Semiconductor Patents (Class 359/344)
  • Patent number: 10871615
    Abstract: An optical add/drop multiplexer (OADM) includes a drop signal separator and a drop signal reflector. The drop signal separator is coupled to a main input end and a drop end. The drop signal separator is coupled to the drop signal reflector, and the drop signal reflector is coupled to a main output end.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: December 22, 2020
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Jing Wang, Lei Liu
  • Patent number: 10862261
    Abstract: A laser medium unit includes: a plate-shaped laser gain medium which includes a first surface and a second surface opposite to the first surface and generates emission light by the irradiation of excitation light from the first surface; a reflection member that is provided on the second surface so as to reflect the excitation light and the emission light; and a cooling member that cools the laser gain medium. The laser gain medium includes an irradiation area which is irradiated with the excitation light and an outer area which is located outside the irradiation area when viewed from a thickness direction intersecting the first surface and the second surface. The cooling member is thermally connected to the second surface through the reflection member so that a cooling area of the laser gain medium is formed on the second surface.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: December 8, 2020
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Kenichi Ueda, Koichi Iyama, Yoshinori Kato, Takashi Sekine, Toshiyuki Kawashima
  • Patent number: 10855052
    Abstract: A semiconductor laser (1) emits laser light. An electro-absorption optical modulator (2) modulates the laser light. The electro-absorption optical modulator (2) includes a plurality of electro-absorption regions (2a, 2b, 2c) having different extinction characteristics, whereby the extinction ratio curve of the optical device can be controlled to have a shape with multiple steps that is suited to driving conditions.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: December 1, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yudai Imai, Norio Okada, Shinichi Kaneko
  • Patent number: 10845480
    Abstract: In one embodiment, a lidar system includes a light source configured to emit an optical signal. The light source includes a seed laser diode configured to produce a seed optical signal and a semiconductor optical amplifier (SOA) configured to amplify the seed optical signal to produce an amplified seed optical signal, where the emitted optical signal includes the amplified seed optical signal. The lidar system also includes a scanner configured to direct the emitted optical signal into a field of regard of the lidar system and a receiver configured to detect a portion of the emitted optical signal scattered by a target located a distance from the lidar system. The lidar system further includes a processor configured to determine the distance from the lidar system to the target.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: November 24, 2020
    Assignee: Luminar Technologies, Inc.
    Inventors: Lawrence Shah, Jason M. Eichenholz, Joseph G. LaChapelle, Alex Michael Sincore, Cheng Zhu
  • Patent number: 10840676
    Abstract: An optical device that includes: a base layer; a first region supported by the base layer, the first region including a first plurality of quantum-confined nanostructures and having a first density of quantum-confined nanostructures; a second region supported by the base layer, the first and second regions being non-overlapping regions, the second region having a second density of quantum-confined nanostructures lower than the first density; and an optical confinement structure supported by the base layer and configured to guide at least one transverse optical mode between a first end and a second end of the optical confinement structure. The first region substantially overlaps with the at least one transverse optical mode, and the first density varies across a cross-section of the optical device.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: November 17, 2020
    Assignee: X Development LLC
    Inventors: Martin Friedrich Schubert, Michael Jason Grundmann, Jesse Lu, Brian John Adolf
  • Patent number: 10826263
    Abstract: A laser medium unit includes: a plate-shaped laser gain medium which includes a first surface and a second surface opposite to the first surface and generates emission light by the irradiation of excitation light from the first surface; a reflection member that is provided on the second surface so as to reflect the excitation light and the emission light; and a cooling member that cools the laser gain medium. The laser gain medium includes an irradiation area which is irradiated with the excitation light and an outer area which is located outside the irradiation area when viewed from a thickness direction intersecting the first surface and the second surface. The cooling member is thermally connected to the second surface through the reflection member so that a cooling area of the laser gain medium is formed on the second surface.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: November 3, 2020
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Kenichi Ueda, Koichi Iyama, Yoshinori Kato, Takashi Sekine, Toshiyuki Kawashima
  • Patent number: 10811848
    Abstract: A multi-channel laser source, including: a bus waveguide coupled, at an output end of the bus waveguide, to an output of the multi-channel laser source; a first semiconductor optical amplifier; a first back mirror; a first wavelength-dependent coupler, having a first resonant wavelength, on the bus waveguide; a second semiconductor optical amplifier; a second back mirror; and a second wavelength-dependent coupler, on the bus waveguide, having a second resonant wavelength, different from the first resonant wavelength. In some embodiments the first semiconductor optical amplifier is coupled to the bus waveguide by the first wavelength-dependent coupler, which is nearer to the output end of the bus waveguide than the second wavelength-dependent coupler, the second semiconductor optical amplifier is coupled to the bus waveguide by the second wavelength-dependent coupler, and the first wavelength-dependent coupler is configured to transmit light, at the second resonant wavelength, along the bus waveguide.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: October 20, 2020
    Assignee: Rockley Photonics Limited
    Inventors: Aaron John Zilkie, Pradeep Srinivasan
  • Patent number: 10615141
    Abstract: A structure can include a III-N layer with a first lattice constant, a first rare earth pnictide layer with a second lattice constant epitaxially grown over the III-N layer, a second rare earth pnictide layer with a third lattice constant epitaxially grown over the first rare earth pnictide layer, and a semiconductor layer with a fourth lattice constant epitaxially grown over the second rare earth pnictide layer. A first difference between the first lattice constant and the second lattice constant and a second difference between the third lattice constant and the fourth lattice constant are less than one percent.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: April 7, 2020
    Assignee: IQE plc
    Inventors: Andrew Clark, Rytis Dargis, Michael Lebby, Rodney Pelzel
  • Patent number: 10608410
    Abstract: The embodiments herein describe a single-frequency laser source (e.g., a distributed feedback (DFB) laser or distributed Bragg reflector (DBR) laser) that includes a feedback grating or mirror that extends along a waveguide. The grating may be disposed over a portion of the waveguide in an optical gain region in the laser source. Instead of the waveguide or cavity being linear, the laser includes a U-turn region so that two ends of the waveguide terminate at the same facet. That facet is coated with an anti-reflective (AR) coating.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: March 31, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Matthew J. Traverso, Dominic F. Siriani, Mark Webster
  • Patent number: 10585250
    Abstract: An optical interconnect device on a silicon substrate is disclosed which includes a trench having two slanted side walls opposite to each other, a number of polymer waveguides formed in the trench, each including a straight portion and two end reflectors formed on the slanted side walls of the trench, a light source and an optical receiver disposed on an insulated layer on the silicon surface outside the trench. Conductive lines are patterned on the insulating layer and connects to the light source and the optical receiver. The light source and the optical receiver are aligned respectively to the two end reflectors of each polymer waveguide such that an optical path is formed from the light source device through the plurality of polymer waveguides to the optical receiver device, via reflection by the two end reflectors. A fabrication method to build the device is disclosed thereof.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: March 10, 2020
    Assignee: ADOLITE INC.
    Inventors: Abraham Jou, Paul Mao-Jen Wu
  • Patent number: 10578801
    Abstract: A SOI bent taper structure is used as a mode convertor. By tuning the widths of the bent taper and the bend angles, almost lossless mode conversion is realized between TE0 and TE1 in a silicon waveguide. The simulated loss is <0.05 dB across C-band. This bent taper can be combined with bi-layer TM0-TE1 rotator to reach very high efficient TM0-TE0 polarization rotator. An ultra-compact (9 ?m) bi-layer TM0-TE1 taper based on particle swarm optimization is demonstrated. The entire TM0-TE0 rotator has a loss <0.25 dB and polarization extinction ratio >25 dB, worst-case across the C-band.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: March 3, 2020
    Assignee: Elenion Technologies, LLC
    Inventor: Yangjin Ma
  • Patent number: 10534218
    Abstract: The present disclosure provides a backlight module, which includes at least one quantum wire unit. The at least one quantum wire unit is configured to have an effective wire width such that the at least one quantum wire unit is capable of converting electric energy to emit light of a selected wavelength. Each of quantum wire unit comprises a first electrode, disposed on a first side of a substrate layer; a first buffer layer, disposed on a second side of the substrate layer; an active layer, disposed over the first buffer layer; a second buffer layer, disposed over the active layer; and a second electrode disposed over the second buffer layer. Each quantum wire unit, along with the substrate layer, forms a quantum wire laser generator, which is configured such that the active layer emits light upon application of a voltage difference between the first electrode and the second electrode.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: January 14, 2020
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Ruijun Dong, Dong Chen, Guangquan Wang, Haiwei Sun, Lili Chen, Zhihui Zeng, Lu Yu, Jianjie Wu, Qian Wang, Wei Sun, Huijuan Chen
  • Patent number: 10498105
    Abstract: The invention relates to a laser diode (10) which has at least one active layer (12) which is arranged within a resonator (14) and is operatively connected to a outcoupling element (16), and further at least one contact layer (18) for coupling charge carriers into the active layer (12), wherein the resonator (14) comprises at least a first section (20) and a second section (22), wherein the second section (22) comprises a plurality of separate resistor elements (24) having a specific electrical resistivity greater than the specific electrical resistivity of the regions (26) between adjacent resistor elements (24), wherein a width (W3) of the resistor elements (24) along a longitudinal axis (X1) of the active layer (12) is less than 20 ?m, and a projection of the resistor elements (24) on the active layer (12) along the first axis (Z1) overlap with at least 10% of the active layer (12).
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: December 3, 2019
    Assignee: FORSCHUNGSVERBUND BERLIN E.V.
    Inventors: Joerg Fricke, Jonathan Decker, Paul Crump, Goetz Erbert
  • Patent number: 10490692
    Abstract: There is provided a semiconductor light-emitting device including a light-emitting edge, an opposite edge, and a first conductive layer that includes a current narrowing structure having a longitudinal direction along one direction from the opposite edge to the light-emitting edge. An active layer is between the first conductive layer and a second conductive layer which respectively come into contact with the first conductive layer and the second conductive layer. The current narrowing structure includes a spread area such that a width of the spread area in a direction along a surface of the first conductive layer widens from a predetermined position toward the light-emitting edge in the one direction. The first electrode layer includes an electrode area on at least the spread area such that a width thereof in the direction along the surface of the first conductive layer becomes smaller than the width of the spread area.
    Type: Grant
    Filed: December 25, 2015
    Date of Patent: November 26, 2019
    Assignee: SONY CORPORATION
    Inventors: Yoshiaki Watanabe, Takayuki Kawasumi
  • Patent number: 10473858
    Abstract: An optical waveguide may include a silicon portion and a silicon nitride portion positioned over the silicon portion. The silicon portion may include a taper that decreases a width of the silicon portion. The optical waveguide may include a transition between a loaded single mode or multimode waveguide to a single mode waveguide. The silicon nitride portion may confine optical signals traveling through the optical waveguide in the silicon portion.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: November 12, 2019
    Assignee: Finisar Corporation
    Inventors: Daniel Mahgerefteh, Ying Luo, Shiyun Lin, Jin-Hyoung Lee
  • Patent number: 10411146
    Abstract: A ternary superlattice structure includes a substrate and periodic layer structure on the substrate and having alternating infrared absorbing semiconductor materials having a first layer of InAs[1-x]Sb[x] ternary alloy material, and a second layer of In[1-y]Z[y]As ternary alloy material, wherein Z is Ga or Al, wherein x is in a range of greater than zero and less than one, wherein y is in a range of greater than zero and less than one, and wherein a thickness of each of the first and second layers are substantially similar and configured to absorb light in a predetermined spectral band and prevent trapping of carriers in any particular layer. In examples, y is in a range from about 0.05 to about 0.35, and x is in a range of about 0.2 to about 0.8.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: September 10, 2019
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Gamini Ariyawansa, Charles J. Reyner, John E. Scheihing, Joshua M. Duran
  • Patent number: 10408874
    Abstract: A light source device includes a light source that generates incoherent light, and an optical amplifier having gain characteristics indicating a gain at each wavelength, which receives the incoherent light output by the light source as input light, and outputs amplified light obtained by amplifying the input light, and a central wavelength of an intensity distribution indicating an intensity at each wavelength of the input light is a wavelength longer than a central wavelength of the gain characteristics indicating a gain at each wavelength of the optical amplifier.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: September 10, 2019
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Tomonori Nakamura, Mitsunori Nishizawa
  • Patent number: 10389087
    Abstract: Methods and apparatus for spectral narrowing and wavelength stabilization of broad-area lasers, such as an apparatus including a broad-area laser source configured to emit light along an emission axis in an emission pattern extending along the emission axis, and a single-mode fiber Bragg grating, such as a single-mode core incorporating a fiber Bragg grating embedded in a core of a dual-clad fiber, the single-mode fiber Bragg grating configured to spectrally selectively reflect back light from a sub-aperture portion of the emitted light to the broad-area laser source. The single mode core having the FBG is off-axis in comparison to the central axis of the double-clad fiber and allows for frequency stabilization of the broad area laser diode output improving its performance as pump laser for a doped fiber amplifier.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: August 20, 2019
    Assignee: UNIVERSITY OF ROCHESTER
    Inventors: Jordan P. Leidner, John R. Marciante
  • Patent number: 10228514
    Abstract: A SOI bent taper structure is used as a mode convertor. By tuning the widths of the bent taper and the bend angles, almost lossless mode conversion is realized between TE0 and TE1 in a silicon waveguide. The simulated loss is <0.05 dB across C-band. This bent taper can be combined with bi-layer TM0-TE1 rotator to reach very high efficient TM0-TE0 polarization rotator. An ultra-compact (9 ?m) bi-layer TM0-TE1 taper based on particle swarm optimization is demonstrated. The entire TM0-TE0 rotator has a loss <0.25 dB and polarization extinction ratio >25 dB, worst-case across the C-band.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: March 12, 2019
    Assignee: Elenion Technologies, LLC
    Inventor: Yangjin Ma
  • Patent number: 10222564
    Abstract: A three dimensional optical interconnect device having one input and multiple output ports mounted on the same surface of a SOI wafer is disclosed. The first Si surface has a silicon waveguide with a straight portion, a first and a second 45 degree end reflectors and multiple optical splitters arranged in a sequence along the straight portion. The second silicon surface has an insulating layer and an active optical input device (VCSEL laser) and multiple receiver ports mounted on the insulating layer. The first end reflector is aligned to the input optical device, the optical splitters and the second end reflector are sequentially aligned to the photodetectors respectively. Multiple optical paths are formed from the input optical device to each of photodetectors by a reflection from each aligned optical splitter and a reflection from the second end reflector through the silicon substrate.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: March 5, 2019
    Assignee: ADOLITE INC.
    Inventors: Abraham Jou, Paul Mao-Jen Wu
  • Patent number: 10151877
    Abstract: An optical circuit module comprises a substrate with a first optical coupler connected to a first optical waveguide and a second optical coupler connected to a second optical waveguide on a substrate surface side; and a semiconductor photonic device mounted on the substrate, wherein the semiconductor photonic device has a third optical waveguide and a fourth optical waveguide extending to a first end face that faces the substrate surface, and wherein the third optical waveguide is optically connected to the first optical coupler and the fourth optical waveguide is optically connected to the second optical coupler.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: December 11, 2018
    Assignees: FUJITSU LIMITED, PHOTONICS ELECTRONICS TECHNOLOGY RESEARCH ASSOCIATION
    Inventor: Akinori Hayakawa
  • Patent number: 10151880
    Abstract: The present invention relates to an optical light guide element having a first end section with a light entrance area designed for facing a light source and having a second end section with a light exit area designed for facing a light target area, wherein the light exit area is defined by a second surface area on the optical light guide element which faces a light target area, and wherein the light entrance area is defined by a first surface area on the optical light guide element which faces the light source, wherein the first end section comprises a first inclined surface area which forms an acute angle with the first surface area of the light entrance area, wherein the second end section forms a second inclined surface area which encloses an acute angle with the surface area of the light exit area, characterized in that said first surface area on the optical light guide element which faces the light source comprises a first replicated polymer lens.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: December 11, 2018
    Assignee: Anteryon Wafer Optics B.V.
    Inventors: Willem Matthijs Brouwer, Edwin Maria Wolterink
  • Patent number: 10116115
    Abstract: A semiconductor device includes an array of VCSEL devices with an annealed oxygen implant region (annealed at a temperature greater than 800° C.) that surrounds and extends laterally between the VCSEL devices. A common anode and a common cathode can be electrically coupled to the VCSEL devices, with the common anode overlying the annealed oxygen implant region. The annealed oxygen implant region can funnel current into active optical regions of the VCSEL devices and provide current isolation between the VCSEL devices while avoiding an isolation etch between VCSEL devices. In another embodiment, a semiconductor device includes an annealed oxygen implant region surrounding a VCSEL device. The VCSEL device(s) can be formed from a multi-junction layer structure where built-in hole charge Qp for an intermediate p-type layer relative to built-in electron charge Qn for a bottom n-type layer is configured for diode-like current-voltage characteristics of the VCSEL device(s).
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: October 30, 2018
    Inventors: Geoff W. Taylor, Jianhong Cai
  • Patent number: 10107962
    Abstract: In the examples provided herein, an apparatus has a mode converter coupled to a first waveguide to convert light propagating in a first set of spatial modes along the first waveguide to a second set of spatial modes. The apparatus also has a second waveguide coupled to the mode converter, where the second set of spatial modes propagate along the second waveguide in a first direction away from the mode converter. Further, the apparatus includes a coupler to couple a portion of the light propagating in the second set of spatial modes out of the second waveguide. Additionally, the second waveguide has an end facet away from the mode converter to reduce back reflection of the light not coupled out of the second waveguide to the first waveguide.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: October 23, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventor: Jason Pelc
  • Patent number: 10109980
    Abstract: Provided is an optical semiconductor element including: a stacked structure body 20 formed of a first compound semiconductor layer 21, a third compound semiconductor layer (active layer) 23, and a second compound semiconductor layer 22. A fundamental mode waveguide region 40 with a waveguide width W1, a free propagation region 50 with a width larger than W1, and a light emitting region 60 having a tapered shape (flared shape) with a width increasing toward a light emitting end surface 25 are arranged in sequence.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: October 23, 2018
    Assignee: SONY CORPORATION
    Inventors: Rintaro Koda, Masaru Kuramoto, Shunsuke Kono, Hideki Watanabe, Hiroshi Yoshida
  • Patent number: 10082623
    Abstract: Provided are a practical rib type optical waveguide in which polarization dependence and wavelength dependence and the like are small and an optical multiplexer/demultiplexer using the same. An optical waveguide type optical multiplexer/demultiplexer of the present invention includes a substrate, M input optical waveguides and N output optical waveguides including a single mode rib type optical waveguide, multi-mode optical interference regions including a rib type optical waveguide, and reversible tapered regions that smoothly connect the input/output optical waveguides to the multi-mode optical interference regions and include M×N rib type optical waveguides, and both side surfaces of the multi-mode optical interference region are respectively formed in a stepped shape.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: September 25, 2018
    Assignee: NEC CORPORATION
    Inventors: Tomoaki Kato, Shigeru Nakamura
  • Patent number: 10063028
    Abstract: Unidirectionality of lasers is enhanced by forming one or more etched gaps in the laser cavity. The gaps may be provided in any segment of a laser, such as any leg of a ring laser, or in one leg of a V-shaped laser. A Brewster angle facet at the distal end of a photonic device coupled to the laser reduces back-reflection into the laser cavity. A distributed Bragg reflector is used at the output of a laser to enhance the side-mode suppression ratio of the laser.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: August 28, 2018
    Assignee: MACOM TECHNOLOGY SOLUTIONS HOLDINGS, INC.
    Inventors: Alex A Behfar, Alfred T Schremer, Jr., Cristian Stagarescu
  • Patent number: 9948063
    Abstract: Concatenated distributed feedback lasers having novel waveguides are disclosed. The waveguides allow for coupling of the laser beam between active and passive waveguide structures and improved device design and output efficiency. Methods of making along with methods of using such devices are also disclosed.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: April 17, 2018
    Assignee: Thorlabs Quantum Electronics, Inc.
    Inventors: Catherine Genevieve Caneau, Feng Xie, Chung-En Zah
  • Patent number: 9948056
    Abstract: Ring resonators and methods of making and using the same are disclosed. In certain embodiments, a ring resonator may include a waveguide comprising a pump bus and a signal bus disposed adjacent a ring guide, the pump bus and signal bus configured to couple electromagnetic signals to and from ring guide, wherein at least a portion of the waveguide comprises erbium-doped silica and a cladding material disposed adjacent the waveguide, wherein the cladding material exhibits an index of refraction that is lower than an index of refraction of the waveguide, wherein the ring resonator exhibits a propagation loss of less than 2 dB/m.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: April 17, 2018
    Assignee: LGS INNOVATIONS LLC
    Inventor: Inuk Kang
  • Patent number: 9929532
    Abstract: A broad area semiconductor laser device includes a waveguide region and a filter region. The waveguide region includes an active region into which current is injected, and a cladding region that sandwiches the active region. The active region either protrudes or is recessed with respect to the filter region, so as to promote the divergence of higher order modes in the filter region.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: March 27, 2018
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kimio Shigihara, Satoshi Nishikawa
  • Patent number: 9927573
    Abstract: An SOI substrate includes a base substrate, a polycrystalline silicon layer formed on the base substrate, an insulating layer formed on the polycrystalline silicon layer, and a semiconductor layer formed on the insulating layer, and optical waveguides are formed in the semiconductor layer of the SOI substrate. Thus, by arranging the polycrystalline silicon layer under the insulating layer, the insulating layer can be made thin. Since the polycrystalline silicon layer includes a plurality of grains (a mass of grains made of a single crystal Si), even when leakage of light is generated beyond the insulating layer, reflection (diffusion) of light can be suppressed. In addition, by arranging the polycrystalline silicon layer under the insulating layer, the insulating layer can be made thin, so that distortion of a substrate can be suppressed.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: March 27, 2018
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Yasutaka Nakashiba, Shinichi Watanuki
  • Patent number: 9923338
    Abstract: A DFB laser having a reduced fill factor and reduced loss. A plurality of spaced-apart contact openings are etched into a dielectric layer situated on top of a laser ridge having a DFB grating layer so that electrical contact between the metal top contact layer and the DFB gratings is made only in the etched openings, since all other areas of the top surface of the DFB-grated laser ridge are insulated from the metal contact layer by the dielectric. The size and shape of contact openings and their spacing are configured so that the ratio of the total area of the openings to the total area of the laser ridge provides a fill factor of less than 100%.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: March 20, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Mijin Kim, Charles D. Merritt
  • Patent number: 9897825
    Abstract: An optical modulator includes a substrate having an electro-optic effect, an optical waveguide that is formed in the substrate, and a modulation electrode (not illustrated) for modulating a light wave that propagates through the optical waveguide. In the optical modulator, a light-receiving element is disposed on the substrate, and the light-receiving element includes a light-receiving section that receives a light wave that propagates through the optical waveguide, and the light-receiving section is located on the downstream side of a center of the light-receiving element in a light wave propagating direction.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: February 20, 2018
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Kei Katou, Norikazu Miyazaki, Ryo Shimizu
  • Patent number: 9829632
    Abstract: A bent taper is provided that includes one or more waveguide bends, at least one of which has a tapering waveguide width along at least a portion thereof. In one embodiment, the bent taper is an S-shaped bent taper that is configured as a TE0-TE1 mode convertor. Such a bent taper can be combined with a linear bi-layer taper configured as a TM0-TE1 mode converter to form a TM0-TE0 polarization rotator.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: November 28, 2017
    Assignee: Elenion Technologies, LLC
    Inventors: Yangjin Ma, Michael J. Hochberg
  • Patent number: 9711939
    Abstract: Provided herein is a semiconductor optical device, including a waveguide including lattices buried therein and having a buried hetero (BH) structure formed in an optical oscillation region in which single mode light is oscillated, a waveguide having a deep ridge structure formed in an optical modulation region, and a passive waveguide formed in a mode transition region interposed between the optical oscillation region and the optical modulation region, formed as a connecting structure of the waveguide having the BH structure extending from the optical oscillation region and the waveguide having the deep ridge structure extending from the optical modulation region, and inducing evanescent optical coupling, wherein a width of the waveguide having the BH structure in the mode transition region is smaller than a width of the waveguide having the deep ridge structure in the optical modulation region.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: July 18, 2017
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Dong Hun Lee, Sang Ho Park, Yong Soon Baek, Jang Uk Shin, Young Tak Han
  • Patent number: 9685978
    Abstract: Disclosed is a serializer, which includes a data signal alignment unit aligning a plurality of data signals with a predetermined phase interval, a transition detection unit detecting a transition of a logic level among the aligned data signals to generate a toggle signal at a transition of the logic level, and a toggle signal conversion unit converting the toggle signal into a serial data signal obtained by serializing the data signals.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: June 20, 2017
    Assignee: Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Woo-Young Choi, Sung-Geun Kim
  • Patent number: 9680280
    Abstract: An electronic circuit for controlling a laser system consisting of a pulse source and high power fiber amplifier is disclosed. The circuit is used to control the gain of the high power fiber amplifier system so that the amplified output pulses have predetermined pulse energy as the pulse width and repetition rate of the oscillator are varied. This includes keeping the pulse energy constant when the pulse train is turned on. The circuitry is also used to control the temperature of the high power fiber amplifier pump diode such that the wavelength of the pump diode is held at the optimum absorption wavelength of the fiber amplifier as the diode current is varied. The circuitry also provides a means of protecting the high power fiber amplifier from damage due to a loss of signal from the pulse source or from a pulse-source signal of insufficient injection energy.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: June 13, 2017
    Assignee: IMRA AMERICA, INC.
    Inventors: Salvatore F. Nati, Otho E. Ulrich, Jr., Gyu C. Cho, Wayne A. Gillis, Donald J. Harter, Mark Bendett, Ingmar Hartl
  • Patent number: 9673909
    Abstract: An optical receiver module that provides a semiconductor optical amplifier (SOA) is disclosed. The optical receiver module provides the SOA in another housing and a photodiode (PD) enclosed in another housing. The housing for the SOA and the other housing for the PD are fixed as interposing a coupling unit therebetween, which is rigidly fixed to those housings. The coupling unit has a bore that passes light output from a facet of the SOA and received by the PD. A feature of the coupling unit is that a width or diameter of the bore of the coupling unit is smaller than widths of respective housings along a direction perpendicular to the optical axis of the light.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: June 6, 2017
    Assignee: Sumitomo Electric Device Innovations, Inc.
    Inventor: Ryota Teranishi
  • Patent number: 9640950
    Abstract: An optical amplifying unit that enhances the flexibility of the installation within the system is disclosed. The optical amplifying unit includes a semiconductor optical amplifier (SOA) and a housing that encloses the SOA. The housing provides a front wall with a front window that passes an optical axis coming from the SOA. The optical amplifying unit further provides a front coupling unit directly fixed to the front wall without interposing any optical fibers. The optical coupling unit has the optical receptacle function to pluggably receive an external optical plug.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: May 2, 2017
    Assignee: Sumitomo Electric Device Innovations, Inc.
    Inventor: Ryota Teranishi
  • Patent number: 9608400
    Abstract: A laser device, includes: a laser light generating unit generates laser lights with first and second wavelengths; an amplifying unit amplifies the lights with first and second wavelengths the first and the second amplified lights; a wavelength converting unit that generates a light output, either of first converted light wavelength conversion of the first amplified light and the second amplified light, or of the first converted light and the second converted light wavelength conversion of the second amplified light; and a control unit that controls operation of the laser light generating unit, wherein: the control unit controls an output condition of the light output by adjusting a temporal overlap, of the first converted light and the second amplified light, or the first and second converted lights, through control of relative timings of the laser light with the first and second wavelengths.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: March 28, 2017
    Assignee: NIKON CORPORATION
    Inventor: Akira Tokuhisa
  • Patent number: 9590734
    Abstract: A method for data processing in an optical network component includes filtering and optically equalizing an incoming optical signal and modulating the optically equalized signal. A corresponding optical network component is also provided.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: March 7, 2017
    Assignee: Xieon Networks S.a.r.l.
    Inventors: Paulo André, Daniel Fonseca, Rui Meleiro, Paulo Miguel Monteiro, Rui Morais, Lara Pellegrino
  • Patent number: 9531150
    Abstract: A method and system for optical systems based on parity-time symmetry and its breaking, and for nonreciprocal light transmission in a parity-time symmetric micro-resonator system are provided. The system includes an optical assembly that includes a first dissipative optical system and a second optical system coupled in energy transfer communication with the first optical system. The second optical system is configured to receive a continuous flow of energy from an external source and to transfer energy to the first optical system through the couple wherein the energy transferred to the first optical system from the second optical system is approximately equal to the energy dissipated in the first optical system, where the energy transferred to the first optical system from the second optical system is selectable using at least one of an amount of couple between the first optical system and the second optical system and a gain of the second optical system.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: December 27, 2016
    Assignee: Washington University
    Inventors: Sahin Kaya Ozdemir, Bo Peng, Lan Yang
  • Patent number: 9490869
    Abstract: Aspects of the subject disclosure may include, for example, a transmission medium for propagating electromagnetic waves. The transmission medium can include a plurality of cores for selectively guiding an electromagnetic wave of a plurality of electromagnetic waves longitudinally along each core, and a shell surrounding at least a portion of each core for reducing exposure of the electromagnetic wave of each core. Other embodiments are disclosed.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: November 8, 2016
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Paul Shala Henry, William Scott Taylor, Robert Bennett, Farhad Barzegar, Irwin Gerszberg, Donald J. Barnickel, Thomas M. Willis, III
  • Patent number: 9354366
    Abstract: Optical resonators that are enhanced with photoluminescent phosphors and are designed and configured to output light at one or more wavelengths based on input/pump light, and systems and devices made with such resonators. In some embodiments, the resonators contain multiple optical resonator cavities in combination with one or more photoluminescent phosphor layers or other structures. In other embodiments, the resonators are designed to simultaneously resonate at the input/pump and output wavelengths. The photoluminescent phosphors can be any suitable photoluminescent material, including semiconductor and other materials in quantum-confining structures, such as quantum wells and quantum dots, among others.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: May 31, 2016
    Assignee: VerLASE Technologies LLC
    Inventor: Ajaykumar R. Jain
  • Patent number: 9223184
    Abstract: An optical modulator comprises an input optical splitting unit for bifurcating input light; a final optical coupling unit for coupling optical signals in a polarization state orthogonal to each other; an intermediate optical coupling unit provided in an intermediate position between the input optical splitting unit and the final optical coupling unit; first and second optical paths for connecting the input optical splitting unit and the intermediate optical coupling unit, optical path lengths of the first and second optical paths are approximately equal; third and fourth optical paths for connecting the intermediate optical coupling unit and the final optical coupling unit, optical path lengths of third and fourth optical paths are approximately equal; and three binary phase modulation unit arranged one by one in each of the three optical paths of the first, second, third and fourth optical paths.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: December 29, 2015
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Hiroshi Yamazaki, Takashi Saida, Takashi Goh
  • Patent number: 9209606
    Abstract: One or more input access waveguides are connected to an optical splitter arranged to divide the light into two or more output waveguides, at least two of the splitter's output access waveguides are used to form a Mach-Zehnder interferometer modulator where at least one arm of the interferometer has a phase modulator electrode and a single electrical contact is arranged to apply a common voltage simultaneously to a selected portion in each arm, or selected portions in each arm of the waveguides that are disposed after the splitter but preceding the phase modulation electrodes, or alternatively the single electrical contact is arranged to apply the voltage to a selected portion of the input access waveguide connected to the splitter and in one or more selected portions of one or both of the arms after the splitter but preceding the phase modulation electrodes to provide gain or reduced optical loss.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: December 8, 2015
    Assignee: FINISAR SWEDEN AB
    Inventors: Dave Adams, Jan-Olof Wesstrom
  • Patent number: 9166373
    Abstract: Laser devices formed on a semipolar surface region of a gallium and nitrogen containing material are disclosed. The laser devices have a laser stripe configured to emit a laser beam having a cross-polarized emission state.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: October 20, 2015
    Assignee: SORAA LASER DIODE, INC.
    Inventors: James W. Raring, Mathew Schmidt, Bryan Ellis, Hua Huang, Melvin McLaurin, Christiane Poblenz Elsass
  • Patent number: 9160140
    Abstract: It is disclosed a method for driving a laser diode such as to enable mitigation or elimination of so called spiking effects related to the number of injected carriers in the laser overshooting the equilibrium value at the beginning of the lasing process. In this manner, among other things, the efficiency of a master oscillator power amplifier that may be utilized in range finding applications will be improved. It is further disclosed an optical pulse transmitter comprising such a laser diode.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: October 13, 2015
    Assignee: TRIMBLE AB
    Inventors: Yuri P. Gusev, Mikael Hertzman, Evgeny Vanin, Christian Grässer
  • Patent number: 9059563
    Abstract: This application provides a self-seeding fiber laser, including: an arrayed waveguide grating; a gain medium, coupled to one branch port of the arrayed waveguide grating; a Faraday rotator mirror, coupled to a common port of the arrayed waveguide grating, and configured to reflect a part of optical signals transmitted by the gain medium and form injection light returning to the gain medium; where the gain medium, the arrayed waveguide grating, and the Faraday rotator mirror form a laser resonator, and the arrayed waveguide grating is configured to perform wavelength selection in the laser resonator; and a compensation apparatus, coupled to the gain medium and configured to provide a compensation current for the gain medium selectively according to power of the injection light.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: June 16, 2015
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Zhiguang Xu, Dekun Liu, Huafeng Lin
  • Patent number: 9042008
    Abstract: An optical semiconductor device includes: semiconductor lasers; a wave coupling section multiplexing light output by the semiconductor lasers; first optical waveguides respectively optically connecting respective semiconductor lasers to the wave coupling section; a phase regulator regulating phase of reflected light that is reflected at a reflecting point located in the optical semiconductor device and that returns to the semiconductor lasers; a second optical waveguide optically connecting the wave coupling section to the phase regulator; an optical amplifying section amplifying output light of the phase regulator; and a third optical waveguide optically connecting an output of the phase regulator to the optical amplifying section. The phase regulator adjusts the phase of reflected light that returns to the semiconductor lasers to decrease line width of the light output by the semiconductor lasers.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 26, 2015
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Takeshi Saito, Masakazu Takabayashi, Eitaro Ishimura, Tohru Takiguchi, Kazuhisa Takagi, Keisuke Matsumoto, Yoshifumi Sasahata