, a feeding portion, a first impedance transformer, a balun, and a second impedance transformer. The first impedance transformer, balun, and second impedance transformer may be disposed above a ground plane of an antenna array to reduce a bulk of the array. The array can also include a dielectric top layer for loading apertures of the antenna array. The antenna elements can also include anomaly suppressors can be provided to cancel common-mode resonances from the radiators.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: January 2, 2024
    Assignee: SI2 Technologies, Inc.
    Inventor: Anatoliy Boryssenko
  • Patent number: 11843173
    Abstract: An antenna module and a wireless transceiver device are provided. The wireless transceiver device includes an antenna module. The antenna module includes a circuit board and at least one antenna array. The at least one antenna array defines a midline. The at least one antenna array includes a plurality of antenna elements and a signal feeding line. Each antenna element includes a feeding branch and a radiating portion. The radiating portion is coupling to the feeding branch, and the radiating portion is exposed on the upper surface of the circuit board. The signal feeding line is arranged in the circuit board and is perpendicular to the midline, and the signal feeding line is coupling to the feeding branch. The radiating portion defines an extension line along its extension direction. There is an included angle between the extension line and the midline.
    Type: Grant
    Filed: October 20, 2021
    Date of Patent: December 12, 2023
    Assignee: WISTRON NEWEB CORPORATION
    Inventors: Chih-Hsiang Liu, Tsun-Che Huang, Wei-Tung Yang
  • Patent number: 11757188
    Abstract: An apparatus includes a radio frequency (RF) circuit to transmit or receive RF signals. The apparatus further includes a loop antenna to transmit or receive the RF signals. The apparatus further includes an impedance matching circuit coupled to the RF circuit and to the loop antenna. The impedance matching circuit includes lumped reactive components.
    Type: Grant
    Filed: March 25, 2022
    Date of Patent: September 12, 2023
    Assignee: Silicon Laboratories Inc.
    Inventors: Attila Zolomy, Pasi Rahikkala, Thomas E. Voor
  • Patent number: 11705617
    Abstract: In some embodiments, a radio frequency identification (RFID) tag system includes a first strap mounting pad of an RFID antenna component, and a second strap mounting pad of the RFID antenna component, the second strap mounting pad being electrically coupled to the first RFID strap mounting pad. At least one of the first strap mounting pad and the second strap mounting pad may extend diagonally with respect to a wide edge direction of the antenna component, thus making the RFID antenna component configured to receive both a strap that is parallel to a wide edge direction of the antenna component and a strap that is perpendicular to a wide edge direction of the antenna component.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: July 18, 2023
    Assignee: Avery Dennison Retail Information Services, LLC
    Inventor: Ian J. Forster
  • Patent number: 11695221
    Abstract: The disclosure concerns an antenna assembly having a substrate with an antenna radiating element and a ground conductor disposed on the substrate, the ground conductor further characterized by a plurality of ground resonators, wherein a length associated with each of the ground resonators increases as the ground resonators are distanced from the antenna radiating element. Additionally, a coaxial cable is routed around the antenna assembly for configuring the coaxial cable as an additional ground resonator associated with the antenna assembly. The resulting antenna provides wide band performance between 700 MHz and 2700 MHz with improved efficiency compared with conventional antennas.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: July 4, 2023
    Assignee: TAOGLAS GROUP HOLDINGS LIMITED
    Inventor: Jason Philip Dorsey
  • Patent number: 11695391
    Abstract: According to one embodiment, in a biquad filter, an output terminal of a first integrator is connected to an input terminal in a negative pole side of a second integrator, an output terminal of the first integrator is connected to a first input terminal in a negative pole side of an adder through the inversion amplifier, an output terminal of the second integrator is connected to a second input terminal in the negative pole side of the adder, an input terminal to which an input signal is input is connected to a third input terminal in the negative side of the adder, and an output terminal of the adder is connected to an input terminal in a negative pole side of the first integrator.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: July 4, 2023
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventor: Makoto Morita
  • Patent number: 11688945
    Abstract: A multiband radiating array according to the present invention includes a vertical column of lower band dipole elements and a vertical column of higher band dipole elements. The lower band dipole elements operate at a lower operational frequency band, and the lower band dipole elements have dipole arms that combine to be about one half of a wavelength of the lower operational frequency band midpoint frequency. The higher band dipole elements operate at a higher frequency band, and the higher band dipole elements have dipole arms that combine to be about three quarters of a wavelength of the higher operational frequency band midpoint frequency. The higher band radiating elements are supported above a reflector by higher band feed boards. A combination of the higher band feed boards and higher band dipole arms do not resonate in the lower operational frequency band.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: June 27, 2023
    Assignee: CommScope Technologies LLC
    Inventors: Martin Lee Zimmerman, Peter J. Bisiules
  • Patent number: 11605890
    Abstract: Short, dual-driven groundless antennas are provided. One of the antennas includes a tubular outer conductor, a tubular inner conductor, and an electrical connector that electrically connects an opposite end of the outer conductor to the exterior of the inner conductor. The inner conductor is longitudinally disposed within the hollow axial interior of the outer conductor such that an axial gap exists between the radially inner surface of the outer conductor and the radially outer surface of the inner conductor, and the inner conductor runs at least to the opposite end of the outer conductor. Electrical signals are connected to a driven end of both the outer and inner conductors, where these signals supply power to/from the antenna whenever it is used as a transmitter/receiver, and neither of these signals needs to be connected to an electrical ground.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: March 14, 2023
    Inventor: Laurice J. West
  • Patent number: 11600906
    Abstract: The present disclosure relates to a mounting assembly and a mounting kit comprising such a mounting assembly for a base station antenna, wherein the mounting assembly has first and second connection parts, an effective length therebetween is related to the mechanical tilt of the base station antenna, and the effective length is continuously adjustable. The mounting assembly comprises a connecting rod mechanism having a first pair of connecting rods, a second pair of connecting rods, and a threaded connection device, wherein the threaded connection device connects two relatively movable hinged connection parts, the distance between the two hinged connection parts can be continuously adjusted by screwing the threaded connection device, so that the effective length can be continuously adjusted to realize continuous adjustment of the mechanical tilt of the base station antenna.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: March 7, 2023
    Assignee: CommScope Technologies LLC
    Inventors: Chen Chen, ZhaoHui Liu, Junfeng Yu, Xiaohua Tian
  • Patent number: 11575195
    Abstract: A mechanical tilt mounting system for a base station antenna includes a fixed pivot that connects the antenna to a support structure. The antenna is rotatable about the fixed pivot. An adjustable control arm has a first end connected to the antenna and a second end connected to the support structure. Extension and contraction of the adjustable arm rotates the antenna about the fixed pivot to change the angle of inclination of the antenna.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: February 7, 2023
    Assignee: CommScope Technologies LLC
    Inventors: Michel Dembinski, Samantha L. Merta, Paul D. Everest, Eileen Holland, Steven Rogers, Khanh Duy Tran
  • Patent number: 11575207
    Abstract: The present disclosure relates to a plug-in antenna device arranged to be received in a waveguide section. The plug-in antenna device includes one or more dielectric elements arranged in series and spaced apart by connecting members, a top-most dielectric element being arranged as antenna element. When the plug-in antenna device is received in the waveguide section, the dielectric elements are arranged electromagnetically coupled, whereby a radio frequency signal included in a radio frequency band passing to or from the antenna element via the dielectric elements is arranged to be electromagnetically filtered.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: February 7, 2023
    Assignee: Telefonaktiebolaget LM Ericsson (Publ)
    Inventor: Anatoli Deleniv
  • Patent number: 11563272
    Abstract: Embodiments of the present invention pertain to the field of communications technologies and disclose a multi-band antenna and a communications device. The multi-band antenna includes a reflection panel, at least one high-frequency unit, and at least one low-frequency unit. Each high-frequency unit includes a balun structure, a coupling structure, and a radiation arm structure. The balun structure includes two balun sub-structures, the coupling structure includes two coupling sub-structures, and the radiation arm structure includes two radiation arms. The high-frequency unit and the low-frequency unit are disposed on the reflection panel. Each coupling sub-structure is separately electrically connected to one balun sub-structure and one radiation arm. The coupling sub-structure is configured to transmit a signal whose frequency is higher than a preset threshold, and block a signal whose frequency is lower than the preset threshold.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: January 24, 2023
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Xue Bai, Naibiao Wang, Guoqing Xie, Weihong Xiao
  • Patent number: 11502407
    Abstract: A base station antenna includes a remote electronic tilt (“RET”) actuator, a phase shifter having a moveable element and a mechanical linkage extending between the RET actuator and the phase shifter. The mechanical linkage includes an adjustable RET linkage that has a first link that has a first connection element, a second link that has a second connection element and a connecting member that includes at least a third link. The adjustable RET linkage includes at least a first hinge and a second hinge.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: November 15, 2022
    Assignee: CommScope Technologies LLC
    Inventors: Sean Gregory Thomas, Chongli Yang, Guomin Ding, Junfeng Yu, Zhaohui Liu
  • Patent number: 11468213
    Abstract: An apparatus includes circuitry configured to calculate first parameters for determining a structure of a first antenna device based on a specification value set for the first antenna device to be a target of performance evaluation, acquire a communication frequency based on first parameters, calculate an allowable range of deviation of the communication frequency satisfying a specified performance evaluation standard of the first antenna device, determine a structure of a second antenna device as a reference model, and obtain a change amount corresponding to change in the communication frequency in the allowable range of two second parameters having a correlation with each other, and acquire a relational expression of two first parameters of first parameters that correspond to the two second parameters and that have a correlation with each other, and two first parameters based on the change amount and that have the correlation with each other.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: October 11, 2022
    Assignee: FUJITSU LIMITED
    Inventors: Manabu Yoshikawa, Yohei Koga
  • Patent number: 11462823
    Abstract: An antenna structure according to an embodiment of the present invention includes a dielectric layer including a first surface and a second surface which face each other, a first antenna pattern on the first surface of the dielectric layer, the first antenna pattern including a first radiation electrode, and a second antenna pattern on the second surface of the dielectric layer, the second antenna pattern including a second radiation electrode. Radiation gain and efficiency may be improved utilizing both surfaces of the dielectric layer without mutual radiation interruption.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: October 4, 2022
    Assignee: DONGWOO FINE-CHEM CO., LTD.
    Inventors: Yun Seok Oh, Young Jun Lee, Yoon Ho Huh
  • Patent number: 11417941
    Abstract: A bracket includes a first member having one end joined to a first surface of an enclosure including an antenna, a second member having one end joined to a second surface of the enclosure, and a third member including a first slot joined to another end of the first member and a second slot joined to another end of the second member. In the bracket, the another end of the first member is guided along and moved in the first slot, and the another end of the second member is guided along and moved in the second slot.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: August 16, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Minsoo Jang, Minkyu Kwak
  • Patent number: 11411588
    Abstract: The invention relates to a method for automatically adjusting a multiple-input-port and multiple-output-port tuning unit. The invention also relates to an apparatus for radio communication using this method. An apparatus for radio communication of the invention comprises: 4 antennas which form a multiport antenna array; 4 feeders; a multiple-input-port and multiple-output-port tuning unit having 4 input ports and 4 output ports; 4 sensing units; a transmission and signal processing unit, which applies 4 excitations to the input ports, one and only one of the excitations being applied to each of the input ports, and which delivers tuning unit adjustment instructions; and a control unit, which delivers one or more tuning control signals to the multiple-input-port and multiple-output-port tuning unit.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: August 9, 2022
    Inventors: Frédéric Broyde, Evelyne Clavelier
  • Patent number: 11329397
    Abstract: The disclosure concerns an antenna assembly having a substrate with an antenna radiating element and a ground conductor disposed on the substrate, the ground conductor further characterized by a plurality of ground resonators, wherein a length associated with each of the ground resonators increases as the ground resonators are distanced from the antenna radiating element. Additionally, a coaxial cable is routed around the antenna assembly for configuring the coaxial cable as an additional ground resonator associated with the antenna assembly. The resulting antenna provides wide band performance between 700 MHz and 2700 MHz with improved efficiency compared with conventional antennas.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: May 10, 2022
    Assignee: TAOGLAS GROUP HOLDINGS LIMITED
    Inventor: Jason Philip Dorsey
  • Patent number: 10641610
    Abstract: A method and system of instantiating a lightweight re-calibration of a received signal strength (RSS) fingerprint dataset for mobile device indoor navigation. The method comprises, based on RSS parameters acquired from a plurality of mobile devices acquired at a set of positions within an indoor area, accumulating the RSS parameters in accordance with a trained neural network-based RSS fingerprint dataset in a fingerprint database of the indoor area; identifying respective positions of a subset of the set of positions having a variance that exceeds a threshold variance between observed RSS parameters and RSS parameters determined in accordance the trained neural network; and when contiguous positions of the subset are encompassed by a boundary representing a portion of the indoor area, instantiating a re-calibration of the RSS fingerprint dataset for mobile device navigation within the portion of the indoor area.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: May 5, 2020
    Assignee: Mapsted Corp.
    Inventors: Joshua Karon, Henry L. Ohab, Sean Huberman
  • Patent number: 9537518
    Abstract: Representative implementations of devices and techniques provide transmit power detection for an antenna of a wireless system having two or more transmit antennas. A correlation is reduced between a transmit signal of the antenna and signals from other antennas.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: January 3, 2017
    Assignee: Intel IP Corporation
    Inventor: Andreas Langer
  • Patent number: 9070966
    Abstract: Disclosed herein are various exemplary embodiments of multi-band, wide-band antennas. In exemplary embodiments, the antenna generally includes an upper portion and a lower portion. The upper portion includes two or more upper radiating elements and one or more slots disposed between the two or more upper radiating elements. The lower portion includes three or more lower radiating elements and one or more slots disposed between the three or more lower radiating elements. A gap is between the upper and lower portions such that the upper radiating elements are separated and spaced apart from the lower radiating elements.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: June 30, 2015
    Assignee: Laird Technologies, Inc.
    Inventors: Kok Jiunn Ng, Kean Meng Lim
  • Patent number: 9019167
    Abstract: A transceiving circuit (1, 1?) for contactless communication comprises transmitter means (3) being adapted to generate an electromagnetic carrier signal and to modulate the carrier signal according to transmitting data, and an antenna (5) being connected to and driven by the transmitter means (3) with the modulated carrier signal. At least one impedance-matching capacitor (C1a) is arranged serially to the antenna (5).
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: April 28, 2015
    Assignee: Quotainne Enterprises LLC
    Inventor: Erich Merlin
  • Patent number: 8918062
    Abstract: Methods and apparatus are provided for allowing a transmitter (Tx) to perform antenna selection independently of a receiver (Rx) in a transceiver supporting both transmit diversity and receive diversity. Certain aspects may utilize a cross switch, which may be used in a parallel or cross configuration, to provide for the independent antenna selection, such that the Rx may maintain the ability to operate on the same antenna as the Tx, on another antenna, or on both antennas for enhanced receive diversity. Furthermore, certain aspects may employ additional switching in the baseband domain in an effort to avoid, or at least reduce, switching glitches in the Rx caused by changing the cross switch configuration. In this manner, the Rx need not re-converge upon antenna switching.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: December 23, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Christos Komninakis, Daniel F. Filipovic, Chengjin Zhang
  • Publication number: 20140306859
    Abstract: An active antenna and associated circuit topology is adapted to provide active impedance matching and band switching of the antenna using a shared tunable component. Using a shared tunable component, such as a tunable capacitor or other tunable component, the antenna provides a low cost and effective active antenna solution. In certain embodiments, one or more passive components can be further utilized to design band switching of the antenna from a first frequency to a second desired frequency.
    Type: Application
    Filed: June 25, 2014
    Publication date: October 16, 2014
    Applicant: ETHERTRONICS, INC.
    Inventors: Laurent Desclos, Chun Su Yoon, Sung-soo Nam, MK Chun, Ji-Chul Lee
  • Patent number: 8861646
    Abstract: A wireless communication terminal according to the embodiment includes a communication module including a circuit board having a plurality of pins; a shield case antenna overlapping with one side of the circuit board, electrically connected to a part of the pins and including a signal receiving unit; and a signal processing unit for processing the received signals. An antenna matching unit for matching impedance between the signal processing unit and an antenna unit, a phase shifter for controlling a phase of the received signal and an amplitude regulator for adjusting amplitude of the received signal are provided between the signal processing unit and the antenna unit.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: October 14, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Jong Guk Kim, Ja Kwon Ku, Kyung Suk Kim, Seung Taek Woo, Jong Chang Lee, Jeong Hoon Cho
  • Publication number: 20140225797
    Abstract: An ultra-wideband (UWB) antenna for wireless communication in proximity to a human body and between devices having no line-of-sight, includes symmetrical radiators disposed on a side of a dielectric layer, and a differential microstrip feeding line disposed on the side and an opposite side of the dielectric layer. The UWB antenna further includes a top dielectric layer disposed over the side of the dielectric layer, a bottom dielectric layer disposed over the opposite side of the dielectric layer, and a top connecting plate disposed on an outer surface of the top dielectric layer. The UWB antenna further includes a bottom connecting plate disposed on an outer surface of the bottom dielectric layer, and an inter-layer connector configured to connect ends of each of the symmetrical radiators to the top connecting plate and the bottom connecting plate, respectively.
    Type: Application
    Filed: February 11, 2014
    Publication date: August 14, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Andrey Vladimorovich KLETSOV, Artem Rudolfovich VILENSKIY, Vladimir Yakovlevich ARKHIPENKOV, Jongjin KIM, Dongwook KIM
  • Patent number: 8767871
    Abstract: An antenna tuner is placed between a Power Amplifier (PA) and an antenna. The antenna tuner includes programmable components that can be tuned in order to effect an impedance translation between the antenna and the PA output. In an embodiment, the antenna tuner is adapted dynamically based on changes in the impedance of the antenna. In another embodiment, the antenna tuner is controlled based on measurement of the voltage reflection coefficient S11.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: July 1, 2014
    Assignee: Broadcom Corporation
    Inventors: Bongseok Park, William Fujimoto, Sriraman Dakshinamurthy, Robert Lorenz
  • Patent number: 8743009
    Abstract: A method and apparatus for reducing a length of an antenna (402) involves an arrangement which includes an orthogonal antenna feed. An antenna includes a radiating element (404) with a length extending along an axis (418). The orthogonal feed arrangement permits recovery of a portion of the spatial volume comprising the antenna which is normally used for antenna matching circuitry (406). An end portion of the radiating element is chosen to be helically shaped and includes an RF feed gap. The RF feed gap is coupled to a matching network which includes elongated conductors (412). The matching circuitry is positioned so that the elongated conductors are adjacent to the first end portion and extend in a direction aligned with the axis, but orthogonal to the coils forming the helically shaped end portion.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: June 3, 2014
    Assignee: Harris Corporation
    Inventor: Malcolm Packer
  • Publication number: 20140125540
    Abstract: An RF signal input and output to and from a communication unit is extracted to outside of an antenna module before the RF signal is routed through a matching circuit unit and an antenna unit and a variation occurs, and the RF signal is accurately measured and inspected using a high-frequency wave measuring instrument such as a network analyzer. When the characteristics of the antenna unit have fluctuated or been deteriorated after the antenna module has been installed in a communication device, a measure is implemented by connecting an external matching circuit unit or an external antenna unit to a signal extraction unit.
    Type: Application
    Filed: October 28, 2013
    Publication date: May 8, 2014
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Hiroyuki TETSUNO, Taro HIRAI
  • Patent number: 8704718
    Abstract: A radiating element having a transition from a waveguide to a dipole radiator. The radiating element utilizes the electric field of electromagnetic waves propagating in the waveguide to excite a section of a microstrip transmission line that is collinear with the waveguide's propagation direction. A waveguide septum guides the electric field of the electromagnetic waves into the transmission line and provides impedance matching. The transmission line can be formed on a first side of a dielectric substrate having a ground plane on a second side of the substrate. A first dipole leg is formed by making a ninety degree turn in the transmission line. A second dipole leg is extended from the ground plane and turned opposite from the first dipole leg. The transmission line includes a transformer having stepped or gradual changes in width of the transmission line leading to the dipole to provide additional impedance matching.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: April 22, 2014
    Assignee: Honeywell International Inc.
    Inventor: Michael G. Guler
  • Patent number: 8653975
    Abstract: The present invention encompasses an antenna (12) for use with a radio-frequency identification transponder (10) that performs optimally in free space and near optimally when near a conductive surface. The radio-frequency identification transponder (10) broadly comprises an antenna (12); an integrated circuit (14); a matching circuit (16) interposed between the antenna (12) and integrated circuit (14); and a substrate (18). The antenna (12) is designed with a length so the antenna (12) as a microstrip resonates at a starting frequency and a matching circuit is constructed. The antenna (12) is placed near a conductive surface and the length of the antenna is adjusted until the antenna reactance is approximately the opposite of the integrated circuit reactance.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: February 18, 2014
    Assignee: The University of Kansas
    Inventor: Daniel D. Deavours
  • Patent number: 8630597
    Abstract: Disclosed are an antenna tuner and a method for adjusting antenna impedance. The antenna tuner includes a reference impedance resistor, a first coupler having an isolated port connected to one end of the reference impedance resistor, a second coupler having an input port connected to an output port of the first coupler and an output port connected to the antenna, and an impedance adjusting device group connected to the second coupler to adjust impedance of the antenna. An impedance controller generates an impedance adjustment control signal according to a first voltage applied to a coupled port of the first coupler, and a second voltage applied to a coupled port of the second coupler to provide the impedance adjustment control signal to the impedance adjusting device group.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: January 14, 2014
    Assignee: Gwangju Institute of Science and Technology
    Inventors: Jongsoo Lee, Ki Chul Kim
  • Publication number: 20130328740
    Abstract: A magnetic field focusing assembly includes a magnetic field generating device configured to generate a magnetic field, and a split ring resonator assembly configured to be magnetically coupled to the magnetic field generating device and configured to focus the magnetic field produced by the magnetic field generating device.
    Type: Application
    Filed: November 12, 2012
    Publication date: December 12, 2013
    Applicant: DEKA Products Limited Partnership
    Inventor: DEKA Products Limited Partnership
  • Patent number: 8593363
    Abstract: An end-fed sleeve dipole is provided herein with improved impedance match and increased bandwidth by incorporating a ¾-wavelength transformer in the antenna design. The ¾-wavelength transformer is compatible with a number of different choking schemes, including but not limited to, a single ¼-wave choke sleeve, a single ¼-wave choke sleeve with additional ferrite beads, and two or more ¼-wave choke sleeves with or without ferrite beads. In some embodiments, one or more shunt resonators may be used to provide additional impedance compensation.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: November 26, 2013
    Assignee: TDK Corporation
    Inventors: James McLean, Kunio Yata, Robert Sutton, Hidetsugu Sakou, Nobutaka Misawa
  • Patent number: 8581798
    Abstract: Disclosed herein is an RFID antenna, including, a dipole antenna pattern, and a matching pattern containing a pair of first pattern parts, each part being discretely and protrusively disposed at one side of the dipole antenna pattern and a second pattern part connecting each distal end of the pair of first pattern parts, wherein a ratio of an inner length of the pair of first pattern parts vs an inner length of the second pattern part is substantially larger than 1:8.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: November 12, 2013
    Assignee: LS Industrial Systems Co., Ltd.
    Inventors: Jae Yul Choo, Jin Kuk Hong, Jeong Ki Ryoo
  • Patent number: 8581793
    Abstract: An RFID antenna comprised of a first arm, load element, and second arm together providing a complex impedance match to one or more load circuits contained within the load element for operation at one or more frequency bands. The load element is comprised of one or more load circuits. Load circuits are further comprised of one or more RFID transponders, energy scavengers, microcontrollers, and associated sensor circuits. The first and second arms are different in length and shape resulting in an asymmetrical antenna structure along the major axis. The first arm, the load element, and the second arm all comprise radiative electromagnetic structures for ultra high frequency and higher bands of operation. Embodiments provide an antenna with Faraday coils located within the arms operating in one or more of low frequency and, high frequency bands.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: November 12, 2013
    Inventor: William N. Carr
  • Patent number: 8564439
    Abstract: Microstrip patch antenna (46), feed structure (48), and matching circuit (50) designs for an RFID tag (10). A balanced feed design using balanced feeds coupled by a shorting stub (56) to create a virtual short between the two feeds so as to eliminate the need for physically connecting the substrate to the ground plane. A dual feed structure design using a four-terminal IC can be connected to two antennas (46a,46b) resonating at different frequencies so as to provide directional and polarization diversity. A combined near-field/far-field design using a microstrip antenna providing electromagnetic coupling for far-field operation, and a looping matching circuit providing inductive coupling for near-field operation. A dual-antenna design using first and second microstrip antennas providing directional diversity when affixed to a cylindrical or conical object, and a protective superstrate (66). An annular antenna (46c) design for application to the top of a metal cylinder around a stem.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: October 22, 2013
    Assignee: The University of Kansas
    Inventors: Daniel D. Deavours, Mutharasu Sivakumar
  • Patent number: 8558748
    Abstract: A printed dual-band Yagi-Uda antenna is disclosed, which includes a substrate, a first driver, a first director, a second driver and a reflector. The first driver is formed on the substrate, and is utilized for generating a radiation pattern of a first frequency band. The first director is formed at a side of the first driver on the substrate, and is utilized for directing the radiation pattern of the first frequency band toward a first direction. The second driver is formed between the first driver and the first director on the substrate, and is utilized for generating a radiation pattern of a second frequency band. The reflector is formed at another side of the first driver on the substrate, and is utilized for reflecting both the radiation patterns of the first frequency band and the second frequency band toward the first direction.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: October 15, 2013
    Assignee: Ralink Technology Corp.
    Inventors: Xin-Chang Chen, Min-Chung Wu
  • Patent number: 8502747
    Abstract: A dipole antenna assembly (100, 200) includes a dipole antenna (10, 30) and a feeding element (20, 40) connecting with the dipole antenna. The dipole antenna includes a radiation portion (12, 32), a ground portion (13, 33) and a circuit (14, 34). The feeding element includes a central conductor (21, 41) soldered on the radiation portion at a first position, and a shielding layer (23, 43) soldered on the ground portion at a second position. The circuit includes one end connecting with the radiation portion at the first position, and another end connecting with the ground position at the second position for impedance matching.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: August 6, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Sheng-Che Chang, Chang-Ching Lin, Chun-Chieh Tseng, Yun-Cheng Hou, John Chow
  • Publication number: 20130194149
    Abstract: A compact wireless communication includes a first radiating element and a second radiating element, which define and function as a dipole antenna, a feeder circuit including a wireless IC chip coupled with the first and second radiating elements, and a feeder substrate that is provided with the wireless IC chip. The first radiating element is provided to the feeder substrate. The second radiating element is provided to a substrate other than the feeder substrate.
    Type: Application
    Filed: March 12, 2013
    Publication date: August 1, 2013
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventor: Murata Manufacturing Co., Ltd.
  • Patent number: 8489035
    Abstract: A radio communication transceiver includes a transformer, a switch, a power amplifier (AP), and a low noise amplifier (LNA). The transformer has a primary winding and a center-tap secondary winding, the primary winding has a first endpoint and a second endpoint, and the center-tap secondary winding has a first endpoint, a second endpoint, and a third endpoint. The switch has a gate, a drain, and a source, in which the gate receives a control signal (CS), the drain is connected to the second endpoint of the primary winding of the transformer through a coupling capacitor, and the source is grounded. The PA has at least one output terminal connected to the first endpoint and the second endpoint of the center-tap secondary winding of the transformer. The LNA has an input terminal connected to the second endpoint of the primary winding of the transformer.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: July 16, 2013
    Assignee: ISSC Technologies Corp.
    Inventors: Ming Chou Chiang, Hsin Chieh Huang
  • Patent number: 8471756
    Abstract: In one embodiment, RF front-end circuit includes a tunable matching network having an input coupled to an RF interface port, a directional coupler with a first connection coupled to an RF input of a mixer, a second connection coupled to an RF signal generation port, and a third connection coupled to an output of the tunable matching network. The directional coupler is configured to direct a signal from the RF signal generation port to the tunable matching network and to direct a signal from the tunable matching network port to the RF port of the mixer. The RF front-end circuit also has a tunable matching network control unit coupled to the tunable matching network. The control unit is configured to optimize an impedance match between the RF interface port and the output of the tunable matching network.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: June 25, 2013
    Assignee: Infineon Technologies AG
    Inventors: Andrei Grebennikov, Guenter Haider, Johann-Peter Forstner
  • Patent number: 8427337
    Abstract: A planar dipole antenna is described. The antenna may include a ground element, a feed point, a matching element, and first and second radiating elements disposed on a substrate, and a feed point. The ground element may have a substantially rectangular shape and the feed point may be arranged adjacent to the ground element. The matching element may be connected to the feed point and may include a central bar connected to a first and second arm. The first and second arms may be substantially symmetrically disposed on the substrate in respect to the central bar. The first and second radiating elements may have substantially trapezoidal shapes and may be extend from the first and second arms of the matching element, respectively. The first and second radiating elements may be substantially symmetrically disposed on the substrate in respect to the central bar of the matching element.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: April 23, 2013
    Assignee: Aclara RF Systems Inc.
    Inventors: Mark S. Wilbur, James R. Pollock, Justin M. Hennigan
  • Patent number: 8400362
    Abstract: A radio communication apparatus configured to be used for first radio communication and second radio communication which are different from each other is provided. The radio communication apparatus has a first antenna, a coupling reduction element, a magnetic material sheet and a second antenna. The first antenna is configured to be used for the first radio communication, and is formed by a conductive line wound in a plane like a coil. The coupling reduction element is formed by a plane-shaped conductor, provided almost parallel to the plane of the first antenna, and configured to be put in a condition of electrical floating. The magnetic material sheet is provided between the first antenna and the coupling reduction element. The second antenna is configured to be used for the second radio communication, and is provided close to at least a portion of the first antenna.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: March 19, 2013
    Assignee: Fujitsu Mobile Communications Limited
    Inventor: Hiroshi Watanabe
  • Publication number: 20130044038
    Abstract: A method and apparatus for reducing a length of an antenna (402) involves an arrangement which includes an orthogonal antenna feed. An antenna includes a radiating element (404) with a length extending along an axis (418). The orthogonal feed arrangement permits recovery of a portion of the spatial volume comprising the antenna which is normally used for antenna matching circuitry (406). An end portion of the radiating element is chosen to be helically shaped and includes an RF feed gap. The RF feed gap is coupled to a matching network which includes elongated conductors (412). The matching circuitry is positioned so that the elongated conductors are adjacent to the first end portion and extend in a direction aligned with the axis, but orthogonal to the coils forming the helically shaped end portion.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Applicant: HARRIS CORPORATION
    Inventor: Malcolm Packer