Abstract: A sports training system that uses several inertia measurement units (IMUs) to measure a user's motion while performing an action during a sport such as a golfer swing. The IMUs can have additional sensors connected to improve the system's ability to detect flaws in the user's motion. Furthermore, the system uses machine learning to detect and determine flaw in a user's motion from the IMU data. The data can be collected and set up on a user device while an instructor device provides feedback on the type of flaws and recommendations to improve.
Abstract: Aspects of the present disclosure are directed to systems, methods, and structures providing for the accurate measurement of guided acoustic-wave Brillouin scattering in optical fiber transmission systems and facilities.
Abstract: A drug scanning and identification system including a spectrometer, a drug holder, a mobile device and a drug identification model is provided. The spectrometer includes a light source, a diffraction grating, a light-absorption element, a wavelength selector, and a single-point photodetector. The drug holder includes a transparent area and a light-absorption area. The drug is disposed on the transparent area. The light-absorption area surrounds the transparent area. The mobile device is adapted to send a control command to trigger the spectrometer scanning the drug so as to obtain spectrum data of the drug. The spectrometer is adapted to transmit the spectrum data of the drug to the drug identification model. The drug identification model is adapted to identify the spectrum data of the drug such that the drug identification model generates an identification result. The identification result is displayed by the mobile device.
Abstract: An inspection apparatus includes a specimen stage, one or more imaging devices and a set of lights, all controllable by a control system. By translating or rotating the one or more imaging devices or specimen stage, the inspection apparatus can capture a first image of the specimen that includes a first imaging artifact to a first side of a reference point and then capture a second image of the specimen that includes a second imaging artifact to a second side of the reference point. The first and second imaging artifacts can be cropped from the first image and the second image respectively, and the first image and the second image can be digitally stitched together to generate a composite image of the specimen that lacks the first and second imaging artifacts.
Type:
Grant
Filed:
May 26, 2023
Date of Patent:
May 28, 2024
Assignee:
Nanotronics Imaging, Inc.
Inventors:
Matthew C. Putman, John B. Putman, John Moffitt, Michael Moskie, Jeffrey Andresen, Scott Pozzi-Loyola, Julie Orlando
Abstract: A sensing system includes laser diodes with Bragg reflectors generating light having an initial light intensity and one or more near-infrared optical wavelengths. The laser diodes are modulated with a pulsed output with 0.5 to 2 nanosecond pulse duration. A beam splitter receives light from the laser diodes, splits the light into a received sample arm light directed to an object and a received reference arm light. A detection system includes a second lens and spectral filters in front of a photodiode array. The photodiode array is coupled to CMOS transistors and receives at least a portion of the received reference arm light and generates a reference detector signal. The detection system is synchronized with the laser diodes. A time-of-flight measurement is based on a comparison of the sample detector signal and the reference detector signal and measures a temporal distribution of photons in the received reflected sample arm light.
Abstract: A floor structure on a base 1 comprising a primer 2 and a floor covering 3 which is atop the primer and comprises a floor coating and/or an adhesive bond, wherein the primer 2 is obtained from an aqueous dispersion of at least one acrylic polymer containing 0.001-0.2% by weight of at least one benzoxazole-based system, based on the total weight of the aqueous dispersion. Such systems in aqueous dispersions containing at least one acrylic polymer do not impair storage stability and also permit good detectability of the coating on the base, both shortly after application of the coating and 6 months thereafter. More particularly, no reduction in detectability over time is found.
Type:
Grant
Filed:
October 6, 2021
Date of Patent:
May 21, 2024
Assignee:
SIKA TECHNOLOGY AG
Inventors:
Vera Ubbenhorst, Tobias Benighaus, Rosalin Wevering
Abstract: A surface shape detection device using differential interference optics achieves restoration error reduction of a surface shape while maintaining resolution.
Abstract: Various embodiments include a passive component comprising: a substrate; and two conductor tracks disposed on the substrate. The substrate forms an electrically insulating bridge between at least two phases of an electrically rotating machine. Each of the two conductor tracks is coupled to a separate phase of the at least two phases so an electrical potential across the electrically insulating bridge is the same as in the insulation system of the machine and the potential load on the passive component corresponds to the potential load on the insulation system.
Type:
Grant
Filed:
September 21, 2018
Date of Patent:
April 23, 2024
Assignee:
INNOMOTICS GMBH
Inventors:
Janis Heller, Tobias Katzenberger, Marek Maleika, Bastian Plochmann
Abstract: Provided is a Raman scattering measurement apparatus including a light source which emits light to smoke particles, a filter configured to block light which is incident to the smoke particles and passes through the particle and to allow Raman scattered light to pass therethrough, and a photodetector which detects the Raman scattered light passing through the filter in order to distinguish fire smoke generated due to a true fire from non-fire smoke generated due to daily life or industrial activity. The present invention also provides a fire determination apparatus including a unit which reads a Raman shift from Raman scattered light detected by the photodetector of the Raman scattering measurement apparatus, estimates a smoke component from the read Raman shift, and determines fire/non-fire from the estimated smoke component and a method thereof.
Type:
Grant
Filed:
September 17, 2021
Date of Patent:
April 16, 2024
Assignee:
ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
Inventors:
Hoe Sung Yang, Soo Cheol Kim, Hyun Seok Kim, Sang Hyun Mo, So Young Park, Kang Bok Lee, Kyu Won Han
Abstract: An absorbance detector includes a sample cell, a light source for irradiating the sample cell, a photo sensor, an optical system for guiding light emitted from the light source to the sample cell and guiding light that has been transmitted through the sample cell to the photo sensor, a reference signal acquirer configured to acquire a detection signal of the photo sensor when the sample solution is not flowing through the sample cell as a reference signal for each analysis of the sample, a calculator configured to find absorbance of the sample based on a measurement signal obtained by the photo sensor in the analysis and the reference signal acquired for the analysis when an analysis of the sample is carried out, and an analysis data storage configured to associate data of the absorbance found by the calculator and data of the reference signal to each other for storage.
Abstract: An optical system operating in the near or short-wave infrared wavelength range identifies an object based on water absorption. The system comprises a light source with modulated light emitting diodes operating at wavelengths near 1090 and 1440 nanometers, corresponding to lower and higher water absorption. The system further comprises one or more wavelength selective filters and a housing that is further coupled to an electrical circuit and a processor. The detection system comprises photodetectors that are synchronized to the light source, and the detection system receives at least a portion of light reflected from the object. The system is configured to identify the object by comparing the reflected light at the first and second wavelength to generate an output value, and then comparing the output value to a threshold. The optical system may be further coupled to a wearable device or a remote sensing system with a time-of-flight sensor.
Abstract: A detection device, including a light-emitting component, a light-detecting component, at least one reflective optical film element, and a control unit, is provided. The light-emitting component is used for providing an excitation beam, wherein a part of the excitation beam whose dominant wavelength falls within an excitation wavelength band generates a fluorescence beam after passing through a test specimen. The light-detecting component is used for receiving a part of the fluorescence beam whose dominant wavelength falls within a detection wavelength band. The control unit is coupled to the at least one reflective optical film element. The control unit controls the at least one reflective optical film element to filter out a part of a wavelength band of an incident beam. The incident beam is at least one of the excitation beam and the fluorescence beam. A detection method of the detection device is also provided.
Type:
Grant
Filed:
September 22, 2020
Date of Patent:
February 6, 2024
Assignee:
Wistron Corporation
Inventors:
Yi Fan Hsieh, Yu-Lin Chen, Yao-Tsung Chang
Abstract: A thickness measuring apparatus that measures a thickness of a workpiece held by a chuck table. The thickness measuring apparatus includes plural image sensors that detect intensity of light spectrally split on each wavelength basis by plural diffraction gratings and generate a spectral interference waveform and a thickness output unit that outputs thickness information from the spectral interference waveform generated by the plural image sensors.
Abstract: A device includes a controller with a processor and memory with instructions for controlling power to a light source such that the light source emits a frequency-modulated continuous light beam that, over time, includes an up region, a down region, and a flat region. The up region includes increasing a frequency of the continuous light beam, the down region includes decreasing the frequency of the continuous light beam, and the flat region includes maintaining the frequency of the continuous light beam at a constant frequency.
Type:
Grant
Filed:
March 5, 2020
Date of Patent:
September 12, 2023
Assignee:
LUMINAR TECHNOLOGIES, INC.
Inventors:
Daniel J. Klemme, Pierre Asselin, Zoran Jandric
Abstract: Described herein are apparatuses and methods for analyzing an optical signal decay. In some embodiments, an apparatus includes: a source of a beam of pulsed optical energy; a sample holder configured to expose a sample to the beam; a detector comprising a number of spectral detection channels configured to convert the optical signals into respective electrical signals; and a signal processing module configured to perform a method. In some embodiments, the method includes: receiving the electrical signals from the detector; mathematically combining individual decay curves in the electrical signals into a supercurve, the supercurve comprising a number of components, each component having a time constant and a relative contribution to the supercurve; and quantifying a relative contribution of each component to the supercurve.
Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
Type:
Grant
Filed:
July 12, 2017
Date of Patent:
August 22, 2023
Assignee:
EMULATE, INC.
Inventors:
Daniel Levner, Kyung Jin Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
Abstract: The present invention relates to a method for correcting a packaged optical sensor array module, and the method for correcting a packaged optical sensor array module according to the present invention comprises the steps of: analyzing statistical characteristics of an optical sensor array with respect to light emitted from a standard light source having a predetermined characteristic value to extract a representative value, and calculating a first correction value for a measurement value according to the extracted representative value; and calculating a second correction value for a measured value of the optical sensor array that is corrected by the first correction value with respect to light emitted from an applied light source or light emitted by a fluorescence of the applied light source.
Type:
Grant
Filed:
July 29, 2021
Date of Patent:
June 20, 2023
Assignee:
SOL INC.
Inventors:
Jong Muk Lee, Tae Young Lee, Jae In Kim
Abstract: An active remote sensing system is provided with an array of laser diodes that generate light directed to an object having one or more optical wavelengths that include at least one near-infrared wavelength between 700 nanometers and 2500 nanometers. One of the laser diodes pulses with pulse duration of approximately 0.5 to 2 nanoseconds at repetition rate between one kilohertz and about 100 megahertz. A beam splitter receives the laser light, separates the light into a plurality of spatially separated lights and directs the lights to the object. A detection system includes a photodiode array synchronized to the array of laser diodes and performs a time-of-flight measurement by measuring a temporal distribution of photons received from the object. The time-of-flight measurement is combined with images from a camera system, and the remote sensing system is configured to be coupled to a wearable device, a smart phone or a tablet.
Abstract: An image capture device 1001 captures an image by using a terahertz wave and includes a generating unit 112 that includes a plurality of generation elements each of which generates the terahertz wave and rests on a resting plane 117, an irradiation optical system 111 that irradiates an object with the terahertz wave, an imaging optical system 101 that images the terahertz wave that is reflected from the object, and a sensor 102 that includes pixels. The plurality of generation elements include at least a first generation element 113 and a second generation element 114 that have different angles of radiation to the object. There is an overlap region in which a region of radiation of a first terahertz wave 156 from the first generation element to the object overlaps a region of radiation of a second terahertz wave 157 from the second generation element to the object.
Abstract: A system is provided. The system has a femtosecond oscillator to generate pulses used for pump and probe beams. A photonic crystal fiber is disposed in a path of the probe beam and produces pulses for a chirped probe beam. A high NA objective receives the pump and the chirped probe beam, redirects the received beams through a dielectric substrate towards an interface between a sample and the dielectric substrate to cause total internal reflection (TIR) at the sample-substrate interface, and produces corresponding evanescent waves in a portion of the sample adjacent to the sample-substrate interface, and collects a backward-propagating beam of pulses of responsive light. The portion of the sample illuminated by the evanescent waves emits responsive light. The dielectric substrate is transparent to the responsive light, the pump and the chirped probe beam. An image is produced having a specific image size using the received backward-propagating beam.
Abstract: A measurement system is provided with an array of laser diodes with one or more Bragg reflectors. At least a portion of the light generated by the array is configured to penetrate tissue comprising skin. A detection system configured to: measure a phase shift, and a time-of-flight, of at least a portion of the light from the array of laser diodes reflected from the tissue relative to the portion of the light generated by the array; generate one or more images of the tissue; detect oxy- or deoxy-hemoglobin in the tissue; non-invasively measure blood in blood vessels within or below a dermis layer within the skin; measure one or more physiological parameters based at least in part on the non-invasively measured blood; and measure a variation in the blood or physiological parameter over a period of time.
Abstract: A multi-channel line microscope for single molecule Fluorescence In Situ Hybridization (FISH) imaging of a sample. A microscope stage moves a sample across two or more reflected excitation lines positioned relative to each other so that each excitation line excites a spatially distinct horizontal line in the image plane of the sample. A sample is imaged by moving the microscope stage across two or more reflected excitation lines positioned relative to each other so that each excitation line excites a spatially distinct horizontal line in the image plane of the sample. The apparatus and methods of use are suitable for a broad range of applications.
Abstract: An integrated computing element for an optical computing device includes a flexible optical substrate. The integrated computing element also includes at least one optical thin film deposited on a first surface of the flexible optical substrate. The at least one optical thin film is configured to selectively pass fractions of electromagnetic radiation at different wavelengths.
Type:
Grant
Filed:
March 6, 2018
Date of Patent:
February 14, 2023
Assignee:
Halliburton Energy Services, Inc.
Inventors:
Jian Li, James M. Price, Bin Dai, Christopher M. Jones, Daniel Stark
Abstract: An apparatus for generating a metabolism model may include a processor configured to obtain a predetermined number of bio-information profiles from a bio-sensor, extract a representative bio-information profile from the obtained predetermined number of bio-information profiles, and generate the metabolism model for correcting an error of the bio-sensor by using the extracted representative bio-information profile.
Type:
Grant
Filed:
February 10, 2020
Date of Patent:
January 31, 2023
Assignee:
SAMSUNG ELECTRONICS CO., LTD.
Inventors:
Sang Kyu Kim, So Young Lee, Ka Ram Choi
Abstract: A system is provided comprising an FTIR spectrometer configured to obtain a Fourier Transformed infrared (FTIR) spectrum of a Peripheral Blood Mononuclear Cells (PBMC) sample of the subject; a data processor operable with the FTIR spectrometer, and configured to analyze the infrared (IR) spectrum of the Peripheral Blood Mononuclear Cells (PBMC) sample of the subject by assessing a characteristic of the sample of the subject at at least one wavenumber; and an output unit, configured to generate an output indicative of the presence of a solid tumor, based on the infrared (IR) spectrum. Other embodiments are also provided.
Abstract: An integrated rapid non-destructive detection system for multi-index of meat quality comprises a spectrometer for obtaining near-infrared spectra of a sample; an industrial tablet computer, comprising: a model embedding module for storing multiple prediction models; a model determining module connected with model embedding module and configured to call prediction model; an index prediction module connected with spectrometer and model determining module for receiving near-infrared spectra and predicting index data of the sample combining with called prediction model; wherein the number of detector elements of spectrometer is determined by an ultimate minimal resolution, and a resolution of the sample is controlled to the ultimate minimal resolution during an acquisition process; which realizes automatic black-white calibration, non-destructive detection of multi-index, improves building efficiency of model, while maintaining building stability, and optimizes detection instrument volume.
Type:
Grant
Filed:
May 1, 2022
Date of Patent:
January 17, 2023
Assignee:
INSTITUTE OF FOOD SCIENCE AND TECHNOLOGY, CHINESE ACADEMY OF AGRICULTURAL SCIENCES
Abstract: A photoplethysmographic (PPG) device is disclosed. The PPG device can include one or more light emitters and one or more light sensors to generate the multiple light paths for measuring a PPG signal and perfusion indices of a user. The multiple light paths between each pair of light emitters and light detectors can include different separation distances to generate both an accurate PPG signal and a perfusion index value to accommodate a variety of users and usage conditions. In some examples, the multiple light paths can include the same separation distances for noise cancellation due to artifacts resulting from, for example, tilt and/or pull of the device, a user's hair, a user's skin pigmentation, and/or motion. The PPG device can further include one or more lenses and/or reflectors to increase the signal strength and/or and to obscure the optical components and associated wiring from being visible to a user's eye.
Type:
Grant
Filed:
September 27, 2018
Date of Patent:
December 27, 2022
Assignee:
Apple Inc.
Inventors:
Chin San Han, Ueyn Block, Brian R. Land, Nevzat Akin Kestelli, Serhan Isikman, Albert Wang, Justin Shi
Abstract: Embodiments are disclosed for terahertz spectroscopy and imaging in dynamic environments. In an embodiment, a transmitter of an electronic device emits a continuous electromagnetic (EM) wave in the terahertz (THz) frequency band into a dynamic environment that includes a transmission medium that changes over time. A receiver of the electronic device, receives an EM wave reflected off an object in the environment and determines a spectral response of the reflected EM wave. The spectral response includes absorption spectra at a frequency in the THz frequency band that is indicative of a known target transmission medium. The absorption spectra of the target transmission medium and a path length of the reflected EM wave signal are used to obtain the concentration level of the target transmission medium from a reference library of known concentration levels.
Type:
Grant
Filed:
August 8, 2019
Date of Patent:
November 29, 2022
Assignee:
Apple Inc.
Inventors:
Chia-Chi Chen, Vusthla Sunil Reddy, Sireesha Ramisetti, Peter M. Agboh, Mohit Narang, Vijendrakumar K. Ashiwal
Abstract: According to one embodiment, there is provided a measuring apparatus including a measurement section and a control section. The measurement section is configured to acquire a response from a sample. The control section is configured to compare a loading obtained by performing principal component analysis in advance with a first evaluation-use loading obtained by performing principal component analysis onto the response acquired from the sample, and to generate a first reliability index for measurement using principal component analysis, in accordance with a comparison result.
Abstract: A device for providing drug verification may work in conjunction with drug delivery devices such as medical pumps to provide a chemical and concentration analysis of drugs being delivered forming a signature that can be compared to a signature associated with the proper drug, reducing errors in medicine delivery and ensuring proper use of medicines throughout their lifecycle.
Abstract: The present invention relates to a device and method for detecting light allowing retrieval of a physiological parameter of a user carrying said device. To improve the efficiency of light capturing, the device (1, 2, 3, 4) comprises a light source (10) arranged for emitting light of at least a first wavelength into tissue of the subject, a wavelength converter (20) arranged for receiving at least part of the emitted light after interaction of the emitted light with the tissue and for converting the received light into at least a second wavelength different from the first wavelength, and a light sensor (30) arranged for receiving light converted by said wavelength converter.
Abstract: A method and system for optical vortex transmissometry. The method uses optical orbital angular momentum (OAM) and optical vortices to discriminate coherent non-scattered light from incoherent scattered light. The system includes a laser which transmits a Gaussian laser beam through a medium. An OAM generating device is placed before a photodetector receiver. Coherent, non-scattered light passing through the OAM generating device forms an optical vortex, used to discriminate against the unwanted scattered signal that does not form a vortex. Alternatively, the system includes a transmitter, which generates one or more OAM modes, which are transmitted through a turbid medium. At the receiver, an OAM detection device analyzes the OAM mode spectrum of the received light. Coherent non-scattered light retains the OAM encoded at the transmitter, while scattered light does not. The attenuation of the channel is determined by comparison of the received OAM mode spectrum relative to the transmitted OAM mode spectrum.
Type:
Grant
Filed:
November 6, 2020
Date of Patent:
October 25, 2022
Assignee:
The United States of America, as represented by the Secretary of the Navy
Inventors:
Brandon Cochenour, Amanda Alley, Alan Edward Laux, Linda Mullen
Abstract: The present disclosure relates to contaminant detection systems and related optical systems and methods. An example contaminant detection system includes an optical coupler configured to couple light into and/or out of an optical element. The contaminant detection system also includes a plurality of light-emitter devices configured to emit emission light toward the optical coupler. The contaminant detection system additionally includes a plurality of detector devices configured to detect at least a portion of the emission light by way of the optical element and the optical coupler. The plurality of detector devices is also configured to provide detector signals indicative of a presence of a contaminant on the optical element.
Abstract: Various embodiments are provided herein for an optical spectroscopy probe which generally includes a probe head having optical elements for coupling to an excitation fiber for receiving laser energy therefrom and generating a collimated excitation light beam; and a sample optic adjacent to the probe head, the sample optic having at least one optical element with two non-parallel surfaces to receive the collimated excitation light beam, to transmit the collimated excitation light beam to a sample, and to collect at least one afocal returning scattered light beam that is reflected from the sample.
Abstract: To easily and accurately perform calibration with respect to environment light. In one example, an information processing device includes a memory configured to store detected values of illuminances of environment light; and a color temperature estimation unit configured to estimate a color temperature of the environment light, on a basis of detected values of illuminances of the environment light within a plurality of wavelength bands. The disclosed technology can, for example, be applied to a system that performs remote sensing on an agricultural land, and calculates an evaluation index such as a normalized difference vegetation index (NDVI).
Abstract: A measurement system is provided with an array of laser diodes to generate light having one or more optical wavelengths. A detection system is provided with at least one photo-detector, a lens and a spectral filter at an input to the at least one photo-detector. The measurement system is further configured to transmit at least a portion of the output signal, indicative of an output status, to a cloud service over a transmission link. The cloud service is configured to receive the output status, to generate processed data based on the received output status, and to store the processed data, and wherein the cloud service is capable of storing a history of at least a portion of the received output status over a specified period of time.
Abstract: A device may identify a peak timestamp and a trough timestamp based on a first principal component of photoplethysmography (PPG) data associated with a plurality of wavelength channels. The device may generate a peak absorption spectrum based on the peak timestamp and the PPG data, and may generate a trough absorption spectrum based on the trough timestamp and the PPG data. The device may determine a measured arterial blood spectrum based on the peak absorption spectrum and the trough absorption spectrum. The device may fit the arterial blood spectrum model to the measured arterial blood spectrum to determine a set of values, each value in the set of values corresponding to a variable in a set of variables. The device may calculate an arterial oxygen saturation value based on one or more values of the set of values.
Type:
Grant
Filed:
February 3, 2020
Date of Patent:
May 17, 2022
Assignee:
VIAVI Solutions Inc.
Inventors:
Lan Sun, Chang Meng Hsiung, Babs Soller
Abstract: A detection device includes a light emitting element, an accommodation frame, a light detector, and a movable light splitter. The light emitting element provides an excitation beam. The accommodation frame accommodates an object under test, and a portion of the excitation beam whose dominant light emitting wavelength falls within a first waveband range forms a fluorescent beam after passing through the object under test. The light detector receives a portion of the fluorescent beam whose dominant light emitting wavelength falls within a second waveband range. The movable light splitter forms a plurality of sub-beams from an incident beam. The sub-beams have respectively different dominant light emitting wavelengths and exits at different emitting angles. The incident beam is at least one of the excitation beam and the fluorescent beam.
Abstract: A planar waveguide device (PWD) for interacting with a fluid (FLD) is disclosed, the planar waveguide device (PWD) comprising a waveguide layer (WGL) for supporting optical confinement, a coupling arrangement (CPA) for in-coupling and out-coupling of light into and from the waveguide layer (WGL), a fluid zone (FZN) for accommodating the fluid (FLD), a filter layer (FTL) arranged between the fluid zone (FZN) and the waveguide layer (WGL) in an interaction region (IAR) of the waveguide layer (WGL), wherein the filter layer (FTL) comprises filter openings (FOP) arranged to allow the fluid (FLD) to interact with an evanescent field of light guided by the waveguide layer (WGL), wherein the filter openings (FOP) are adapted to prevent particles (PAR) larger than a predefined size from interacting with said evanescent field, wherein the filter openings (FOP) are arranged as line openings having their longitudinal direction in parallel with the direction of propagation (DOP) of light guided by the waveguide lay
Type:
Grant
Filed:
February 28, 2018
Date of Patent:
February 22, 2022
Assignee:
RADIOMETER MEDICAL APS
Inventors:
Anders Kristensen, Chen Zhou, Mehdi Keshavarz Hedayati, Uriel Levy
Abstract: A measurement system is provided with an array of laser diodes with one or more Bragg reflectors. At least a portion of the light generated by the array is configured to penetrate tissue comprising skin. A detection system configured to: measure a phase shift, and a time-of-flight, of at least a portion of the light from the array of laser diodes reflected from the tissue relative to the portion of the light generated by the array; generate one or more images of the tissue; detect oxy- or deoxy-hemoglobin in the tissue; non-invasively measure blood in blood vessels within or below a dermis layer within the skin; measure one or more physiological parameters based at least in part on the non-invasively measured blood; and measure a variation in the blood or physiological parameter over a period of time.
Abstract: An infrared light source radiates infrared light. An ATR prism receives, on a first end face, the infrared light radiated from the infrared light source, causes the received infrared light to pass therethrough while repeating total reflection off a second end face and a third end face, and emits the infrared light that has passed therethrough from the third end face. An infrared photodetector detects the intensity of the infrared light emitted from the ATR prism. Strain sensors, which are contact sensors of one type, are attached to the ATR prism and configured to detect a contact state between the ATR prism and a measurement skin.
Abstract: An apparatus for estimating a skin condition includes a data acquirer configured to acquire an optical absorption spectrum of a skin; and a processor configured to determine content of a component in the skin from the optical absorption spectrum and determine a skin condition based on the determined content of the component in the skin.
Type:
Grant
Filed:
October 23, 2019
Date of Patent:
December 14, 2021
Assignee:
SAMSUNG ELECTRONICS CO., LTD.
Inventors:
Eui Seok Shin, June Young Lee, Seung Jun Lee
Abstract: An infrared light source radiates, to an ATR prism, infrared light in entirety or part of a wavelength range with absorption wavelengths of a biological material. The ATR prism is adherable to a measurement skin. A prism vibration controller is mounted on the ATR prism and vibrates the ATR prism perpendicular to a contact surface between the ATR prism and the measurement skin. A controller causes an infrared photodetector to detect infrared light in synchronization with the vibration of the ATR prism.
Abstract: An apparatus or method determines a content of the one or more elements of a solid matrix by scanning the solid matrix using a PXRF spectrometer and a color sensor, receiving a PXRF spectra from the PXRF spectrometer and a numerical color data from the color sensor, extracting a value for each of the one or more elements the PXRF spectra, determining the content of the one or more elements of the solid matrix using one or more processors and a predictive model that relates the value of each of the one or more elements and the numerical color data to the content of the one or more elements of the solid matrix, and providing the content of the one or more elements of the solid matrix to one or more input/output interfaces.
Type:
Grant
Filed:
September 30, 2020
Date of Patent:
November 30, 2021
Assignee:
Texas Tech University System
Inventors:
David Weindorf, Delaina Pearson, Somsubhra Chakraborty
Abstract: A method of calibrating a spectrophotometer comprising a flash lamp. The method comprises receiving light from the flash lamp at a monochromator of the spectrometer, wherein the flash lamp is a short arc noble gas flash lamp with transverse or axially aligned electrodes; configuring the monochromator to progressively transmit the received light at each of a plurality wavelengths of a selected range of wavelengths, wherein the range of wavelengths is associated with a wavelength feature according to a known spectral profile of the flash lamp, and wherein the wavelength feature is a self-absorption feature; and determining a spectrum of the flash lamp, wherein the spectrum comprises a corresponding power or intensity value for each of the plurality of wavelengths.
Abstract: A system for measuring one or more physiological parameters is provided with a wearable device that includes a light source comprising a driver and a plurality of semiconductor sources that generate an output optical light. The wearable device comprises: one or more lenses to receive at least a portion of the output optical light and to deliver a lens output light to tissue, and a detection system to receive at least a portion of the lens output light reflected from the tissue and to generate an output signal having a signal-to-noise ratio, and to be synchronized to the light source. The detection system comprises at least one analog to digital converter coupled to at least one spatially separated detector. The plurality of semiconductor sources comprises six light emitting diodes, and wherein the plurality of semiconductor sources and the plurality of spatially separated detectors are located on one or more arcs.
Abstract: A method for determining a parameter of an optical equipment including an optical equipment positioning step, during which an optical equipment comprising a pair of optical lenses mounted on a spectacle frame is positioned in a first position, a portable electronic device positioning step, during which a portable electronic device comprising an image acquisition module is positioned in a second position determined and/or known relatively to the first position so as to acquire an image of a distant element seen through at least part of the optical lenses of the optical equipment in the first position, a parameter determining step, during which at least one optical parameter of the optical equipment is determined based on the image of a distant element seen through at least part of the optical lenses of the optical equipment in the first position.
Abstract: We describe a new approach to fabricate polymeric materials with surface structures for applications as anti-reflective, anti-icing, superhydrophobic, superhydrophilic, de-wetting, and self-cleaning coatings. In some variations, a surface-textured layer comprises first microdomains and second microdomains each containing polymerized cross-linkable photomonomer, where the first microdomains have a higher average cross-link density than that of the second microdomains. The first microdomains and the second microdomains are in a peak-valley surface topology, providing surface texture with no filler particles.
Type:
Grant
Filed:
February 14, 2018
Date of Patent:
September 14, 2021
Assignee:
HRL Laboratories, LLC
Inventors:
Michael H. Risbud Bartl, Alan J. Jacobsen
Abstract: The present invention relates to a method for correcting a packaged optical sensor array module, and the method for correcting a packaged optical sensor array module according to the present invention comprises the steps of: analyzing statistical characteristics of an optical sensor array with respect to light emitted from a standard light source having a predetermined characteristic value to extract a representative value, and calculating a first correction value for a measurement value according to the extracted representative value; and calculating a second correction value for a measured value of the optical sensor array that is corrected by the first correction value with respect to light emitted from an applied light source or light emitted by a fluorescence of the applied light source.
Type:
Grant
Filed:
June 9, 2016
Date of Patent:
September 7, 2021
Assignee:
SOL INC.
Inventors:
Jong Muk Lee, Tae Young Lee, Jae In Kim
Abstract: Acoustically mediated spintronic THz emitters in which sound waves, rather than direct laser pulses, give rise to a spin current in a magnetic material via magnetoelastic coupling are provided. The THz emitters include a metal layer that acts as a light-to-acoustic transducer. Also provided are THz time-domain spectrometers (THz-TDSs) that incorporate the THz emitters.