For Spectrographic (i.e., Photographic) Investigation Patents (Class 356/302)
  • Publication number: 20080278720
    Abstract: A digital spectrophotometer and a spectrologial method for determining spectrum wavelength of an unknown illuminant, and the digital spectrophotometer has a base, an operating assembly and a photographic assembly. The operating assembly is attached to the base and has an operating pedestal, a rotating frame and a spectrometer. The rotating frame is connected rotatably to the operating pedestal. The spectrometer is connected solidly to the rotating frame. The photographic assembly is connected to the operating assembly. The spectrologial method is calculated the diffraction angle ? i and the wavelength of the unknown illuminant by putting the parameters into the into the first and second functions.
    Type: Application
    Filed: May 10, 2007
    Publication date: November 13, 2008
    Inventors: Jwh Lee, Shih-Fang Wu, Zi-Yu Liu, Zhe-Rui Zhang
  • Patent number: 7447408
    Abstract: A method and apparatus for imaging using a double-clad fiber is described.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: November 4, 2008
    Assignee: The General Hospital Corproation
    Inventors: Brett E. Bouma, Guillermo J. Tearney, Dvir Yelin
  • Patent number: 7437000
    Abstract: This invention comprises the means for the capture of full spectrum images in an electronic camera without the use of color primary filters to limit the spectral color gamut of the captured image. The fundamental principle of the invention is that each pixel of the image sensor acts as an independent spectrophotometer and spectral separator. Electromagnetic energy enters though a slit or collimating optic. Electromagnetic energy gets diffracted into component spectra by diffraction grating spectrophotometer for each pixel of image Electromagnetic energy leaves diffraction grating at different angles based on wavelength of the energy Spectrophotometer separates light for each pixel into its spectral components onto photodetector line array elements. Individual line array elements which are activated determine the original radiance level of the light source containing that specific wavelength region. The sum of these regions determines the spectral signature of the light at that pixel element.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: October 14, 2008
    Inventors: Eric Rosenthal, Richard Jay Solomon, Clark Johnson
  • Publication number: 20080239308
    Abstract: A substrate processing system includes a processing module to process a substrate, a factory interface module configured to accommodate at least one cassette for holding the substrate, a spectrographic monitoring system positioned in or adjoining the factory interface module, and a substrate handler to transfer the substrate between the at least one cassette, the spectrographic monitoring system and the processing module.
    Type: Application
    Filed: March 31, 2008
    Publication date: October 2, 2008
    Inventors: Abraham Ravid, Boguslaw A. Swedek, Dominic J. Benvegnu, Jeffrey Drue David, Jun Qian, Sidney P. Huey, Ingemar Carlsson, Lakshmanan Karuppiah, Harry Q. Lee
  • Patent number: 7317516
    Abstract: A chemical imaging system is provided which uses a near infrared radiation microscope. The system includes an illumination source which illuminates an area of a sample using light in the near infrared radiation wavelength and light in the visible wavelength. A multitude of spatially resolved spectra of transmitted, reflected, emitted or scattered near infrared wavelength radiation light from the illuminated area of the sample is collected and a collimated beam is produced therefrom. A near infrared imaging spectrometer is provided for selecting a near infrared radiation image of the collimated beam. The filtered images are collected by a detector for further processing. The visible wavelength light from the illuminated area of the sample is simultaneously detected providing for the simultaneous visible and near infrared chemical imaging analysis of the sample. Two efficient means for performing three dimensional near infrared chemical imaging microscopy are provided.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: January 8, 2008
    Assignee: ChemImage Corporation
    Inventors: Patrick J Treado, Matthew Nelson, Scott Keitzer
  • Publication number: 20070242267
    Abstract: The present invention discloses an optical measurement and/or inspection device that, in one application, may be used for inspection of semiconductor devices. It comprises a light source for providing light rays; a half-parabolic-shaped reflector having an inner reflecting surface, where the reflector having a focal point and an axis of summary, and a device-under-test is disposed thereabout the focal point. The light rays coming into the reflector that is in-parallel with the axis of summary would be directed to the focal point and reflect off said device-under-test and generate information indicative of said device-under-test, and then the reflected light rays exit said reflector. A detector receives the exited light rays and the light rays can be analyzed to determine the characteristics of the device-under-test.
    Type: Application
    Filed: April 16, 2007
    Publication date: October 18, 2007
    Applicant: Raintree Scientific Instruments (Shanghai) Corporation
    Inventors: Tongxin Lu, Xiaohan Wang
  • Patent number: 7268862
    Abstract: A chemical imaging system is provided which uses a near infrared radiation microscope. The system includes an illumination source which illuminates an area of a sample using light in the near infrared radiation wavelength and light in the visible wavelength. A multitude of spatially resolved spectra of transmitted, reflected, emitted or scattered near infrared wavelength radiation light from the illuminated area of the sample is collected and a collimated beam is produced therefrom. A near infrared imaging spectrometer is provided for selecting a near infrared radiation image of the collimated beam. The filtered images are collected by a detector for further processing. The visible wavelength light from the illuminated area of the sample is simultaneously detected providing for the simultaneous visible and near infrared chemical imaging analysis of the sample. Two efficient means for performing three dimensional near infrared chemical imaging microscopy are provided.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: September 11, 2007
    Assignee: Chem Image Corporation
    Inventors: Patrick J. Treado, Matthew Nelson, Scott Keitzer
  • Patent number: 7268861
    Abstract: A chemical imaging system is provided which uses a near infrared radiation microscope. The system includes an illumination source which illuminates an area of a sample using light in the near infrared radiation wavelength and light in the visible wavelength. A multitude of spatially resolved spectra of transmitted, reflected, emitted or scattered near infrared wavelength radiation light from the illuminated area of the sample is collected and a collimated beam is produced therefrom. A near infrared imaging spectrometer is provided for selecting a near infrared radiation image of the collimated beam. The filtered images are collected by a detector for further processing. The visible wavelength light from the illuminated area of the sample is simultaneously detected providing for the simultaneous visible and near infrared chemical imaging analysis of the sample. Two efficient means for performing three dimensional near infrared chemical imaging microscopy are provided.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: September 11, 2007
    Assignee: ChemImage Corporation
    Inventors: Patrick J. Treado, Matthew Nelson, Scott Keitzel
  • Publication number: 20070195319
    Abstract: Improved ease of mode matching to a passive optical cavity is provided by selecting a cavity design that has a predetermined deviation from a reference cavity design having high transverse mode degeneracy. This predetermined deviation tends to be small, so that the first overlap of high-order transverse modes with the lowest order transverse mode in frequency occurs at relatively high transverse mode numbers. Coupling to high-order transverse modes is thereby reduced, since high-order transverse modes having relatively high transverse mode numbers tend to be more difficult to couple to, and tend to have high loss. During assembly of such a cavity, it can be useful to apply a perturbation to the cavity to further optimize mode matching. For example, the length of an enclosed cavity can be adjusted by altering the number and/or length of spacers in the cavity housing.
    Type: Application
    Filed: February 22, 2007
    Publication date: August 23, 2007
    Inventors: Alexander Kachanov, Serguei Koulikov, Bruce A. Richman
  • Patent number: 7248360
    Abstract: A system for laser scanning provides spectral flexibility needed for the spectroscopic monitoring of highly multiplexed samples, such as cellular and particle assays in whole blood or other suspensions. In accordance with embodiments of the present invention, the system comprises a scanner to direct an excitation laser through a sample, an objective to collect light emitted by the sample in response to the excitation laser, a spectrograph to disperse the emitted light over a plurality of wavelengths as a spectrum, and a charge coupled device for detecting the spectrum. The system can be used with samples having a variety of reporter tags, including one or more SERS tags, fluorescent organic and protein tags, and quantum dot tags. A laser scanning apparatus and method of using the same is also provided.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: July 24, 2007
    Assignee: PPD Biomarker Discovery Sciences, LLC
    Inventors: Uwe Horchner, Aaron B. Kantor
  • Patent number: 7245372
    Abstract: An analyzing method and system includes projecting light onto a specimen, detecting an optical spectrum from the specimen, dividing the detected optical spectrum by a predetermined time interval, applying a weighting vector and a gain and offset vector to the divided spectra to generate a resolution vector, quantizing an analog signal of the resolution vector to a digital signal, and applying a synthesis vector to the quantized spectra to restore the quantized spectra to a size of the optical spectrum. A spectrum having a large amplitude difference is temporally divided and is analyzed by applying different resolutions to individual time intervals. Spectral portions of the spectrum having relatively small peak amplitudes are selected as a region of interest (ROI) to be modified.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: July 17, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Wan-taek Han
  • Patent number: 7241569
    Abstract: A Method for identifying one or a small number of molecules, especially in a dilution of ?1 ?M, using laser excited FCS with measuring times ?500 ms and short diffusion paths of the molecules to be analyzed, wherein the measurement is performed in small volume units of preferably ?10?14 l, by determining material-specific parameters which are determined by luminescence measurements of molecules to be examined. The device which can be preferably used for performing the method according to the invention is a per se known system of microscope optics for laser focusing for fluorescence excitation in a small measuring compartment of a very diluted solution and for imaging the emitted light in the subsequent measurement through confocal imaging wherein at least one system of optics with high numerical aperture of preferably ?1.2 N.A.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: July 10, 2007
    Assignee: Olympus Corporation
    Inventors: Rudolf Rigler, Manfred Eigen, Karsten Henco, Ulo Mets, Jerker Widengren, Michael Stuke, Michael Brinkmeyer, Wolfgang Simm, Olaf Lehman
  • Patent number: 7226777
    Abstract: According to the present invention, the expansion of measurable concentration range for an antigen in a sample solution can be achieved, without a step of dilution or the like. The concentration of an antigen contained in a sample solution is determined from the maximum value and/or minimum value of turbidity level detected in the observation of the transient phenomenon of turbidity, elapsed time when the maximum and/or minimum value is observed, and turbidity level.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: June 5, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tatsurou Kawamura, Keiko Yugawa, Akihito Kamei
  • Patent number: 7217371
    Abstract: The present invention relates to interfacing new sensors to incumbent controls. In particular, it relates to optically interfacing a new sensor, such as a spectrometer with plasma generator, to an incumbent electro-optical sensor. Logic and resources to control activation of the incumbent electro-optical sensor may be included. Particular aspects of the present invention are described in the claims, specification and drawings.
    Type: Grant
    Filed: July 26, 2004
    Date of Patent: May 15, 2007
    Assignee: Lightwind Corporation
    Inventor: Herbert E. Litvak
  • Patent number: 7123358
    Abstract: An ion implanted semiconductor surface is illuminated with a flood illumination of monochromatic radiation, and an image of the surface is taken using light which has been Raman scattered. The illumination and imaging system are calibrated by flood illuminating a uniformly Raman scattering surface.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: October 17, 2006
    Assignee: ChemImage Corporation
    Inventors: David Tuschel, Patrick J. Treado, Joseph E. Demuth
  • Patent number: 7052650
    Abstract: Apparatus for the manipulating and testing of molecules and in particular of DNA comprising a surface on which the molecule is anchored on multiple points at one end and a paramagnetic bead on which said molecule is anchored on multiple points at its other end, magnetic means for applying a force to the bead, said magnetic means being used to control the stretching and rotation of said bead and molecule, optical magnification means and a camera for the visualisation of said bead, computer means to which the images of the camera are transmitted, said computer means comprising means for analyzing the motions of the bead. A method for the manipulating and testing of molecules and in particular of DNA in which a molecule is anchored at one end to a fixed surface and at its other end to a paramagnetic bead wherein said molecule is anchored on multiple points at each of said ends.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: May 30, 2006
    Assignee: Center National de la Recherche Scientifique (CNRS)
    Inventors: Terrence R. Strick, Jean F. Allemand, David Bensimon, Aaron Bensimon, Vincent Croquette
  • Patent number: 6925414
    Abstract: An apparatus and method of measuring an article is provided. The method includes providing an article having a feature to be measured, the article having a surface; measuring the surface of the article with a measuring instrument to obtain article surface data; and analyzing the article surface feature data such that data on the feature to be measured is developed. Measuring the surface of the article can include scanning the measuring instrument over the article surface. Analyzing the article surface feature data can include associating portions of the article surface data with individual features thereby producing associated feature surface data; and analyzing the associated feature surface data. The measuring instrument can be, for example, a contact measuring instrument or an interference measuring instrument. A computer storage medium having instructions stored therein for causing a computer to perform the method described above is also provided.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: August 2, 2005
    Assignee: Eastman Kodak Company
    Inventors: Randolph C. Brost, David R. Strip, Randall H. Wilson
  • Patent number: 6867858
    Abstract: A method of monitoring sample crystallization from a solution. The method includes the collection of multiple Raman spectra from a sample dissolved in a solvent as a function of time and under conditions promoting crystallization. Within each of the multiple Raman spectra, a first signal is identified corresponding to the sample associated with the solvent. A second signal corresponding to the sample in a microcrystallite state is also identified. Thereafter, the intensity of the multiple Raman spectra are measured for an increase relating to formation of the sample in a microcrystallite state. A method of monitoring sample crystallization from a solution as a function of turbidity is also disclosed. The method includes the collection of multiple Raman spectra from a sample dissolved in a solvent as a function of time under conditions promoting crystallization.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: March 15, 2005
    Assignee: Kaiser Optical Systems
    Inventors: Harry Owen, Mark Welch, Michael J. Pelletier
  • Patent number: 6853857
    Abstract: In a method, a device and a computer program for determining the blood flow in a tissue or organ region, the fluorescence intensity of an exogenous chromophore is measured as a function of time in the tissue region to be examined and from this the permeation rate of the chromophore is calculated, from which the blood flow can be derived.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: February 8, 2005
    Assignee: Pulsion Medical Systems AG
    Inventors: Ulrich J. Pfeiffer, Thorsten Burger, Andreas Becker
  • Patent number: 6845910
    Abstract: A produce recognition system and method which use an internal reference to calibrate a produce data collector. The produce data collector collects first data from an external reference, collects second and third data from an internal reference, and collects fourth data from a produce item. A computer determines a first calibration value from the first and second data and a second calibration value from the third data and applies the first and second calibration values to the fourth data to produce fifth data. The computer further obtains sixth data from reference produce data and compares the fifth and sixth data to identify the produce item.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: January 25, 2005
    Assignee: NCR Corporation
    Inventors: Yeming Gu, Donald A. Collins, Jr.
  • Patent number: 6844199
    Abstract: A system for the detection of bacteria based on bacteria-antibody complexes. Bacteria attached to antibody are detected with resonance Raman spectroscopy. The bacteria are detected directly in a great numerical excess, e.g. 100 to 10,000 of antibody molecules. A sample to be tested is placed in a medium, the medium containing antibodies attached to a surface for binding to a specific bacteria to form an antigen to antibody complex. The medium is contacted with a beam of light energy. The bacteria, as a lower resonance enhanced Raman backscattered energy, is analyzed for the presence or absence of the bacteria.
    Type: Grant
    Filed: March 14, 1997
    Date of Patent: January 18, 2005
    Assignee: The Board of Governors for Higher Education, State of Rhode Island and Providence Plantations
    Inventors: Wilfred H. Nelson, Jay F. Sperry
  • Publication number: 20040184033
    Abstract: A hyperspectral scene generator generates a projected linear scene where the spectral characteristics at each location that forms the scene are dynamically and arbitrarily controllable. The generator can be controlled to generate a projected linear scene including a targeted object and arbitrary spectral content that duplicates the spectral content of real targets and backgrounds to facilitate testing of target identification software of a hyperspectral imaging system in view of expected actual field operation of the sensor of the imaging system.
    Type: Application
    Filed: March 17, 2004
    Publication date: September 23, 2004
    Inventor: Neil R. Nelson
  • Patent number: 6795777
    Abstract: According to one embodiment of the present invention, identifying a molecule of a sample includes illuminating the sample with a preparation light beam, where the preparation light beam can initiate a substantially maximized coherence of a target molecule to yield a molecular signature corresponding to the target molecule. The sample is illuminated with a probe light beam, where the probe light beam can scatter radiation from the sample. Radiation scattered from the sample is detected, and whether the radiation exhibits the molecular signature is determined. The target molecule is identified in accordance with the determination of whether the radiation exhibits the molecular signature.
    Type: Grant
    Filed: March 4, 2003
    Date of Patent: September 21, 2004
    Assignee: The Texas A&M University System
    Inventors: Marlan O. Scully, George W. Kattawar, Robert P. Lucht, Tomas Opatrny, Herschel S. Pilloff, Alexei V. Sokolov, M. Suhail Zubairy
  • Patent number: 6710873
    Abstract: A method and apparatus for temperature-independent determination of a concentration of a probe gas in a sample over a selected temperature range between a low temperature TL corresponding to a lowest temperature expected or found in the sample and a high temperature TH corresponding to a highest temperature expected or found in the sample. In accordance with the method, a probe temperature function of the probe gas is determined over the temperature range using a first spectroscopic technique. Then, a second spectroscopic technique is selected, a reference gas is identified and a reference temperature function of the reference gas is determined using the second spectroscopic technique over the temperature range. In particular, the reference gas is identified such that a ratio of the probe temperature function and the reference temperature function is substantially constant over the temperature range.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: March 23, 2004
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jian Wang, Ronald K. Hanson
  • Patent number: 6707548
    Abstract: Systems and methods for filter based spectrographic analysis are provided that permit rapid analysis of bioanalytes. Systems include devices for illuminating a sample with electromagnetic radiation and capturing radiation emitted from the sample. Emitted radiation can be collected by a plurality of waveguides each associated with a filter for a particular wavelength of radiation. Focusing devices are associated with filters and waveguides in certain embodiments. Radiation captured by waveguides can then be transmitted to a remote detector, which can determine the intensity of radiation for each waveguide. The use of a plurality of filters having different, band pass characteristics can permits the simultaneous detection of a plurality of different wavelengths of radiation emitted by a sample, thereby providing spectrographic information about the sample under study. Systems can include computers for storing acquired spectrographic information, addressable arrays of samples, and information security measures.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: March 16, 2004
    Assignee: Array Bioscience Corporation
    Inventors: David I. Kreimer, Oleg A. Yevin, Robert Weber
  • Publication number: 20040027565
    Abstract: In order to provide an arrangement for pressure compensation for optical devices, particularly spectrometers or the like optical devices, for compensating pressure differences caused by changes in temperature and air pressure between the internal pressure and the external pressure at a housing of an optical device enclosing optical units, which arrangement prevents a contamination of optical functional surfaces of the optical units of the optical device and ensures a constant pressure balance between the interior space and the external surroundings of the housing of an optical device with its optical units while economizing on manufacturing costs, it is proposed that the arrangement for pressure compensation comprises at least one pressure compensating element which is constructed on both sides so as to be permeable to air and which is arranged in a housing opening of the housing wall of the optical device enclosing the optical units.
    Type: Application
    Filed: April 24, 2003
    Publication date: February 12, 2004
    Inventors: Nico Correns, Ullrich Klarner, Werner Hoyme, Felix Kerstan
  • Publication number: 20040027566
    Abstract: An optical system deviation estimating apparatus includes an erected/inverted attitude setting means 9 for changing dispositional attitude of an optical system under test, a non-interferometric type wavefront measuring means 10 for measuring wavefronts at the attitudes as set up without resorting to interference phenomenon of light, a polynomial approximation means 15 for expanding measured wavefront values determined by the non-interferometric type wavefront measuring means 10 to a polynomial, an averaging arithmetic means 11 for averaging the measured values derived from output of the non-interferometric type wavefront measuring means 10 or alternatively arithmetic values derived from output of the polynomial approximation means 15, and a polynomial specific coefficient extraction arithmetic means 16 for extracting specific coefficient values of the polynomial.
    Type: Application
    Filed: May 5, 2003
    Publication date: February 12, 2004
    Inventors: Jiro Suzuki, Toshiyuki Ando, Hiroshi Suzuki, Shusou Wadaka, Yoshihito Hirano, Izumi Mikami, Tadashi Matsushita
  • Patent number: 6650810
    Abstract: A tunable optical filter for simulating the waveband spectrums of selected substances. The filter includes an optical waveguide with a core material for transmitting light energy and a nominal core refractive index for the core material. Predetermined periodic variations are formed in the core material of the optical waveguide between the input and output ends that alter the core refractive index of the waveguide at the location of the periodic variations. Depending upon the periodic variations, the waveguide produces a predetermined reference waveband spectrum output that matches the waveband spectrum of a selected substance. A modulator is coupled to the waveguide to selectively modulate the periodic variations to intermittently shift the reference waveband spectrum output to fine tune the filter and reduce signal noise.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: November 18, 2003
    Assignee: Physical Optics Corporation
    Inventors: Robert A. Lieberman, John D Prohaska, Lothar U Kempen
  • Patent number: 6646724
    Abstract: A device determines and subsequently corrects the dispersive influence on a measurement made according to the principles of phase or pulse modulation along a visible range. The device has an element for emission of electro-magnetic radiation with two carrier wavelengths in the border regions of the visible spectrum. After passing through a volume of atmosphere to be probed, and reflection, the radiation is received and the dispersive influence, for instance, on the distance measurements, is calculated and corrected.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: November 11, 2003
    Assignee: Leica Geosystems AG
    Inventors: Paul Benz, Jürg Hinderling
  • Patent number: 6618138
    Abstract: An angularly multiplexed store contains filters derived from prior examination of input image reference samples, a spectrum analyzer produces spectral data representing the frequency spectrum of the input image under examination, a computer produces an encoded map of the spectral data representing the input image frequency spectrum. The encoded map is transformed, inputted into the store while close match spectral correlation light beams emerge from the multiplexed store, each having an emerging angle associated with that filter within the multiplexed store producing a close match with the first transform. An array of light beam detectors and a display present images having colors that indicate the nature of the input image such as a type of cancer. An associated memory-retro-reflector arrangement displays characters naming the materials making up the input image such as types of abnormal tissue.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: September 9, 2003
    Inventor: Jed Khoury
  • Patent number: 6587600
    Abstract: A topocompositional image of an inanimate object or surface can be generated that comprises data that relates to a topographical image, data that relates to a chemical compositional image, and combining such topographical and chemical compositional data to form a composite image. Conceptually a laser or other suitable imaging source that functions to induce both topographical and chemical compositional data directs a laser beam into a scanning optics source. The scanning optics source directs an active beam to a point on a surface. A sensor subsequently collects data and information from the surface by receiving the reflection or deflection of the active beams in order to provide position, chemical compositional and topographical data that represent the interaction of the active beam with a point. Position data, chemical compositional data and topographical data are transmitted along individual feeds to a data analysis component where they are analyzed and combined in order to generate a composite image.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: July 1, 2003
    Assignee: Floor Corporation
    Inventor: Jim Shipley
  • Patent number: 6582903
    Abstract: A method for identifying one or a small number of molecules, especially in a dilution of ≦1 &mgr;M, using laser excited FCS with measuring times ≦500 ms and short diffusion paths of the molecules to be analyzed, wherein the measurement is performed in small volume units of preferably ≦10−14 l, by determining material-specific parameters which are determined by luminescence measurements of molecules to be examined.
    Type: Grant
    Filed: February 10, 1998
    Date of Patent: June 24, 2003
    Assignee: Evotec OAI AG
    Inventors: Rudolf Rigler, Manfred Eigen, Karsten Henco, Ulo Mets, Jerker Widengren, Michael Stuke, Michael Brinkmeyer, Wolfgang Simm, Olaf Lehmann
  • Patent number: 6580091
    Abstract: A top surface of a wafer is provided with an n-type source region, an n-type drain region, and an n-type semiconductor region. Dry etching using a plasma is performed with respect to an interlayer insulating film deposited on the wafer to form openings reaching the respective regions, followed by light etching for removing a damaged layer. In this case, exciting light is supplied intermittently to the n-type semiconductor region. The progression of the removal of the damaged layer and the stage of development of a newly damaged layer are sensed by monitoring the change rate of the intensity of reflected probe light in the presence and absence of the exciting light, resulting in the formation of a semiconductor device having low and equal contact resistance. In-line control using optical evaluation enables the implementation of semiconductor devices with excellent and consistent properties.
    Type: Grant
    Filed: July 5, 2000
    Date of Patent: June 17, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Koji Eriguchi, Takayuki Yamada, Masanori Okuyama
  • Patent number: 6560546
    Abstract: Spectrographic instruments at remote site locations measure near infrared absorbance spectra for unknown materials and transmit the absorbance spectra to a central web site where, the measurements are standardized to be the same as if they were measured by a master instrument. The standardized absorbance spectra are then compared with a library of spectra stored at the central web site to select a subset of absorbance spectra from the library which most closely correlate with the absorbance spectrum received from the remote sites. The library spectra are obtained from measurements on materials, the measurable characteristics of which are known. From the selected subset, equations are developed relating the measurable characteristics of the unknown material to the absorbance spectra and from these equations, the measurable characteristics of the unknown materials are determined. The results of this analysis are then transmitted back to the remote site locations electronically.
    Type: Grant
    Filed: August 7, 2000
    Date of Patent: May 6, 2003
    Assignee: Infrasoft LLC
    Inventors: John S. Shenk, Mark O. Westerhaus
  • Publication number: 20020128557
    Abstract: The present invention relates to an apparatus for detecting tumorous tissue comprising at least one excitation light source 12, which first excitation light source 12 emits a first excitation light 34 of a wavelength of between 300 nm and 314 nm and includes at least one optical fiber 14 for guiding said first excitation light 34 to an object field 18 of the tissue 16 to be examined, and at least one lens 24 for projecting an auto-fluorescence signal and/or a remission signal 20 of said tissue 16, generated by means of said first excitation light 34, to a CCD or ICCD chip of a camera 22, as well as a data processing system 28 for processing the signals transmitted by said camera 22, said lens 24 being capable of processing UV light and being designed such that at least two images 48, 50 from different spectral regions of said fluorescent object field 18 are generated and projected to the CCD or ICCD chip, of which at least one image 48, 50 represents the UV range and another, different wavelength range of sai
    Type: Application
    Filed: May 18, 2001
    Publication date: September 12, 2002
    Inventors: Alexander Hohla, Gunther Leipert
  • Patent number: 6421553
    Abstract: A system and method for classifying tissue by application of discriminant analysis to spectral data. Spectra are recorded as amplitudes at a series of discrete wavelengths. Pluralities of reference spectra are recorded for specimens having known conditions. The reference spectra are subjected to discriminant analysis to determine wavelength regions of interest for the analysis. A plurality of amplitudes are selected for the analysis, and are plotted in an N-dimensional space. For each plurality of reference spectra corresponding to a specific known condition, a characteristic point is determined and plotted, the characteristic point representative of the known condition. A test spectrum is recorded from a test specimen, and the plurality of amplitudes corresponding in wavelength to the wavelength regions of interest are selected. A characteristic point in N-dimensional space is determined for the test spectrum.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: July 16, 2002
    Assignee: MediaSpectra, Inc.
    Inventors: Peter J. Costa, Kwong Hui, Robert J. Nordstrom
  • Patent number: 6413786
    Abstract: A device and a method enable the rapid, quantitative evaluation of a large collection of ligands for binding affinity with a certain immobilized receptor, the improvements being that binding pan be detected without the need for a label and that binding is carried out in solution phase at a high rate. The instrument has at least two embodiments, one is based on a sensitive absorption photometer and the other on a sensitive light scatter photometer operating at a specific resonance wavelength, &lgr;R, of small, metallic, colloidal particles. The resonance is present in small particles having a complex refractive index with real part n(&lgr;) approaching 0 and imaginary part k(&lgr;) approaching 2 simultaneously at a specific wavelength &lgr;R. The particles are substantially spherical and substantially smaller than &lgr;R. The receptor is immobilized on a suspension of such particles and ligand binding is detected by a change in optical absorption or light scatter at the resonance wavelength.
    Type: Grant
    Filed: August 11, 1999
    Date of Patent: July 2, 2002
    Assignee: Union Biometrica Technology Holdings, Inc.
    Inventors: W. Peter Hansen, Petra Krauledat
  • Patent number: 6352502
    Abstract: Disclosed is a method for obtaining feedback to drive a servo system for aligning and maintaining alignment in optical systems that bring light to an in vivo skin sample, for adjusting the focus of the optical system, and for adjusting the net depth of focus of the optical system within the in vivo system under characterization. The invention additionally provides a method for obtaining feedback to drive a servo system for aligning and maintaining alignment in optical systems that collect light from an in vivo skin sample, and for adjusting the focus of the optical system. These methods comprise adjusting the angle of incidence of electromagnetic radiation and/or providing a shielding lens to block scattered incident light, or otherwise limiting the field of view of the Raman scattered radiation collection system to exclude optical surfaces of the excitation delivery portion of the optical system. Also provided is a method for identifying spectroscopic depth markers in tissues.
    Type: Grant
    Filed: December 3, 1999
    Date of Patent: March 5, 2002
    Assignee: LighTouch Medical, Inc.
    Inventors: Joseph Chaiken, Charles M. Peterson, Karen P. Peterson
  • Patent number: 6322555
    Abstract: A method and system for laser surgery produces controlled laser pulses and simultaneously verifies that a sequence of pulses of prescribed energy are being delivered to the patient. A photo detector receives a predetermined portion of the energy of each treatment pulse. A separate monitoring computer compares an output signal from the photo detector corresponding to each treatment laser pulse with a reference value for that type of pulse obtained in a calibration sequence. Implementation in an ophthalmic laser surgery system is also disclosed.
    Type: Grant
    Filed: July 23, 1999
    Date of Patent: November 27, 2001
    Inventor: Leon C. LaHaye
  • Patent number: 6304324
    Abstract: A method of calculating optical frequency spectrum for use in an optical-spectrum measuring apparatus for measuring optical spectrum characteristics of a light source. In the method, a bandwidth storage section stores a characteristic of a bandwidth of passed wavelengths with respect to a measuring wavelength of a spectrometer. A CPU obtains a bandwidth of wavelengths with respect to each measuring point in accordance with the stored bandwidth of wavelengths. Then, measured intensities of light at the measuring points are used to add measured values across the measured value in a required range of bandwidth of optical frequencies. Moreover, correction is performed in accordance with a ratio of the bandwidth of wavelengths at each of the measuring points and the intervals of wavelength at the measuring points. Thus, an intensity of light at each of the measuring points is obtained.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: October 16, 2001
    Assignee: Ando Electric Co., Ltd.
    Inventor: Takashi Iwasaki
  • Patent number: 6245507
    Abstract: The present invention provides a hyperspectral imaging apparatus and methods for employing such an apparatus for multi-dye/base detection of a nucleic acid molecule coupled to a solid surface.
    Type: Grant
    Filed: August 18, 1998
    Date of Patent: June 12, 2001
    Assignee: Orchid BioSciences, Inc.
    Inventor: Valery Bogdanov
  • Patent number: 6111639
    Abstract: A method and apparatus for counteracting adverse drug events (ADE's) which are caused by the administration of intravenous medications of incorrect types, concentrations or dosages, and which may result in morbidity and even mortality to recipient patients. A container, preferably in the nature of a transparent plastic bag employed for intravenous administrations, contains the requisite infusion at a prescribed volume, adding a specified amount of prescribed medication possessing a predefined amount of a coloring material, such as a vegetable dye, to the volume of infusion material or liquid in order to form a prescribed concentration of medication, with the coloring material defining a specific type of medication. Analyzing of the concentration of medication is effected through the utilization of spectrophotometric equipment, and to resultingly obtain a real medication concentration value.
    Type: Grant
    Filed: May 6, 1998
    Date of Patent: August 29, 2000
    Inventor: Lawrence A. Reduto
  • Patent number: 6040906
    Abstract: The invention uses a resonance Raman spectrometer 1 for achieving the identification and quantitation of analytes including biomolecules, organic and inorganic molecules. According to the present invention, a) a sample 2 is deuterated 3 with D20 for facilitating identification and quantitation of analytes 4 of said sample, b) a monochromatic light 6 illuminates sample 2 of analytes 4 for producing Raman sample light 12 and rejecting Rayleigh light 14, c) the Raman sample light 12 is passed through a depolarizer 19 for producing randomized polarization components 20, d) a Raman sample spectrum 22 is generated, calibrated with respect to an absolute differential Raman cross-section standard in response to said randomized polarization components 22, e) the Raman sample spectrum 22 is provided to a spectral analyzer 24 for identification 26 and/or quantitation 28 of the analytes 4.
    Type: Grant
    Filed: July 11, 1996
    Date of Patent: March 21, 2000
    Inventor: Gregory P. Harhay
  • Patent number: 6028606
    Abstract: A physical camera is modeled to render an image in a computer graphics system. When given the manufacturer's specifications of the physical camera's lenses, including the dimensions and indices of refraction of its lenses, stops, and shutter characteristics, the location of the film surface relative to the lens system, and the orientation of the camera within the scene, the invention accurately and efficiently mimics the physical principles of image formation creating an image which approximates an image produced by the physical camera. The procedure comprises four main elements: (1) the geometric relationships between the lens system, object, and film plane are modeled by precise placement and movement of lens elements, (2) image geometry is computed by using principles of geometric optics, (3) an exit pupil is calculated in order to define a region for efficiently sampling rays, (4) the image irradiance, or exposure at a pixel, is computed according to radiometric principles.
    Type: Grant
    Filed: August 1, 1997
    Date of Patent: February 22, 2000
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Craig E. Kolb, Patrick M. Hanrahan, Donald P. Mitchell
  • Patent number: 5995681
    Abstract: A digital image processing system reduces errors in the parameters of a sensor geometry model, through which points in a captured digital image are geolocated to the surface of the earth by means of a `real time` co-registration mechanism that refines the geometry model associated with the working image in a matter of seconds. Using a co-registration mechanism such as that described in the U.S. Pat. No. 5,550,937, the system co-registers the reduced accuracy working digital image with a reference image, geographical spatial locations of respective pixels of which have been previously determined with a high degree of accuracy. The imagery co-registration operator adjusts the respective geometry models associated with its input images, in accordance with differences in cross-correlations of the respectively different spatial resolution versions of the two images, so as to bring the respective images into effective co-registration on image registration surface.
    Type: Grant
    Filed: June 3, 1997
    Date of Patent: November 30, 1999
    Assignee: Harris Corporation
    Inventors: Andrew J. Lee, David M. Bell, Jack M. Needham
  • Patent number: 5920385
    Abstract: A method of collecting optical energy which allows the use of short focal length mirrors of relatively small physical size and in particular the use of the standard collecting mirrors usually employed in such spectrophotometers, for a wide range of sample sizes and collection configurations. A relatively large diameter internal surface, which in many cases can be incorporated into the design of other elements in the sampling system, is used. A physically large cell is interfaced to a radiation collector, such as a mirror. In this case the nut sealing the end window on the cell is internally coated (with gold in the preferred embodiment) to constitute a surface and this acts as a transfer mechanism for the backs-scattered radiation from sample. A solid collecting angle of 60 degrees (in this example) can be so obtained to transfer the energy to the standard radiation collector, such as a collecting mirror, of the spectrophotometer.
    Type: Grant
    Filed: July 10, 1997
    Date of Patent: July 6, 1999
    Inventor: Val J. Rossiter
  • Patent number: 5844680
    Abstract: A device and process for measuring and analyzing spectral radiation within a desired wavelength range. A number of radiation sources are provided, in combination with a sensor for detecting radiation within the desired wavelength range. The radiation sources are selected to have spectral characteristics that are linearly independent from one another, but overlap so that, in combination, the radiation sources generate radiation over the entire desired wavelength range. Alternatively, a single radiation source generating radiation over the entire desired wavelength range is provided in combination with a plurality of sensors that have spectral sensing characteristics that are linearly independent from one another, but overlap so that, in combination, the sensors sense radiation over the entire desired wavelength range.
    Type: Grant
    Filed: June 3, 1997
    Date of Patent: December 1, 1998
    Assignee: BYK-Gardner GmbH
    Inventor: Uwe Sperling
  • Patent number: 5822058
    Abstract: A system and method for optical interrogation and measurement of a hydrocarbon fuel gas includes a light source generating light at near-visible wavelengths. A cell containing the gas is optically coupled to the light source which is in turn partially transmitted by the sample. A spectrometer disperses the transmitted light and captures an image thereof. The image is captured by a low-cost silicon-based two-dimensional CCD array. The captured spectral image is processed by electronics for determining energy or BTU content and composition of the gas. The innovative optical approach provides a relatively inexpensive, durable, maintenance-free sensor and method which is reliable in the field and relatively simple to calibrate. In view of the above, accurate monitoring is possible at a plurality of locations along the distribution chain leading to more efficient distribution.
    Type: Grant
    Filed: January 21, 1997
    Date of Patent: October 13, 1998
    Assignee: Spectral Sciences, Inc.
    Inventors: Steven Adler-Golden, Lawrence S. Bernstein, Fritz Bien, Michael E. Gersh, Neil Goldstein
  • Patent number: 5760883
    Abstract: An apparatus for obtaining information associated with distances in a plurality of target directions by projecting light in the plurality of target directions and receiving the reflected light, includes a first light emitting portion, a second light emitting portion, and a division light projecting device for division-projecting light emitted by the first light emitting portion in at least first and second target directions, and division-projecting light emitted by the second light emitting portion in at least the second target direction and a third target direction.
    Type: Grant
    Filed: February 7, 1996
    Date of Patent: June 2, 1998
    Assignee: Canon Kabushiki Kaisha
    Inventor: Teruyuki Ohkado
  • Patent number: 5728540
    Abstract: Gliotoxic factor in the isolated or purified state, characterized in that it possesses toxic activity with respect to human or animal astrocytic cells, having the effect of a cytomorphological disorganization of their network of intermediate filaments and/or a degradation of the proteins of said intermediate filaments and/or cell death, in particular by apoptosis.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: March 17, 1998
    Assignee: Bio Merieux
    Inventors: Herve Perron, Tomas Dobransky, Fran.cedilla.ois Rieger, Bernard Mandrand