Investigating Relative Effect Of Material At Wavelengths Characteristic Of Specific Elements Or Molecules, E.g., Atomic Absorption Spectrometry (go1n 21/31) Patents (Class 356/945)
  • Patent number: 6995091
    Abstract: The invention relates to a process for chemically mechanically polishing and grinding wafers. The CMP slurry that is used for grinding is analyzed using slurry atomic absorption spectroscopy. This allows rapid and sensitive analysis of the slurry constituents, in particular of interfering ions. The process can be automated and makes it possible to process wafers with a constant quality. Furthermore, rapid fault analysis or optimization of the process parameters used during the grinding is possible.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: February 7, 2006
    Assignee: Infineon Technologies AG
    Inventor: Germar Schneider
  • Patent number: 6844553
    Abstract: An absorption spectroscopy apparatus having a fluid inlet and a fluid outlet. The apparatus includes a sample cell including an axis, a side wall having at least one curved reflective surface arrayed about the axis and facing inwardly with respect to the cell such that a beam of energy directed against a predetermined location on the reflective surface is reflected back and forth off the reflective surface and remains in substantially the same plane while inside the cell, and at least one port in the sidewall. The apparatus also includes at least one source/detector reflector having a curved profile in a plane extending perpendicular to the axis of the cell. The reflector is positioned with respect to the port of the cell to reflect energy through the port of the cell and against the predetermined location on the reflective surface of the side wall of the cell.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: January 18, 2005
    Assignee: Ion Optics, Inc.
    Inventors: James T. Daly, William Andrew Bodkin
  • Publication number: 20040065830
    Abstract: An apparatus and process for measuring bulk material flowing in a pipe by light reflection, the pipe having at least one window (24a,24b,24c) consisting of a light-transmissible material, an analyser (19) being arranged outside the at least one window for emitting light and measuring the light reflected by the bulk material in the pipe, characterised in that the pipe has an elbow having a first pipe section (14) at its entrance side and a second pipe section at its exit side, at least one window being provided in a plate (9) at the outside of the elbow, which plate is arranged at an angle to the axis of the first pipe section.
    Type: Application
    Filed: November 3, 2003
    Publication date: April 8, 2004
    Inventors: Paul Boon, Luc Van Steerteghem, Jos Croonenborghs
  • Patent number: 6686999
    Abstract: Using a nebulizer gas, sub micron and micron size particulates can be generated from a solution containing salts covering a broad range of elements. The fractional concentration of elements can be determined by bubbling the aerosol through aqueous acid and analyzing the aqueous acid for metals. The nebulizer can be coupled to an ICP (Inductively Coupled Plasma) torch and the ICPMS (Inductively Coupled Plasma Mass Spectrometer) or ICPOES (Inductively Coupled Plasma Optical Emission Spectrometer) response to different elements can be determined. This provides the response factor of the ICPMS or ICPOES for different elements.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: February 3, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Suhas Narayan Ketkar
  • Publication number: 20020191864
    Abstract: A mass spectrometry apparatus uses image processing of output signals of a camera in a mass spectrometer to provide feedback for directing the laser. The present invention provides for the determination of where samples have actually been deposited on a plate, and for the selection of different points for each sample, based on its structure, at which to aim a laser, during the cycle period of the mass spectrometer. Such feedback information increases the likelihood that the laser impinges samples and provides useful data.
    Type: Application
    Filed: April 17, 2001
    Publication date: December 19, 2002
    Inventors: John J. Lennon, Anthony James Makusky, Samuel G. Michael
  • Publication number: 20020185603
    Abstract: An absorption spectroscopy apparatus having a fluid inlet and a fluid outlet. The apparatus includes a sample cell including an axis, a side wall having at least one curved reflective surface arrayed about the axis and facing inwardly with respect to the cell such that a beam of energy directed against a predetermined location on the reflective surface is reflected back and forth off the reflective surface and remains in substantially the same plane while inside the cell, and at least one port in the sidewall. The apparatus also includes at least one source/detector reflector having a curved profile in a plane extending perpendicular to the axis of the cell. The reflector is positioned with respect to the port of the cell to reflect energy through the port of the cell and against the predetermined location on the reflective surface of the side wall of the cell.
    Type: Application
    Filed: February 22, 2002
    Publication date: December 12, 2002
    Inventors: James T. Daly, William Andrew Bodkin
  • Patent number: 6361956
    Abstract: A method for measuring the end point and for monitoring the real time kinetics of a bioaffinity reaction in biological fluids and suspensions, employing microparticles as bioaffinity binding solid phase, biospecific reagent labelled with a fluorescent label and a fluorescence detection system which is based on two-photon fluorescence excitation, contacting the analyte, the labelled reagent and the solid phase simultaneously, focusing a two-photon exciting laser beam into the reaction suspension and measuring the fluorescence signal emitted by the microparticles from one particle at a time when they randomly float through the focal volume of the laser beam. In this method the signal is monitored kinetically to obtain information about the analyte concentration before the reaction approaches the highest point of the response. Since the growth rate of the signal intensity is directly proportional to the analyte concentration, the analyte concentration can be predicted in the initial phase of the reaction.
    Type: Grant
    Filed: May 5, 1999
    Date of Patent: March 26, 2002
    Inventors: Pekka Hänninen, Erkki Soini, Juhani Soini