Of Back-scattered Light Patents (Class 356/342)
  • Publication number: 20140146316
    Abstract: An optical system includes a radiation source, a radiation-illuminating device, and a radiation-collecting device. The radiation source is configured to generate radiation. The radiation-illuminating device is optically coupled to the radiation source and configured to direct and focus the radiation obliquely with respect to an optical axis thereof onto a sample. The radiation-collecting device is configured to collect back-scattered radiation scattered from the sample and spatially separated from noise radiation. Associated apparatus and method are also described.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Xiaolei Shi
  • Publication number: 20140132943
    Abstract: A localized dynamic light scattering measurement system includes a beam displacer for splitting an incident beam having two orthogonal linearly polarized beam components with slightly different frequencies into two orthogonal linearly polarized output beams focused onto an object to be measured. The beam displacer cooperates with an iris to collect and recombine scattering beams each reversely backscattered at 180 degrees from the object so as to form a signal beam, which is polarized by a polarizer to produce two polarization components, thereby generating a heterodyne interference signal associated with the polarization components. A signal processing unit obtains measurement data on the object based on power spectrum or autocorrelation data corresponding to the heterodyne interference signal.
    Type: Application
    Filed: November 12, 2012
    Publication date: May 15, 2014
    Inventor: Lidek Chou
  • Patent number: 8724107
    Abstract: One embodiment provides an annular optical device (100), comprising: an annular meso-optic (1) including an annulus (11) centered about an axis of revolution (A); and a secondary optical structure (2) substantially coaxial within the annulus (11) of the annular meso-optic (1), wherein the secondary optical structure (2) and the annular meso-optic (1) are separated by a media (12) comprising a media refractive index that is lower than a secondary optical structure refractive index, with the secondary optical structure (2) being configured to hold a specimen to be radiated by impinging electromagnetic radiation directed into the secondary optical structure (2) substantially along the axis of revolution (A), wherein re-directed radiation from the specimen is allowed into the annular meso-optic (1) by the secondary optical structure (2) if an angle of incidence of the re-directed radiation exceeds the angle of Total Internal Reflectance. Other embodiments are descried and claimed.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: May 13, 2014
    Assignee: Hach Company
    Inventor: Perry A. Palumbo
  • Patent number: 8711353
    Abstract: There is disclosed improved apparatus and methods for detection of shape, size and intrinsic fluorescence properties of a fluid borne particle wherein the apparatus comprises a laser, two light sources, two detectors, and optionally a third detector. The apparatus is particularly suitable for detection of airborne biological particles.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: April 29, 2014
    Assignee: The Secretary of State for Defence
    Inventors: Paul Henry Kaye, Warren Roy Stanley
  • Patent number: 8705040
    Abstract: An apparatus and method for determining characteristics of particles, by measuring characteristics which are related to the velocity of the particles. Particle size distribution is determined from motion of the particles in an acceleration field, or from Brownian motion of the particles. Zeta potential and particle mobility are determined by measuring velocity related characteristics of charged particles in an electric field. Particle velocity characteristics are determined by measuring dynamic properties of light, which is scattered by the particles. A light source illuminates the particles. Scattered light, from the particles, is mixed with light, from the light source, onto at least one light detector. The detector produces a signal, which is indicative of velocity related characteristics of the particles. The velocity characteristics are also determined by measuring light scattered from particles moving through an illumination pattern, with a periodic intensity structure.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: April 22, 2014
    Inventor: Michael Trainer
  • Patent number: 8699028
    Abstract: A cell/particle analyzing device includes a light-emitting unit, a light-diverting unit, a first receiving unit and a second receiving unit. The light-emitting unit generates a first light beam. The light-diverting unit is connected to the light-emitting unit and has an input end, a bidirectional transceiving end and an output end. The input end receives the first light beam generated by the light-emitting unit. The bidirectional transceiving end transmits the first light beam generated by the light-emitting unit and receives a second light beam. The output end outputs the second light beam. The first receiving unit is connected to the output end of the light-diverting unit and receives the second light beam. The second receiving unit is aligned with the bidirectional transceiving end.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: April 15, 2014
    Assignee: National Pingtung University of Science and Technology
    Inventors: Yao-Nan Wang, Lung-Ming Fu, Chang-Hsien Fu, Chien-Hsiung Tsai
  • Publication number: 20140085635
    Abstract: A sensor device (340) for determining a flow characteristic of an object (341) being movable in an element (342) comprises a light emitting unit (344) configured for emitting light towards the element (342) and a light detecting unit (344) configured for detecting light scattered back from the element (342). The sensor device (340) comprises an optical unit (346) configured for spatially separating a light incidence element portion (348) of the element (342) and a light detection element portion (350) of the element (342) from one another, wherein the light incidence element portion (348) is associated with the emitted light inciding on the element (342) and the light detection element portion (350) is associated with the back-scattered light scattered back from the element (342) for detection.
    Type: Application
    Filed: May 22, 2012
    Publication date: March 27, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Alexander Marc Van Der Lee, Jeroen Veen
  • Patent number: 8681331
    Abstract: A microscopy or micro-spectroscopy system is disclosed that includes a first light source, a second light source, a modulator, an optical assembly and a processor. The first light source is for providing a first illumination field at a first optical frequency ?1 and the second light source is for providing a second illumination field at a second optical frequency ?2. The modulator is for modulating a property of the second illumination field at a modulation frequency f of at least 100 kHz to provide a modulated second illumination field. The optical assembly includes focusing optics and an optical detector system. The focusing optics is for directing and focusing the first illumination field and the modulated second illumination field through an objective lens toward the common focal volume along an excitation path.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: March 25, 2014
    Assignee: President and Fellows of Harvard College
    Inventors: Sunney Xiaoliang Xie, Christian W. Freudiger, Brian G. Saar
  • Patent number: 8675184
    Abstract: The invention relates to a method for Doppler light detection and ranging (LIDAR) measurement of speeds. A laser beam is directed at the medium to be measured, and radiation which is then emitted by the medium is measured by a detector. In order to allow better control of the dynamic range of a direct reception Doppler LIDAR apparatus, a multiplicity of laser pulses can be transmitted per measurement, and a multiplicity of laser pulses can be received by the detector per measurement. A direct reception Doppler LIDAR apparatus can be suitable for carrying out the method.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: March 18, 2014
    Assignee: EADS Deutschland GmbH
    Inventors: Nikolaus Schmitt, Wolfgang Rehm, Thomas Pistner
  • Patent number: 8670120
    Abstract: Device for analyzing a polyphase mixture via a light beam backscattered by said mixture, comprising: a vertical cell capable of containing the polyphase mixture; means for emitting a light beam in the direction of the cell, in such a way that the light beam lies in a vertical plane (PV) covering at least the height (hc) of the cell containing the polyphase mixture; means for receiving a light beam backscattered by the polyphase mixture, covering the height of the backscattered light beam, extending over the height (hc) of the cell containing the polyphase mixture; optical conjugation means placed between the cell and the means for receiving the backscattered beam, the receiving means comprising a matrix center forming a surface for receiving the backscattered beam, lying in vertical and horizontal directions; and means for analyzing the backscattered beam received by the matrix sensor, the light beam emitted in the direction of the cell, adopting, at its interface between the internal surface of the wall of t
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: March 11, 2014
    Assignee: Formulaction
    Inventor: Laurent Brunel
  • Patent number: 8654330
    Abstract: The present invention is a device for measuring the intensity of the light scattered by a thin film of a colloidal medium, comprising a monochromatic light source, a convergent optical system focusing the source onto the thin film to be analyzed comprising a dioptric element with one of the faces thereof constituting a first wall defining the thin film, at least one photosensitive detector producing a signal representing light scattered or backscattered by the thin film and means for processing the signal. A second wall of the device has a plane surface at the end of a rod.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: February 18, 2014
    Assignees: IFP Energies Nouvelles, Cordouan Technologies
    Inventors: Didier Frot, David Jacob
  • Publication number: 20140028998
    Abstract: There is disclosed improved apparatus and methods for detection of shape, size and intrinsic fluorescence properties of a fluid borne particle wherein the apparatus comprises a laser, two light sources, two detectors, and optionally a third detector. The apparatus is particularly suitable for detection of airborne biological particles.
    Type: Application
    Filed: August 2, 2013
    Publication date: January 30, 2014
    Applicant: The Secretary of State for Defence
    Inventors: Paul Henry Kaye, Warren Roy Stanley, Emma Virginia Jane Foot
  • Publication number: 20140016130
    Abstract: The present invention relates to a method for determining at least one gas condition at a location in a combustion chamber of a power plant or a combined heat and power plant by means of a laser pulse. The method comprises emitting (S1) the laser pulse into the chamber, determining (S2) a first point of time at which the laser pulse is emitted into the chamber, detecting (S3) laser light backscattered by gas molecules at the location in the chamber, determining (S4) a second point of time at which the laser light backscattered by the gas molecules is detected, determining (S5) the location based on the first point of time, the second point of time, and a pulse length of the laser pulse, and determining (S5) the at least one gas condition at the location based on at least one characteristic of the backscattered laser light detected at the second point of time. A gas measurement system and a combustion system are also presented herein.
    Type: Application
    Filed: March 7, 2012
    Publication date: January 16, 2014
    Applicant: VATTENFALL AB
    Inventors: Shahriar Badiei, Magnus Berg
  • Patent number: 8614792
    Abstract: In one general aspect, a method of measuring characteristics of particles in a liquid sample disclosed. The method includes supporting the liquid sample by surface tension and illuminating the supported liquid sample along an illumination axis with spatially coherent light so as to cause the coherent light to be scattered across a scattering zone. At least a portion of the scattered light is detected along a first predetermined scattering detection axis after it is scattered by the particles in the supported liquid sample. The illumination axis and the detection axis are oriented at an angle with respect to each other that allows substantially all of the light scattered at that angle across the scattering zone to be detected.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: December 24, 2013
    Assignee: Malvern Instruments, Ltd.
    Inventor: Jason Cecil William Corbett
  • Patent number: 8494724
    Abstract: A sensor system and method for detecting particles, in particular dirt particles or water droplets on a vehicle windscreen, comprising an optical sensor (3). The sensor (3) operates on the basis of light transit time and receives light signals (S) that are emitted by an emitter element and that are at least partially reflected, wherein the emitter element and the sensor (3) are located and aligned on the exterior of the vehicle, on or in the vicinity of a tailgate, hatchback or trunk lid (2) of said vehicle (1) in such a way that particles on the tailgate, hatchback or trunk lid (2) can be detected by means of the sensor (3) by sensing the part of light signals (S) emitted by the emitter element that is backscattered by the particles.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: July 23, 2013
    Assignee: Daimler AG
    Inventors: Juergen Luka, Axel Mueller
  • Patent number: 8487790
    Abstract: The described embodiments may provide a chemical detection circuit. The chemical detection circuit may comprise a pixel array, a pair of analog-to-digital converter (ADC) circuit blocks, a pair of input/output (I/O) circuit blocks coupled to the pair of ADC circuit blocks respectively, and a plurality of serial link terminals coupled to the pair of IO circuit blocks. The pixel array may comprise a plurality of chemically-sensitive pixels formed in columns and rows. Each chemically-sensitive pixel may comprise: a chemically-sensitive transistor, and a row selection device.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: July 16, 2013
    Assignee: Life Technologies Corporation
    Inventors: Keith Fife, Jungwook Yang
  • Publication number: 20130176560
    Abstract: Current apparatuses and methods for analysis of spectroscopic optical coherence tomography (SOCT) signals suffer from an inherent tradeoff between time (depth) and frequency (wavelength) resolution. In one non-limiting embodiment, multiple or dual window (DW) apparatuses and methods for reconstructing time-frequency distributions (TFDs) that applies two windows that independently determine the optical and temporal resolution is provided. For example, optical resolution may relate to scattering information about a sample, and temporal resolution may be related to absorption or depth related information. The effectiveness of the apparatuses and methods is demonstrated in simulations and in processing of measured OCT signals that contain fields which vary in time and frequency. The DW technique may yield TFDs that maintain high spectral and temporal resolution and are free from the artifacts and limitations commonly observed with other processing methods.
    Type: Application
    Filed: October 22, 2012
    Publication date: July 11, 2013
    Applicant: Duke University
    Inventor: Duke University
  • Patent number: 8482731
    Abstract: A microparticle measuring apparatus which includes a flow channel through which a solution containing microparticles flows, an optical detecting unit configured to direct a laser beam to microparticles passing through the flow channel and detecting light for measurement emanating from the microparticles and converting the thus detected light into electrical signals, a solution feeding unit configured to feed the flow channel with either a sample solution containing microparticles of interest or a calibration solution containing reference microparticles that exhibit uniform optical characteristics, and an optical axis correcting unit configured to optimize the relative position of the flow channel with respect to the laser beam in response to the intensity of electrical signals from the reference microparticles.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: July 9, 2013
    Assignee: Felica Networks, Inc.
    Inventor: Yosuke Muraki
  • Publication number: 20130162994
    Abstract: A microscopy or micro-spectroscopy system is disclosed that includes a first light source, a second light source, a modulator, an optical assembly and a processor. The first light source is for providing a first illumination field at a first optical frequency ?1 and the second light source is for providing a second illumination field at a second optical frequency ?2. The modulator is for modulating a property of the second illumination field at a modulation frequency f of at least 100 kHz to provide a modulated second illumination field. The optical assembly includes focusing optics and an optical detector system. The focusing optics is for directing and focusing the first illumination field and the modulated second illumination field through an objective lens toward the common focal volume along an excitation path.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 27, 2013
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventor: President and Fellows of Harvard College
  • Patent number: 8472021
    Abstract: A particle detector for evaporation flux is disclosed. The particle detector includes a light source and at least one reflective surface.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: June 25, 2013
    Assignee: First Solar, Inc.
    Inventors: Markus E. Beck, Robert Green, Raffi Garabedian, Erel Milshtein, Ming Lun Yu
  • Patent number: 8467040
    Abstract: A method, apparatus, and system for a sorting flow cytometer include an objective lens having an optical axis coaxially aligned with the flow path at the focal point. A controllable energy source selectively alters an analyte according to a determination of whether the analyte is in a desired sub-population. In various embodiments, one or both of the emission from the controllable energy source and/or the emission from an illumination energy source passes through the objective lens. In some embodiments in which the emission from the controllable energy source passes through the objective lens, the objective lens may focus the emission from the controllable energy source at a different point than the focal point of a signal detected from the analyte and, in particular, at a point closer to the objective lens.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: June 18, 2013
    Assignee: Microbix Biosystems, Inc.
    Inventor: Mark Luscher
  • Publication number: 20130135608
    Abstract: The light backscatter probe includes a housing carrying at least one optical transmission fiber and two optical reception or collecting fibers. The ends of the fibers are closed by a sapphire window. First and second light sources are provided for projecting incident light onto a product outside the sapphire window. The reception paths or fibers are located at different radial distances from the one optical transmission path to allow for measuring the coagulation of dairy products or determination of compositions of food products.
    Type: Application
    Filed: November 30, 2012
    Publication date: May 30, 2013
    Applicant: REFLECTRONICS, INC.
    Inventor: Reflectronics, Inc.
  • Publication number: 20130135607
    Abstract: The invention relates in particular to a scattered radiation fire detector (1) having radiation sources (2, 3) of different wavelengths and a scattered radiation sensor (4), which are arranged and formed so that their optical axes (9, 10) are directed at a common centre of a scattering volume (5). A sensor unit is furthermore formed in order to register forward scattering I1(?1,fwd) of a first radiation source (2), forward scattering I2(?2,fwd) of a second radiation source (3) and backward scattering I3(?1,bwd) of a further first radiation source (2), to calculate scattered radiation intensity quotients Q1=I1(?1,fwd)/I2(?2,fwd), Q2=I1(?1,fwd)/I3(?1,bwd) and Q3=I2(?2,fwd)/I3(?1,bwd) and in order to use them for the decision regarding the existence of a fire situation.
    Type: Application
    Filed: November 26, 2012
    Publication date: May 30, 2013
    Inventors: Gerd WEDLER, Ralf BEHRENS, Erwin BERCHTOLD, Markus SCHULZ, Thorsten SCHULTZE, Ingolf Willms, Wolfgang KRUELL
  • Patent number: 8433526
    Abstract: A method of determining a steam quality of a wet steam located in an interior of a steam turbine includes emitting from an optical probe a plurality of wavelengths through the wet steam, measuring with the optical probe a wet steam intensity corresponding to each of the plurality of wavelengths emitted through the wet steam, determining an intensity ratio vector by dividing the wet steam intensity by a corresponding dry steam intensity for each of the plurality of wavelengths, successively applying scaling factors to the intensity ratio vector to obtain a scaled intensity ratio vector, calculating a suitable value for each of the scaling factors to obtain a plurality of residuals, determining a minimum residual of the plurality of residuals, determining a droplet size distribution by calculating the droplet number density corresponding to the minimum residual, and determining the steam quality based on the droplet size distribution.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: April 30, 2013
    Assignee: General Electric Company
    Inventors: Binayak Roy, Tao Guo
  • Publication number: 20130021608
    Abstract: Disclosed are improved optical detection methods comprising multiplexed interferometric detection systems and methods for determining a characteristic property of a non-aqueous sample, together with various applications of the disclosed techniques.
    Type: Application
    Filed: February 22, 2012
    Publication date: January 24, 2013
    Inventors: Darryl J. Bornhop, Robert A. Flowers, Esther Pesciotta Miller
  • Patent number: 8351035
    Abstract: According to example configurations herein, a fluid sample flow including particulate matter passes through a conduit. One or more optical sensors monitor optical energy scattering off of the particulate matter in the fluid sample flow as it passes through the conduit. A magnitude of the optical energy sensed by the one or more optical sensors varies depending on particulate matter present in the fluid sample flow. An analyzer monitors the magnitude of the optical energy sensed by the one or more optical sensors and detects changes in the optical energy. A change in the optical energy can indicate a change in the particulate matter present in the fluid sample flow. In response to detecting the change in the optical energy, the analyzer initiates one or more functions such as recalibration, purging, execution of diagnostics, etc.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: January 8, 2013
    Assignee: Thermo Fisher Scientific Inc.
    Inventors: Kevin J. Goohs, Pedro Lilienfeld, Dieter Kita, John G. Hiss
  • Publication number: 20130003061
    Abstract: A fluid characterization measuring instrument comprises a sample vessel (14) for a bulk complex sample fluid having a capacity that is substantially larger than a domain size of the complex sample fluid and that is sufficiently large to cause bulk scattering effects to substantially exceed surface effects for the complex fluid sample, a coherent light source (12) positioned to illuminate the bulk complex sample fluid in the sample vessel and a first fibre (16) having a first end positioned to receive backscattered light from the sample after it has interacted with the sample. The first fibre is positioned close enough to an optical axis of the coherent light source and to the sample vessel to substantially decrease a contribution of multiply scattered light in the backscattered light.
    Type: Application
    Filed: August 17, 2010
    Publication date: January 3, 2013
    Inventors: Samiul Amin, Carlos Alberto Rega
  • Patent number: 8334972
    Abstract: A device for detecting soiling, having a light source, which emits a light beam, and a layer having a first boundary surface and a second boundary surface, whereby the light beam emitted by the light source first impinges on the first boundary surface, and part of a light beam fraction, which is scattered at the second boundary surface, impinges on a receiver and forms a measuring signal, and hereby the first boundary surface is set up to scatter part of the incident light beam, and the part impinging on the receiver of the light beam, scattered at the first boundary surface, forms a reference signal, and the device is set up further to determine a measure for the soiling of the second boundary surface from the comparison of the reference signal and measuring signal.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: December 18, 2012
    Assignee: Pepperl & Fuchs GmbH
    Inventor: Marcus Thien
  • Patent number: 8319965
    Abstract: Aerosol and hydrosol particle detection systems without knowledge of a location and velocity of a particle passing through a volume of space, are less efficient than if knowledge of the particle location is known. An embodiment of a particle position detection system capable of determining an exact location of a particle in a fluid stream is discussed. The detection system may employ a patterned illuminating beam, such that once a particle passes through the patterned illuminating beam, a light scattering is produced. The light scattering defines a temporal profile that contains measurement information indicative of an exact particle location. However, knowledge of the exact particle location has several advantages. These advantages include correction of systematic particle measurement errors due to variability of the particle position within the sample volume, targeting of particles based on position, capture of particles based on position, reduced system energy consumption and reduced system complexity.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: November 27, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Thomas H. Jeys, Antonio Sanchez-Rubio, Ronald H. Hoffeld, Jonathan Z. Lin, Nicholas M. F. Judson, George S. Haldeman, Vincenzo Daneu
  • Publication number: 20120274938
    Abstract: An apparatus for detecting icing conditions on an aircraft includes a laser system configured to direct a light signal into a cloud, a lens component configured to collect echo signals from a cloud caused by the light signal directed into the cloud, a beam splitter component configured to redirect signals received and passing through the lens component into at least first and second paths and a supercooled large droplet (SLD) detector to receive the redirected signals. The SLD includes a first signal detector component configured to perform a first color measurement on the first redirected signal, and a second signal detector component configured to perform a second color measurement on the second redirected signal. The SLD detector is configured to use the first and second color measurements to determine liquid water content and droplet diameter distribution for the cloud.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Applicant: Rosemount Aerospace Inc.
    Inventor: Mark D. Ray
  • Patent number: 8289177
    Abstract: A photo-electric smoke detector includes a source of radiant energy and a closed loop control circuit which responds to a radiant energy feedback signal to adjust an output characteristic of the emitted radiant energy and which evaluates a quality characteristic of the emitted radiant energy. The feedback circuit and the source can be intermittently activated. Emitted radiant energy is directed toward a lens. The feedback signal is proportional to radiant energy reflected or scattered off of the lens.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: October 16, 2012
    Assignee: Honeywell International Inc.
    Inventor: Mark C. Bohanon
  • Publication number: 20120250019
    Abstract: The present invention is a device for measuring the intensity of the light scattered by a thin film of a colloidal medium, comprising a monochromatic light source, a convergent optical system focusing the source onto the thin film to be analyzed comprising a dioptric element with one of the faces thereof constituting a first wall defining the thin film, at least one photosensitive detector producing a signal representing light scattered or backscattered by the thin film and means for processing the signal. A second wall of the device has a plane surface at the end of a rod.
    Type: Application
    Filed: June 24, 2010
    Publication date: October 4, 2012
    Inventors: Didier Frot, David Jacob
  • Patent number: 8269950
    Abstract: A method is described for the characterization of atmospheric particles by means of a lidar device. The method provides to send a laser pulse in the atmosphere, a part of which is directly backscattered by the particles in the atmosphere. A reflecting optical device is provided, that is positioned at a predetermined distance d from the lidar device, whereby a part of the laser pulse that directly reaches the reflecting device is backreflected and is later backscattered by the particles in the atmosphere thus generating a counterpropagating backscattering signal directed towards the reflecting device, which signal reaches the reflecting device and is backreflected towards the lidar device. The lidar device detects the direct backscattering and counterpropagating signals. The optical characteristics of the particles are determined on the basis of the direct backscattering signal and the counterpropagating backscattering signal.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: September 18, 2012
    Assignees: Consiglio Nazionale Delle Ricerche-INFM Istituto Nazionale per la Fisica Della Materia, Cnism-Consorzio Nazionale Interuniversitario per le Scienze Fisiche Della Materia
    Inventors: Nicola Spinelli, Xuan Wang, Maria Grazia Frontoso
  • Publication number: 20120171036
    Abstract: Methods and apparatus for optically detecting an angle of attack for an airfoil using light detection and ranging (LIDAR). To determine the angle of attack, one or more light beam pulses may be emitted from the leading edge of the airfoil into an (apparently) flowing fluid at various emission angles. The emitted pulses may be backscattered by particles in the fluid, and the backscattered light may be received by a detector at the airfoil. By range gating the returning pulses of backscattered light, a fluid velocity may be determined for each of the emission angles. The angle of attack is identified as the emission angle corresponding to the maximum velocity. A parameter (e.g., pitch or speed) of the airfoil may be controlled based on the angle of attack. In this manner, the airfoil may be manipulated or the shape of the airfoil may be adjusted for increased performance or efficiency.
    Type: Application
    Filed: December 30, 2010
    Publication date: July 5, 2012
    Applicant: VESTAS WIND SYSTEMS A/S
    Inventor: Carsten Hein Westergaard
  • Publication number: 20120105848
    Abstract: The present technology provides a nanoparticle detector that includes a nanoparticle collector that is configured to collect a volume of air that includes nanoparticles and a light source that is configured to transmit light through the volume of air. The nanoparticle detector further includes a first light-receiving element that is configured to receive at least a portion of the transmitted light and to detect characteristics of the nanoparticles within the volume of air based on scattering properties of the transmitted light.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 3, 2012
    Inventor: Toshimi Fukui
  • Publication number: 20120080611
    Abstract: A photometric device for investigating a sample, comprises an array of radiation sources that are spaced apart from one another, and which are operable to generate radiation that differs from that generated by the other radiation sources in the array. The device includes a lens arrangement for focusing the radiation at a region of space where a sample may be located for example by means of a sample holder, and at least one detector for receiving radiation from the region of space. Preferably, a number of detectors are employed that are spaced apart from one another, and especially about an axis of the device, so that one radiation detector can detect radiation transmitted by the sample and the other detectors can detect radiation scattered by it. The radiation sources may be time division multiplexed so that in each time slot the detectors receive radiation originating from each radiation source.
    Type: Application
    Filed: February 2, 2009
    Publication date: April 5, 2012
    Applicant: CAMBRIDGE CONSULTANTS LIMITED
    Inventors: Robert Jones, Roger Fane Sewell, Paul D. Ryder, Matthew J. Hayes, Edwin C. Carter
  • Patent number: 8144325
    Abstract: An airborne multiple field-of-view water droplet sensor includes an illumination portion and a detection portion. The illumination portion includes a first optical beam emitter configured to output a light beam. The detection portion includes a kaleidoscope configured to channel a first portion of the backscattered light towards an inner reflective surface of a circle-to-line converter, a multiple field of view subsystem having at least a first detector configured to receive light reflected by the circle-to-line converter, and a single field-of-view subsystem configured to receive a second portion of the backscattered light, the second portion not having been reflected by the circle-to-line converter. The single field-of-view subsystem may include a dual channel circular polarization detector for distinguishing between liquid water droplets and ice crystals based on information in the single field-of-view.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: March 27, 2012
    Assignee: Rosemount Aerospace, Inc.
    Inventors: Mark D. Ray, Michael P. Nesnidal
  • Patent number: 8134706
    Abstract: An instrument (10) for monitoring particles (67) flowing in a stack, includes: (a) a light source for providing a light beam (60); (b) a sensor/and (c) a probe housing. The housing comprises: (i) a mount (25); (ii) a proximal portion (30) including a first aperture (35) through which in use the light beam (60) exits; (iii) a distal portion (50), including a second aperture (55) through which the light beam (60) enters after having been scattered from particles (67) flowing in the stack, and a focusing mirror (70) arranged to reflect and focus the scattered light (90); (iv) a medial portion (40), connecting the distal portion (50) to the proximal portion (30); (v) a waveguide (80), passing from the distal portion (50) through the medial portion (40) and the proximal portion (30) to the sensor and arranged to guide to the sensor the light (90) reflected and focused by the focusing mirror (70).
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: March 13, 2012
    Assignee: PCME Limited
    Inventors: John Rogers, Michael Rigby
  • Publication number: 20120057157
    Abstract: In part, the invention relates to a lens assembly. The lens assembly includes a micro-lens; a beam director in optical communication with the micro-lens; and a substantially transparent film. The substantially transparent film is capable of bi-directionally transmitting light, and generating a controlled amount of backscatter. In addition, the film surrounds a portion of the beam director.
    Type: Application
    Filed: November 17, 2011
    Publication date: March 8, 2012
    Applicant: LIGHTLAB IMAGING, INC.
    Inventors: Christopher Petersen, Stephen M. McCartin, Joseph M. Schmitt, Joel M. Friedman
  • Patent number: 8115925
    Abstract: A polarization switching lidar device, arranged for remote detection and characterization of airborne aggregations of particulates, includes a pulsed laser, a mirror, a polarizing beam splitter, an actively controlled retarder arranged to be controllably alternated between a zero retardation state and a quarter-wave retardation state such that the transmitted portion of the exiting laser light beam is linearly polarized in a predetermined direction when the actively controlled retarder is in the zero retardation state, while being circularly polarized in a predetermined rotational sense when the actively controlled retarder is in the quarter-wave retardation state. A directable telescoping assembly is arranged to collect photons backscattered by the airborne aggregations of particulates and to redirect the collected portion of depolarized backscattered photons onto the polarizing beam splitter.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: February 14, 2012
    Assignee: Sigma Space Corp.
    Inventors: Savyasachee Liptarag Mathur, Yunhui Zheng, Edward Lee Leventhal
  • Publication number: 20120026497
    Abstract: A polarization switching lidar device, arranged for remote detection and characterization of airborne aggregations of particulates, includes a pulsed laser, a mirror, a polarizing beam splitter, an actively controlled retarder arranged to be controllably alternated between a zero retardation state and a quarter-wave retardation state such that the transmitted portion of the exiting laser light beam is linearly polarized in a predetermined direction when the actively controlled retarder is in the zero retardation state, while being circularly polarized in a predetermined rotational sense when the actively controlled retarder is in the quarter-wave retardation state. A directable telescoping assembly is arranged to collect photons backscattered by the airborne aggregations of particulates and to redirect the collected portion of depolarized backscattered photons onto the polarizing beam splitter.
    Type: Application
    Filed: September 21, 2011
    Publication date: February 2, 2012
    Applicant: SIGMA SPACE CORPORATION
    Inventors: Savyasachee Liptarag Mathur, Yunhui Zheng, Edward Lee Leventhal
  • Publication number: 20120010477
    Abstract: A concentration determination apparatus may determine a concentration of a target component in an arbitrary layer of an observed object including a plurality of light scattering medium layers. The concentration determination apparatus may include an irradiation unit, light scattering medium layer selection unit, a light receiving unit, a light intensity acquisition unit, an optical absorption coefficient calculation unit, and a concentration calculation unit.
    Type: Application
    Filed: July 5, 2011
    Publication date: January 12, 2012
    Applicants: NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY, SEIKO EPSON CORPORATION
    Inventors: Kazuhiko AMANO, Koichi SHIMIZU
  • Patent number: 8072584
    Abstract: Systems and methods for sensing air includes at least one, and in some embodiments three, transceivers for projecting the laser energy as laser radiation to the air. The transceivers are scanned or aligned along several different axes. Each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines air temperatures, wind speeds, and wind directions based on the scattered laser radiation. Applications of the system to wind power site evaluation, wind turbine control, traffic safety, general meteorological monitoring and airport safety are presented.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: December 6, 2011
    Assignee: Ophir Corporation
    Inventors: Loren M. Caldwell, Shoou-yu Tang, Phillip E. Acott, Lisa G. Spaeth, Martin O'Brien
  • Patent number: 8054464
    Abstract: A polarization switching lidar device is arranged for remote detection and characterization of airborne aggregations of particulates. It includes a pulsed laser, a mirror, a polarizing beam splitter, an actively controlled retarder arranged to be controllably alternated between a zero retardation state and a quarter-wave retardation state such that the transmitted portion of the exiting laser light beam is linearly polarized in a predetermined direction when the actively controlled retarder is in the zero retardation state, while being circularly polarized in a predetermined rotational sense when the actively controlled retarder is in the quarter-wave retardation state. A directable telescoping assembly is arranged to collect photons backscattered by the airborne aggregations of particulates and to redirect the collected portion of depolarized backscattered photons onto the polarizing beam splitter.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: November 8, 2011
    Assignee: Sigma Space Corp.
    Inventors: Savyasachee Liptarag Mathur, Yunhui Zheng, Edward Lee Leventhal
  • Publication number: 20110263955
    Abstract: There is provided an inside observation apparatus of an endoscope and the like which can perform an inside observation for irradiating an illumination light to a minute area of a surface of an object (for example, a living tissue) having a light scattering property and detecting a back-scattered light of the illumination light, can increase a detected light amount by a simply and low cost configuration by making an area of a detection region larger than an illumination region, and can reduce a time necessary to detect an body (for example, a blood vessel) to be observed and detect a region deeper than a conventional region.
    Type: Application
    Filed: December 27, 2010
    Publication date: October 27, 2011
    Applicant: OLYMPUS CORPORATION
    Inventors: Toshiharu Narita, Ken Fujinuma, Ryosuke Ito, Kenji Taira, Hideyuki Takaoka, Shinichi Takimoto, Hiroyuki Nishida, Hiroya Fukuyama
  • Publication number: 20110249263
    Abstract: A particle detector for evaporation flux is disclosed. The particle detector includes a light source and at least one reflective surface.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 13, 2011
    Inventors: Markus E. Beck, Robert Green, Raffi Garabedian, Erel Milshtein, Ming Lun Yu
  • Patent number: 8035813
    Abstract: Methods for measuring emissions of gaseous substances to the atmosphere using scattered sunlight spectroscopy and an optical measuring device are disclosed in which the device includes a telescopic member defining a field-of-view of the optical measuring device and a scanner for controlling variation of the direction of the field of view to scan a predetermined layer of the atmosphere, the method comprising scanning the field-of-view to scan the predetermined layer of the atmosphere in the form of at least a part of a cone having its apex positioned at the optical measuring device and having a cone angle ?. Optical measuring devices themselves are disclosed.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: October 11, 2011
    Inventor: Bo Galle
  • Patent number: 8029661
    Abstract: The determination of wax crystal particle size and population is used to monitor the performance of wax crystallizers used in lubricant oil processing using solvent dewaxing. The wax crystal particle size is monitored using online measurements. The information obtained from on-line monitoring is then used to control crystallization in the dewaxing equipment in order to optimize performance of the dewaxing units.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: October 4, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Thomas R. Palmer, Brent E. Beasley, David S. Sinclair
  • Publication number: 20110228272
    Abstract: Device for analyzing a polyphase mixture via a light beam backscattered by said mixture, comprising: a vertical cell capable of containing the polyphase mixture; means for emitting a light beam in the direction of the cell, in such a way that the light beam lies in a vertical plane (PV) covering at least the height (hc) of the cell containing the polyphase mixture; means for receiving a light beam backscattered by the polyphase mixture, covering the height of the backscattered light beam, extending over the height (hc) of the cell containing the polyphase mixture; optical conjugation means placed between the cell and the means for receiving the backscattered beam, the receiving means comprising a matrix centre forming a surface for receiving the backscattered beam, lying in vertical and horizontal directions; and means for analyzing the backscattered beam received by the matrix sensor, the light beam emitted in the direction of the cell, adopting, at its interface between the internal surface of the wall of t
    Type: Application
    Filed: November 26, 2009
    Publication date: September 22, 2011
    Inventor: Laurent Brunel
  • Patent number: 8018582
    Abstract: Provided is a detection apparatus of Raman scattering and light scattering, and more particularly, a simultaneous detection apparatus of Raman scattering and dynamic light scattering and a detection method using the same. The simultaneous detection apparatus of Raman scattering and light scattering includes: a detection unit for applying incident light to a sample, and detecting Raman scattering in 90° or 180° geometry and light scattering in 90° or 180° geometry in order to simultaneously collect Raman scattering and light scattering; and a computer connected to the detection unit to obtain at least one of the size and distribution of particles from the detected light scattering, and to obtain information of the molecular structure from the detected Raman scattering.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: September 13, 2011
    Assignee: SNU R&DB Foundation
    Inventors: Dae-Hong Jeong, Yoon-Sik Lee, Myung-Haing Cho, Yong-Kweon Kim