Vibrating Or Oscillating Element Patents (Class 356/26)
  • Patent number: 8218132
    Abstract: Particles flowed through a micro-channel are imaged by imaging means. Particle speed measuring means determines the particle speed from the image data. Particle counting means counts the particles flowed for a predetermined time. Particle size measuring means measures the size of the particles. The measurements of the particles flowed at a predetermined timing are managed by data associating means. With this, the speed, number and size of particles flowed through a micro-channel can be determined at a time, and associated data can be obtained.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: July 10, 2012
    Assignees: The University of Electro-Communications, Kowa Company, Ltd.
    Inventors: Yukio Yamada, Shinpei Okawa, Taisuke Hirono
  • Patent number: 7791719
    Abstract: An optical system measures scene inhomogeneity. The system includes a mirror for receiving radiance of a field-of-view (FOV) of a scene, and reflecting a portion of the radiance to an optical detector. A controller is coupled to the mirror for changing the FOV. The optical detector provides a signal of the reflected portion of radiance of the scene. A processor determines scene inhomogeneity, based on amplitude of the signal provided from the optical detector. The controller is configured to modulate the FOV at a periodic interval, using a sinusoidal waveform, a pulse code modulated waveform, or a pseudo-random waveform.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: September 7, 2010
    Assignee: ITT Manufacturing Enterprises, Inc.
    Inventors: Douglas Lent Cohen, David James Crain, Richard James Hertel
  • Patent number: 7663108
    Abstract: A system for analyzing a bulk material including a tube for transporting a stream of a bulk material, a plurality of illuminators for directing radiation through the stream and arranged about a circumference of the tube, a plurality of detectors arranged substantially opposite the illuminators, and at least one spectrometer for receiving and analyzing data from the plurality of detectors.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: February 16, 2010
    Assignee: ABB Schweiz AG
    Inventors: Michael Mound, Leopold Blahous
  • Patent number: 7535556
    Abstract: An apparatus and method for optically analyzing samples in a biological sample container containing samples arranged at different locations on the base of the container. An optical acquisition device is provided comprising a detector and an objective. The position of the upper and lower surfaces of the base at each of the sample locations is determined by a confocal polychromatic displacement sensor. Light is collected from each of the sample locations by adjusting the focal plane to be coincident with, or vertically offset from, the upper surface of the base, as determined from the displacement sensor. This allows for rapid scanning of large numbers of samples in a multi-well plate or other biological sample containers.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: May 19, 2009
    Assignee: Genetix Limited
    Inventor: Jiang Yonggang
  • Patent number: 6621561
    Abstract: The disclosed invention concept utilizes a homodyne/heterodyne interferometer technique in a modified lidar in such a manner as to sense the rotational velocity magnitude and sense of a rotating (or “spinning”) object. Sensing is accomplished in assessing either the Doppler bandwidth of a single axis system or in sensing the frequency separation of Doppler spectrums in a “two” axis system. The technique is unique in that the Doppler bandwidth is linearly proportional to rotational velocity and independent of intercept position in the rotation plane. The technique as disclosed is based on optical fiber lidar techniques, but can be implemented in free-space optics as well. The disclosed invention therefore comprises both a technique for utilization of an optical fiber lidar and a new arrangement of lidar elements. Compact and cost effective, standoff rotation velocity sensors and systems can be fabricated with this technique.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: September 16, 2003
    Assignee: Virginia Tech Intellectual Properties
    Inventor: Carvel E. Holton