Abstract: A wirelessly locatable tag may include a first housing member defining a first exterior surface of the tag, a second housing member removably coupled to the first housing member and defining a second exterior surface of the tag, and an antenna assembly. The antenna assembly may include an antenna frame defining a top surface and a peripheral side surface, a first antenna on the antenna frame along the peripheral side surface and configured to communicate with the electronic device using a first wireless protocol, a second antenna on the antenna frame along the peripheral side surface and configured to send a localization signal to the electronic device using a second wireless protocol different than the first protocol, and a third antenna on the antenna frame along the top surface and configured to communicate with the electronic device via a third wireless protocol different than the first and second protocols.
Type:
Grant
Filed:
September 17, 2021
Date of Patent:
January 28, 2025
Assignee:
APPLE INC.
Inventors:
Ryan C. Perkins, Johan Avendal, Eduardo Jorge Da Costa Bras Lima, Carlo Di Nallo, Jayesh Nath, Dimitrios Papantonis, Samuel B. Schaevitz, Christopher M. Werner
Abstract: A travelling-wave tube comprising a helix joined by posts to a vacuum chamber, each post made of electrically insulating material being covered by an electrically conductive material, of electrical conductivity comprised between 1000 and 100000 S·m?1, over a portion of the post extending from the end of the post joined to the helix to the end of the post joined to the vacuum chamber and corresponding to a height comprised between 10% and 50% of the post.
Abstract: To provide a novel antenna, wireless communication module, and wireless communication device excellent in long-term reliability. The antenna includes a first conductor, a second conductor facing the first conductor in a first direction, a third conductor, a fourth conductor, a power supply line configured to be electromagnetically connected to the third conductor, and a reinforcing member including a dielectric material. The third conductor extends along the first direction, is located between the first conductor and the second conductor, and is configured to capacitively connect the first conductor and the second conductor. The fourth conductor extends along the first direction and is configured to be electrically connected to the first conductor and the second conductor. The reinforcing member is located on at least a portion of any of the first conductor and the second conductor.
Abstract: Disclosed is an electronic device. The electronic device includes: an antenna structure including at least one antenna and at least one processor operatively connected with the antenna structure. The antenna structure includes: a first conductive patch including a first edge and a second edge parallel to the first edge, a first transmission line electrically connected to a first point of the first conductive patch, a second conductive patch spaced apart from the first conductive patch by a specified distance and including a third edge at least partially facing the second edge of the first conductive patch and a fourth edge parallel to the third edge, and a second transmission line electrically connected to a second point of the second conductive patch.
Type:
Grant
Filed:
June 1, 2022
Date of Patent:
September 10, 2024
Assignee:
SAMSUNG ELECTRONICS CO., LTD.
Inventors:
Youngsuk Yoo, Woosup Lee, Sukgi Hong, Dongyeon Kim, Jungsik Park
Abstract: The present disclosure provides a package antenna and a radar assembly package. The package antenna includes a first antenna and a second antenna adjacent to the first antenna. Directivity of electromagnetic wave from the package antenna is achieved through the cancelation of radiation fields from the first and second antennas.
Abstract: An antenna array system and a method for making the antenna system. The system includes at least two antenna elements serving as transmitter elements, and at least two antenna elements serving as receiver elements. Each of the transmitter antenna and receiver antenna elements include a pair of curved arms, wherein a first arm in the pair of curved arms is configured to be connected from a signal trace of the antenna system. The second arm in the pair of curved arms is configured to be connected to a ground plane.
Abstract: Provided is an in-band full-duplex MIMO antenna, which includes: a substrate; and transmission antenna elements and reception antenna elements separately coaxially disposed on the same plane of the substrate, in which the transmission antenna elements have a first polarization characteristic, and the reception antenna elements have a second polarization characteristic different from the first polarization characteristic.
Type:
Grant
Filed:
August 19, 2021
Date of Patent:
March 26, 2024
Assignee:
CHUNG ANG UNIVERSITY INDUSTRY ACADEMIC COOPERATION FOUNDATION
Inventors:
Han Lim Lee, Min Gyu Kim, Ji Ho Lee, Jin Woo Kim
Abstract: An apparatus including a dipole antenna, configured for operation with a first polarization, the dipole antenna including a feed; and a pair of conductive elements fed by the feed, wherein the pair of conductive elements are grounded, and extend in parallel on opposing sides of the feed and then diverge.
Type:
Grant
Filed:
January 20, 2022
Date of Patent:
February 13, 2024
Assignee:
Nokia Shanghai Bell Co. Ltd.
Inventors:
Sebastien Chainon, Jeanpierre Harel, Thomas Julien, Jerome Plet, Eric Callec
Abstract: A device includes a first housing having a first end configured to couple to an electric meter and a second end configured to couple to an electric meter socket. A power module is disposed at least partially within the first housing and is configured to couple to electrical wiring at a premises. The device includes a second housing having an antenna array, a feed network communicatively coupled to the power module and configured to split power and distribute the power to at least one element of one or more sub-arrays of the antenna array, a wireless wide area network (WWAN) module communicatively coupled to the antenna array and the power module, and a broadband over powerline (BPL) interface communicatively coupled to the WWAN module and the power module.
Type:
Grant
Filed:
August 23, 2022
Date of Patent:
February 6, 2024
Assignee:
Avista Edge, Inc.
Inventors:
David Gregory Schafer, Robert J. Conley, Mark Wayne Gustafson, Cao Ming
Abstract: An electronic device and a method for manufacturing the same are provided. The electronic device includes a carrier, an antenna element and a cladding element. The carrier defines a first area and a second area adjacent to the first area. The antenna element is in the first area. The cladding element covers the antenna element and is configured for enhancing antenna gain of the antenna element. The second area is exposed from the cladding element and is distant from the antenna element.
Type:
Grant
Filed:
August 27, 2021
Date of Patent:
December 19, 2023
Assignee:
ADVANCED SEMICONDUCTOR ENGINEERING, INC.
Abstract: A radio frequency (RF) device includes a conformal RF antenna configured to be mounted on a non-metallic component of a vehicle and configured to operate at frequencies greater than 10 GHz. The RF device further includes an RF chip mounted on the conformal RF antenna and electrically coupled to the conformal RF antenna to transfer an RF signal of a frequency greater than 10 GHz to the conformal RF antenna.
Abstract: An antenna array system and a method for making the antenna system. The system includes at least two antenna elements serving as transmitter elements, and at least two antenna elements serving as receiver elements. Each of the transmitter antenna and receiver antenna elements include a pair of curved arms, wherein a first arm in the pair of curved arms is configured to be connected from a signal trace of the antenna system. The second arm in the pair of curved arms is configured to be connected to a ground plane.
Abstract: An apparatus and method for electromagnetic heating of a hydrocarbon formation. The apparatus includes an electrical power source; at least one electromagnetic wave generator for generating alternating current; at least two transmission line conductors positioned in the hydrocarbon formation; at least one waveguide for carrying the alternating current from the at least one electromagnetic wave generator to the at least two transmission line conductors; and a producer well to receive heated hydrocarbons from the hydrocarbon formation. The transmission line conductors are excitable by the alternating current to propagate a travelling wave within the hydrocarbon formation. At least one of the transmission line conductors include a primary arm and at least one secondary arm extending laterally from the primary arm. The at least one secondary arm includes at least one electrically isolatable connection for electrically isolating at least a portion of the secondary arm.
Type:
Grant
Filed:
March 2, 2020
Date of Patent:
August 15, 2023
Assignee:
Acceleware Ltd.
Inventors:
Michal M. Okoniewski, Damir Pasalic, Pedro Vaca
Abstract: The present disclosure presents an electronic device. The electronic device may include a display panel, an input sensor, a first antenna, and a second antenna. The display panel includes a display region and a non-display region adjacent to the display region. The input sensor is disposed on the display panel and overlapped with a first region of the display region. The first antenna and a second antenna are disposed on the display panel and are overlapped with a second region of the display region, and each of which includes a stretchable pattern. A first distance between opposite ends of the stretchable pattern of the first antenna may be different from a second distance between opposite ends of the stretchable pattern of the second antenna. The inventive concept may provide an electronic device including a stretchable antenna.
Type:
Grant
Filed:
September 24, 2020
Date of Patent:
May 9, 2023
Assignee:
SAMSUNG DISPLAY CO., LTD.
Inventors:
Jae-Kyoung Kim, Kiseo Kim, WonSang Park, Bonghyun You
Abstract: A structure includes first to fourth conductors. The first conductor extends along a second plane including a second direction and a third direction intersecting with the second direction. The second conductor faces the first conductor along a first direction intersecting with the second plane and extends along the second plane. The third conductor capacitively connects the first conductor and the second conductor. The fourth conductor is electrically connected to the first conductor and the second conductor, and extends along a first plane including the first direction and the third direction. The third conductor includes a first conductive layer and a second conductive layer capacitively connected to the first conductive layer. The second conductive layer is positioned between the first conductive layer and the fourth conductor in the second direction. The first conductive layer has more thickness in the second direction as compared to thickness of the second conductive layer.
Abstract: An antenna structure includes a loop radiation element, a balance radiation element, a first additional radiation element, and a second additional radiation element. The loop radiation element has a first feeding point. The balance radiation element has a second feeding point. The balance radiation element is coupled to at least a first connection point on the loop radiation element. The balance radiation element is substantially surrounded by the loop radiation element. The first additional radiation element is coupled to a second connection point on the loop radiation element. The second additional radiation element is coupled to a third connection point on the loop radiation element. The loop radiation element is disposed between the first additional radiation element and the second additional radiation element.
Abstract: The present invention relates to a prelaminate for an electronic card, wherein at least a first group of pads is formed from a metal plate formed from a piece comprising a central part and branches extending from the central part, the branches of the metal plate forming the pads of the first group. The invention also relates to a method for producing such a prelaminate and an electronic card comprising such a prelaminate.
Type:
Grant
Filed:
March 4, 2021
Date of Patent:
March 7, 2023
Assignee:
IDEMIA FRANCE
Inventors:
Philippe Gac, Pierre Escoffier, Rémi Lavarenne
Abstract: A projectile circuitry assembly for use in projectiles comprising a chassis defining a generally cylindrical a main body portion and further defining an interior cavity for containing one or more projectile components and further defining an antenna aperture through the body portion to expose the interior cavity. In various embodiments the projectile circuitry assembly comprises a plurality of circuit boards and a wrap antenna, the plurality of circuit boards and wrap antenna interconnected via an integrated flex-line to define a single unitary device without the use of a connector, the wrap antenna comprising one or more antenna elements defined on a flexible antenna substrate layer, wherein the plurality of circuit boards are positioned in the interior cavity and the wrap antenna is threaded through the antenna aperture and wrapped circumferentially about an exterior of the cylindrical wall of the body portion.
Type:
Grant
Filed:
October 29, 2020
Date of Patent:
February 14, 2023
Assignee:
Northrop Grumman Systems Corporation
Inventors:
Jacob M. Parrow, Christopher A. McKellips, Hossein Aliaghai
Abstract: A removable smartphone case is disclosed. The removable smartphone case includes a case body configured to receive a smartphone, a radio frequency (RF) front-end connected to the case body and including a semiconductor substrate, at least one transmit antenna configured to transmit radio waves below the skin surface of a person, and a two-dimensional array of receive antennas configured to receive radio waves, the received radio waves including a reflected portion of the transmitted radio waves, wherein the semiconductor substrate includes circuits configured to generate signals in response to the received radio waves, a digital baseband system configured to generate digital data in response to the signals, wherein the digital data is indicative of a health parameter of the person, and a communications interface configured to transmit the digital data generated by the semiconductor substrate from the removable smartphone case.
Abstract: A radiation element for an antenna includes a first pair of dipoles. The first pair of dipoles includes a first dipole and a second dipole, where the first dipole has a first radiation arm and a second radiation arm, and the second dipole has a third radiation arm and a fourth radiation arm. A first connection trace between the first radiation arm of the first dipole and the third radiation arm of the second dipole and a second connection trace between the second radiation arm of the first dipole and the fourth radiation arm of the second dipole are parallel to each other. The radiation arms of the first pair of dipoles are planar structures.
Abstract: Embodiments of a vehicular radar system are presented herein. One embodiment comprises a first circuitry layer including a first radar subsystem for a first frequency band, the first radar subsystem including a first end-fire antenna. The vehicular radar system also includes a second circuitry layer stacked on or under the first circuitry layer, the second circuitry layer including a second radar subsystem for a second frequency band, the second radar subsystem including a second end-fire antenna. In this embodiment, one or more components of the vehicular radar system are shared between the first and second radar subsystems.
Type:
Grant
Filed:
June 9, 2020
Date of Patent:
December 13, 2022
Assignee:
Toyota Motor Engineering & Manufacturing North America, Inc.
Abstract: An antenna device includes a power feeding portion; and an antenna including first and second antenna parts, and an amplifier each electrically connected to the power feeding portion. The first antenna part includes a first element including a part extending in a first direction, and a first loop element connected to an end of the first element. The second antenna part includes a second element including a part extending in the first direction, and a second loop element connected to an end of the second element. The first loop element includes a part extending in the first direction, and a part extending in the second direction different from the first direction. The second loop element includes a part extending in the first direction, and a part extending in a third direction opposite to the second direction. The first and second loop elements are positioned apart from each other.
Abstract: An antenna device includes: an antenna element for vertically polarized waves, having a first straight line portion of which one end serves as a power feeding point, and an annular portion of which one end is connected to another end of the first straight line portion; and a first dielectric cover covering the antenna element from outside. An antenna device includes: an antenna element for vertically polarized waves, having a first straight line portion of which one end serves as a power feeding point, and an annular portion of which one end is connected to another end of the first straight line portion; and a second dielectric cover covering the first straight line portion and the annular portion from outside.
Abstract: Systems and methods for providing wide field-of-view radar arrays. Quadrature phase-shift keying (QPSK) beam forming reduces side lobes by applying a phase shift to transmitted signals to selected transmitting antennas. Super-hemispherical radar coverage at high gain in both broadside and end-fire directions is provided by beam directing elements mounted to a printed circuit board.
Type:
Grant
Filed:
November 9, 2020
Date of Patent:
October 18, 2022
Inventors:
Naftali Chayat, Yuval Lomnitz, Mark Popov, Damian Hoffman, Alexei Khazan, Rohi Halimi, Harel Golombek, Tom Harel, Orel Ron
Abstract: In some examples, a fluidic conductive trace based radio-frequency identification device may include a flexible substrate layer including a channel, and a trace formed of a conductive fluid that is disposed substantially within the channel. The fluidic conductive trace based radio-frequency identification device may further include a sealing layer disposed on the flexible substrate layer and the trace to seal the conductive fluid in a liquid state within the channel.
Type:
Grant
Filed:
February 7, 2017
Date of Patent:
August 23, 2022
Assignee:
Hewlett-Packard Development Company, L.P.
Inventors:
Ning Ge, Jarrid Wittkopf, Robert Ionescu, Helen A. Holder, Paul Howard Mazurkiewicz
Abstract: The present embodiments provide a dual band antenna which divides a feed signal into two levels by a feed layer in which two layers are stacked and disposes an antenna slot in an antenna layer connected to a feed layer in a dual mode to minimize a space for an antenna.
Type:
Grant
Filed:
December 9, 2020
Date of Patent:
August 9, 2022
Assignee:
UIF (University Industry Foundation), Yonsei University
Abstract: An improved passive RFID tag configured for needle implantation in a tail of a rodent using a small diameter needle provides for increased read distances and effectiveness. In various embodiments, the RFID tag is comprised of an elongated flexible substrate having a pair of opposed surfaces with a UHF RFID chip positioned on a first of the opposed surfaces and is directly electrically connected to a closed-loop multi-layer folded dipole antenna disposed on both of the opposed surfaces of the substrate. An antenna is electrically connected to the RFID chip and includes at least an inductor as part of the closed-loop antenna. In embodiments, the RFID tag can be read with at least 90 percent effectiveness by a 30 dB RFID tag reader at least 5 cm from a tail of the rodent.
Type:
Grant
Filed:
April 27, 2020
Date of Patent:
July 19, 2022
Assignee:
Somark Group Pty Ltd
Inventors:
Adrian Knight, Paul Donohoe, Matti Hiob, Brad D. Pedersen
Abstract: Dipole antenna arrays are disclosed. An example dipole antenna array includes a ground plane having a first serrated edge, and a first dipole antenna, at least a portion of the first dipole antenna disposed parallel to the first serrated edge.
Type:
Grant
Filed:
December 11, 2020
Date of Patent:
July 12, 2022
Assignee:
TEXAS INSTRUMENTS INCORPORATED
Inventors:
Espen Wium, Fredrik Georg Kervel, Reidar Myhr
Abstract: An apparatus for vialess transitions can include a first dielectric layer. The apparatus can also include a first conductor forming a first coupling element on the top surface of the first dielectric layer. The apparatus can further include a second dielectric layer positioned below the first dielectric layer and above a third dielectric layer, wherein the second dielectric layer is vialess. The apparatus can include a second conductor forming a second coupling element, wherein the second conductor is on the top surface of the third dielectric layer, and a portion of the first coupling element is directly above a portion of the second coupling element.
Abstract: An antenna system including a first antenna portion having a first antenna element and a second antenna portion having a second antenna element. The first antenna portion is physically separated from the second antenna portion and the second antenna element is configured as a mirror opposite of the first antenna element. In addition, the first antenna portion is configured within a common plane with the second antenna portion. In various embodiments, an antenna system is disclosed that is optimized for high isolation in a small form factor using independent ground planes.
Abstract: A 5G broadband antenna is disclosed herein. The 5G broadband antenna comprises a first antenna element and a second antenna element. Each of the first antenna element and the second antenna element has a main branch with a slot therein. The antenna apparatus covers a first frequency band of 617-960 MegaHertz, a second frequency band of 1.4-1.6 GigaHertz (GHZ), a third frequency band of 1.71-2.7 GHz, a fourth frequency band of 3.3 to 4.2 GHz, and a fifth frequency band of 4.3 to 6.0 GHz.
Type:
Grant
Filed:
April 9, 2019
Date of Patent:
April 5, 2022
Assignee:
Airgain, Inc.
Inventors:
Ziming He, Alven Jan Delos Santos Eusantos
Abstract: The invention discloses a dual-polarized filtering magneto-electric dipole antenna, which comprises an upper dielectric substrate and a lower dielectric substrate. The upper surface of the upper dielectric substrate is printed with a radiator structure, and the lower dielectric substrate is printed with a slot coupling feed network; the radiator structure comprises four parasitic patches loaded with symmetrical slots. The parasitic patches are loaded with short-circuit probes, and the slot coupling feed network comprises two orthogonal sets of Y-shaped feeders and cross-shaped slots, and the cross-shaped slots are printed on a metal floor. The new parasitic slot structures on the radiator structure increases the bandwidth while introducing a high roll-off band edge filtering effect, and combined with the slot coupling feed network with filtering function to achieve good band-pass filtering characteristics and hardly introduce additional insertion loss.
Abstract: An antenna device includes: a first conductor layer; a second conductor layer located opposite to the first conductor layer; and a third conductor layer located opposite to the second conductor layer. The first conductor layer includes: a feed element; a first grounding element located next to the feed element in a first direction and grounded; and a parasitic element located along the feed element and the first grounding element and insulated from the feed element and the first grounding element. The second conductor layer includes: a floating element located opposite to the feed element and insulated from the first conductor layer; and a second grounding element located opposite to the first grounding element and next to the floating element and grounded. The third conductor layer includes a third grounding element grounded.
Abstract: An electronic device may be provided with an antenna for receiving signals in first and second ultra-wideband communications bands. The antenna may include a shielding ring that runs around first and second arms. The first arm may radiate in the first band and the second arm may radiate in the second band. The first arm may have an end formed from a first segment of the ring and a radiating edge facing the second arm. The second arm may have an end formed from a second segment of the ring and a radiating edge facing the first arm. First and second sets of conductive vias may couple the ring to ground. The first set may form a return path for the first arm. The second set may form a return path for the second arm.
Type:
Grant
Filed:
April 15, 2020
Date of Patent:
February 1, 2022
Assignee:
Apple Inc.
Inventors:
Aaron J. Cooper, Amin Tayebi, Carlo di Nallo, Ana Papio Toda
Abstract: A main portion of an antenna has a ring-shape with a split and has a first end portion and a second end portion which form the split. A facing portion has a first facing portion provided on the first end portion and a second facing portion provided on the second end portion. The first facing portion and the second facing portion are arranged apart from each other and face each other. A first feeding terminal, a second feeding terminal and an additional terminal are provided on the main portion and used to be fixed to an object when the antenna is mounted on the object. On the main portion, the first feeding terminal is situated nearer to the first end portion than the second feeding terminal is situated, and the additional terminal is situated nearer to the second end portion than the second feeding terminal is situated.
Type:
Grant
Filed:
January 8, 2020
Date of Patent:
January 11, 2022
Assignee:
JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED
Abstract: An array antenna is provided with: a first conductive member including a planar part; plural antennas arranged at a predetermined first interval to the planar part of the first conductive member, each of the plural antennas transmitting and receiving radio frequencies of a first polarization and radio frequencies of a second polarization that is different from the first polarization; and a second conductive member provided between the antennas adjacent to each other among the plural antennas via a gap of a predetermined second interval to the planar part of the first conductive member, the second conductive member being capacitively coupled to the first conductive member.
Abstract: Systems and methods for managing inventory, including one or more devices, such as computers or other terminal devices and/or computer systems, for managing inventory through the supply chain and lifecycle of a product. The system and method may include features for receiving the same or similar information associated with a plurality of products from a manufacturer, a distributor, and/or a consumer or other user, and associating various information, such as product location, quantity, and/or condition information with the products via one or more RFID devices operating at a plurality of frequencies, at any one or more locations, by any one or more devices, during the product lifecycle.
Type:
Grant
Filed:
August 16, 2019
Date of Patent:
July 6, 2021
Assignee:
WAVEMARK, INC.
Inventors:
Richard Eugene Leitermann, Brent Everett Koeppel
Abstract: An antenna array is provided which may include, but is not limited to, a first plurality of reflectors having a face, a first edge and a second edge, wherein the first edge of each of the first plurality of reflectors is coupled to the second edge of another of the first plurality of reflectors, a first plurality of antenna elements arranged on the face of at least one of the first plurality of reflectors, a second plurality of antenna elements arranged at a corner of at least two of the first plurality of reflectors, a second plurality of reflectors, the second plurality of reflectors mounted to an end of the first plurality of reflectors, and a third plurality of antenna elements arranged on a face of at least one of the second plurality of reflectors.
Type:
Grant
Filed:
December 6, 2018
Date of Patent:
June 15, 2021
Assignee:
GALTRONICS USA, INC.
Inventors:
Sadegh Farzaneh, Minya Gavrilovic, Des Bromley, Farid Jolani
Abstract: Antenna arrays include first and second radiating elements, which are responsive to respective first and second hybrid radio frequency (RF) signals, and a power divider circuit. The power divider circuit is configured to generate the first and second hybrid RF signals as power-reduced combinations of first and second RF input signals received at input terminals thereof. For example, the first hybrid RF signal may be generated as a combination of a 70-90 percent energy contribution of the first RF input signal with a 0.26-2.7 percent energy contribution of the second RF input signal. Similarly, the second hybrid RF signal may be generated as a 70-90 percent energy contribution of the second RF input signal with a 0.26-2.7 percent energy contribution of the first RF input signal.
Type:
Grant
Filed:
June 20, 2018
Date of Patent:
November 17, 2020
Assignee:
CommScope Technologies LLC
Inventors:
Xia Mei, Yuemin Li, Martin L. Zimmerman, Haifeng Li, Long Shan
Abstract: An antenna apparatus provides a feed line through which an RF signal passes, a feed via which has a first end electrically connected to the feed line, a feed antenna pattern which is electrically connected to the second end of the feed via and which extends from the second end of the feed via in a first extending direction, a mirroring antenna pattern spaced apart from the feed antenna pattern and extending in a second direction opposite to the extending direction of the feed antenna pattern, a ground line electrically separated from the feed line, and a mirroring core pattern which electrically connects the ground line and the mirroring antenna pattern and is disposed to bypass the feed via.
Type:
Grant
Filed:
February 4, 2019
Date of Patent:
November 3, 2020
Assignee:
Samsung Electro-Mechanics Co., Ltd.
Inventors:
Nam Ki Kim, Dae Ki Lim, Ju Hyoung Park, Myeong Woo Han, Jeong Ki Ryoo
Abstract: An aircraft, to a system, and to a method of geolocation for calculating the current coordinates at least in longitude and in latitude of a current position of an aircraft. Such an invention makes it possible to calculate the current coordinates in latitude and in longitude corresponding to the current position of the aircraft on the basis firstly of first and second coordinates in latitude and in longitude of two ground stations and secondly of first and second transmission directions of the radio signals.
Abstract: One example discloses a near-field circuit configured to be coupled to a near-field antenna wherein the near-field antenna includes, a first conductive structure, a second conductive structure, a first feeding connection, and a second feeding connection, wherein the conductive structures are configured to transmit and/or receive non-propagating quasi-static electric (E) field signals, the near-field circuit including: a transmit circuit having a first coupling connection and a second coupling connection; a voltage boost circuit configured to be coupled in series between the first coupling connection of the transmit circuit and the first feeding connection of the near-field antenna; wherein the second coupling connection of the transmit circuit is configured to be coupled to the second feeding connection of the near-field antenna.
Abstract: Systems, methods, and devices relating to antennas. A crossed dipole antenna element has a ring encircling the antenna. The ring, constructed of a conductive material, is not touching the arms of the dipole antenna and the distance between the ring and the arms of the antenna can be optimized. The antenna element assembly can be used in one or two dimensional antenna arrays.
Type:
Grant
Filed:
August 31, 2015
Date of Patent:
February 4, 2020
Assignee:
Communication Components Antenna Inc.
Inventors:
Sadegh Farzaneh, Minya Gavrilovic, Jacob Van Beek
Abstract: A communication system includes an antenna assembly and a housing holding the antenna assembly. The antenna assembly has an antenna element having a substrate and a dual dipole antenna circuit including a low-band ground terminal, a low-band feed terminal, a high-band ground terminal and a high-band feed terminal and a transmission line electrically connected to the dual dipole antenna circuit. The housing includes an upper shell and a lower shell meeting at an interface having upper and lower strain relief components at the interface to receive the transmission line. The upper shell has an upper locating feature and the lower shell has a lower locating feature interfacing to locate the upper shell relative to the lower shell.
Type:
Grant
Filed:
March 21, 2018
Date of Patent:
December 17, 2019
Assignee:
TE Connectivity Corporation
Inventors:
Xing Yun, Nicholas Lee Evans, Bruce Foster Bishop, John Wesley Hall
Abstract: An antenna device is described. The antenna device 100 comprises at least two antenna elements each of comprising a first radiating element 110 and a corresponding second radiating element 120. The second radiating element 120 extends in a height direction along a common center axis A from a foot of the antenna device 100 to its corresponding first radiating element 110. The first radiating element 110 extends in a length direction outwards from the common center axis A. The length of the first radiating element 110 defines the maximum supported wavelength. Furthermore, each first radiating element 110 has a greater length than its width and each first radiating element 110 is electrically coupled to its corresponding second radiating element 120 along the length direction, so that the second radiating element 120 can contribute to the smaller wavelengths.
Type:
Grant
Filed:
April 21, 2017
Date of Patent:
September 17, 2019
Assignee:
HUAWEI TECHNOLOGIES CO., LTD.
Inventors:
Bruno Biscontini, Vincent Mallepeyre, Yingtao Luo
Abstract: Disclosed are various embodiments for transmitting energy conveyed in the form of a guided surface-waveguide mode along a lossy conducting medium such as, e.g., the surface of a terrestrial medium by exciting a polyphase waveguide probe. A probe control system can be used to adjust the polyphase waveguide probe based at least in part upon characteristics of the lossy conducting medium.
Abstract: Electronic devices may be provided with antenna arrays and wireless circuitry for handling wireless communications in satellite communications bands and other frequency bands of interest. A portable electronic device may have a housing with a peripheral edge. An array of antennas in the portable device may extend along the peripheral edge and may be coupled (directly or indirectly) to wireless circuitry that transmits and receives satellite communications signals and/or other wireless communications signals. The antennas may include dipole antennas. The dipole antennas may include edge dipole antennas with straight arms that extend parallel to one or more peripheral housing edges. Additionally or alternatively, the dipole antennas may include corner dipole antennas at the corners of the housing. The corner dipole antennas may have arms with bent tips. A ground plane in the center of the electronic device may serve as a reflector for the peripheral dipole antennas.
Abstract: A non-contact data receiving/transmitting body is provided which includes an IC chip, a first antenna to which the IC chip is connected, and a second antenna for use as a booster that resonates with the first antenna in a non-contact manner. The first antenna is a ring-shaped antenna having at least three straight portions. The second antenna has a central portion that is bent such that parts of the central portion extend respectively along the three straight portions of the first antenna and are at an angle equal to or greater than 90° to each other. The IC chip is provided on the three straight portions of the first antenna and is connected to the first antenna at the straight portions.
Abstract: A flat antenna includes a pair of radiation units that are spaced apart from each other and that are symmetrical with respect to a symmetrical axis. Each of the radiation units includes a main radiating body, an auxiliary radiating body and a feed-in point. The main radiating body has a substantially triangular shape and includes a first angle close to the symmetrical axis, a second angle far from the symmetrical axis with respect to the first angle, and an edge between the first and second angles and obliquely facing the symmetrical axis. The auxiliary radiating body is connected to the main radiating body, and extends from the first edge toward the symmetrical axis. The feed-in point is formed on the first angle of the main radiating body.
Abstract: A compact antenna for centimetric frequency bands includes an active planar element forming a radiator, coupled to an input of a receiver circuit and/or to the output of an emitter circuit, and a passive planar element forming a reflector. The passive planar element is formed by a periodic structure of the metamaterial type comprising a network of resonating cells, in particular cells of the complementary concentric slit-ring type Complementary Split-Ring Resonator (CSRR). A clip-shaped support made of a dielectric material supports the active planar element and the passive planar element.