Detail Of Pinned Film Or Additional Film For Affecting Or Biasing The Pinned Film Patents (Class 360/324.11)
  • Patent number: 7813202
    Abstract: A thin-film magnetic device comprises, on a substrate, a composite assembly deposited by cathode sputtering and consists of a first layer made of a ferromagnetic material with a high rate of spin polarization, the magnetization of which is in plane in the absence of any electric or magnetic interaction, a second layer made of a magnetic material with high perpendicular anisotropy, the magnetization of which is outside the plane of said layer in the absence of any electric or magnetic interaction, and coupling of which with said first layer induces a decrease in the effective demagnetizing field of the entire device, a third layer that is in contact with the first layer via its interface opposite to that which is common to the second layer and made of a material that is not magnetic and not polarizing for electrons passing through the device.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: October 12, 2010
    Assignees: Commissariat a l'Energie Atomique, Centre National de la Recherche Scientifique
    Inventors: Bernard Rodmacq, Bernard Dieny
  • Patent number: 7810228
    Abstract: An example method for manufacturing a magneto-resistance effect element involves irradiating inert gas ions to enhance an adhesive force between an area around an oxide layer and a metallic layer.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: October 12, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiromi Yuasa, Hideaki Fukuzawa, Yoshihiko Fuji
  • Patent number: 7805828
    Abstract: A method of manufacturing a thin-film magnetic head including forming the first shield layer; forming the magnetoresistive device, carried out after forming the first shield layer, a heat treatment providing exchange coupling between the ferromagnetic layer and the antiferromagnetic layer so as to magnetize the ferromagnetic layer in a predetermined direction; forming the domain control layer so as to hold the magnetoresistive device in a track width direction; magnetizing the domain control layer in a direction yielding a magnetic field in the same direction as with a magnetic field received by the ferromagnetic layer upon exchange-coupling with the antiferromagnetic layer, forming the second shield layer, carried out after magnetizing the domain control layer, and remagnetizing the domain control layer in a direction yielding the longitudinal bias magnetic field, carried out after forming the second shield layer.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: October 5, 2010
    Assignee: TDK Corporation
    Inventors: Koji Shimazawa, Yoshihiro Tsuchiya
  • Patent number: 7804667
    Abstract: An MR element incorporates a nonmagnetic conductive layer, and a pinned layer and a free layer that are disposed to sandwich the nonmagnetic conductive layer. Each of the pinned layer and the free layer includes a Heusler alloy layer. The Heusler alloy layer contains a Heusler alloy in which atoms of a magnetic metallic element are placed at body-centered positions of unit cells, and an additive element that is a nonmagnetic metallic element that does not constitute the Heusler alloy. At least one of the pinned layer and the free layer includes a region in which the concentration of the additive element increases as the distance from the nonmagnetic conductive layer decreases, the region being adjacent to the nonmagnetic conductive layer.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: September 28, 2010
    Assignee: TDK Corporation
    Inventors: Kei Hirata, Yoshihiro Tsuchiya, Tomohito Mizuno, Koji Shimazawa
  • Patent number: 7800867
    Abstract: A CPP giant magnetoresistive head includes lower and upper shield layers, and a giant magnetoresistive element disposed between the upper and lower shield layers and including a pinned magnetic layer, a free magnetic layer and a nonmagnetic layer disposed between the pinned magnetic layer and the free magnetic layer. In the CPP giant magnetoresistive head, the pinned magnetic layer extends to the rear of the nonmagnetic layer and the free magnetic layer in the height direction, and the dimension of the pinned magnetic layer in the height direction is larger than that in the track width direction. Also, the pinned magnetic layer comprises a magnetic material having a positive magnetostriction constant or a magnetic material having high coercive force, and the end of the pinned magnetic layer is exposed at a surface facing a recording medium.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: September 21, 2010
    Assignee: TDK Corporation
    Inventors: Masamichi Saito, Yoshihiro Nishiyama, Yosuke Ide, Eiji Umetsu, Naoya Hasegawa, Yasuo Hayakawa
  • Publication number: 20100232074
    Abstract: A magnetoresistive effect element is structured in the manner that the antiferromagnetic layer interposed between the upper and lower shields is eliminated and the antiferromagnetic layer is positioned in a so-called shield layer. Therefore, it is realized to solve a pin reversal problem and to allow narrower tracks and narrower read gaps.
    Type: Application
    Filed: March 13, 2009
    Publication date: September 16, 2010
    Applicant: TDK CORPORATION
    Inventors: Takahiko Machita, Tomohito Mizuno, Koji Shimazawa, Tsutomu Chou, Daisuke Miyauchi, Yoshihiro Tsuchiya, Shinji Hara, Toshiyuki Ayukawa
  • Patent number: 7796364
    Abstract: A current-perpendicular-to-plane (CPP) magnetoresistance sensor and a method for forming a current-perpendicular-to-plane (CPP) magnetoresistance sensor. The method includes providing a ferromagnetic shield layer and disposing one or more seed layers on the ferromagnetic shield layer. The method also includes disposing a pinning layer on the one or more seed layers, wherein the pinning layer excludes PtMn, and disposing a pinned layer on the pinning layer. The shield layer, each of the one or more seed layers, the pinning layer, and the pinned layer are comprised of compounds having face-centered-cubic structures.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: September 14, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Tsann Lin
  • Patent number: 7791843
    Abstract: There is provided a practical magnetoresistance effect element which has an appropriate value of resistance, which can be sensitized and which has a small number of magnetic layers to be controlled, and a magnetic head and magnetic recording and/or reproducing system using the same. In a magnetoresistance effect element wherein a sense current is caused to flow in a direction perpendicular to the plane of the film, a resistance regulating layer is provided in at least one of a pinned layer, a free layer and an non-magnetic intermediate layer. The resistance regulating layer contains, as a principal component, an oxide, a nitride, a fluoride, a carbide or a boride. The resistance regulating layer may be a continuous film or may have pin holes. Thus, it is possible to provide a practical magnetoresistance effect element which has an appropriate value of resistance, which can be sensitized and which has a small number of magnetic layers, while effectively utilizing the scattering effect depending on spin.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: September 7, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuuzo Kamiguchi, Hiromi Yuasa, Tomohiko Nagata, Hiroaki Yoda, Katsuhiko Koui, Masatoshi Yoshikawa, Hitoshi Iwasaki, Masashi Sahashi, Masayuki Takagishi
  • Patent number: 7784171
    Abstract: A method is provided for manufacturing a magneto-resistive device. The magneto-resistive device is for reducing the deterioration in the characteristics of the device due to annealing. The magneto-resistive device has a magneto-resistive layer formed on one surface side of a base, and an insulating layer formed of two layers and deposited around the magneto-resistive layer. The layer of the insulating layer closest to the base is made of a metal or semiconductor oxide. This layer extends over end faces of a plurality of layers made of different materials from one another, which make up the magneto-resistive device, and is in contact with the end faces of the plurality of layers with the same materials.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: August 31, 2010
    Assignee: TDK Corporation
    Inventors: Takeo Kagami, Tetsuya Kuwashima, Norio Takahashi
  • Patent number: 7782577
    Abstract: A magnetic random access memory structure comprising an anti-ferromagnetic layer structure, a crystalline ferromagnetic structure physically coupled to the anti-ferromagnetic layer structure and a ferromagnetic free layer structure physically coupled to the crystalline ferromagnetic structure.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: August 24, 2010
    Assignees: Infineon Technologies AG, ALTIS Semiconductor, SNC
    Inventors: Wolfgang Raberg, Ulrich Klostermann
  • Patent number: 7782576
    Abstract: An exchange-coupling film incorporates an antiferromagnetic layer and a pinned layer. The pinned layer includes a first ferromagnetic layer, a second ferromagnetic layer, a third ferromagnetic layer, a nonmagnetic middle layer, and a fourth ferromagnetic layer that are disposed in this order, the first ferromagnetic layer being closest to the antiferromagnetic layer. The first ferromagnetic layer is made of a ferromagnetic material and has a face-centered cubic structure. The second ferromagnetic layer is made of only iron or an alloy containing x atomic % cobalt and (100?x) atomic % iron, wherein x is greater than zero and smaller than or equal to 60. The third ferromagnetic layer is made of an alloy containing y atomic % cobalt and (100?y) atomic % iron, wherein y is within a range of 65 to 80 inclusive. The antiferromagnetic layer and the first ferromagnetic layer are exchange-coupled to each other. The third and fourth ferromagnetic layers are antiferromagnetically coupled to each other.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: August 24, 2010
    Assignee: TDK Corporation
    Inventors: Takumi Uesugi, Satoshi Miura
  • Patent number: 7779535
    Abstract: An MR effect element that can obtain the sufficient back flux-guide effect under the condition of reducing the capacitance between the upper and lower electrode layers is provided. The element comprises: an MR effect multilayer provided on the lower electrode layer; an insulating layer surrounding a rear side surface and side surfaces opposed to each other in track width direction of the MR effect multilayer; and an upper electrode layer provided on the MR effect multilayer and the insulating layer, the insulating layer having a concave portion filled with a portion of the upper electrode layer, the concave portion positioned near the rear side surface of the MR effect multilayer, and a bottom point of a concave of the concave portion positioned at the same level or a lower level in stacking direction compared to an upper surface of the free layer.
    Type: Grant
    Filed: November 24, 2006
    Date of Patent: August 24, 2010
    Assignee: TDK Corporation
    Inventors: Takayasu Kanaya, Kazuki Sato
  • Publication number: 20100202088
    Abstract: The invention is devised to provide a magnetoresistive element that is hardly susceptible to harmful influence of unnecessary magnetic fields and noise of heat even when reduction in size is achieved to be adaptable to higher recording density, and therefore that is excellent in operational reliability. The magnetoresistive element includes a stacked structure including, in order: a magnetically pinned layer whose magnetization direction is fixed in a given direction; a non-magnetic layer; a magnetically free layer whose magnetization direction changes according to an external magnetic field; and an antiferromagnetic bias layer exchange-coupled with the magnetically free layer. The exchange-coupling magnetic field between the magnetically free layer and the antiferromagnetic bias layer is smaller than a saturation magnetic field of the magnetically free layer.
    Type: Application
    Filed: February 6, 2009
    Publication date: August 12, 2010
    Applicant: TDK CORPORATION
    Inventors: Naoki Ohta, Hiroshi Yamazaki, Kosuke Tanaka, Takayasu Kanaya, Kei Hirata
  • Patent number: 7770284
    Abstract: A manufacturing method of an MR element in which current flows in a direction perpendicular to layer planes, includes forming on a lower electrode layer an MR multi-layered film having a cap layer at a top thereof, forming a mask on the cap layer of the MR multi-layered film, patterning the MR multi-layered film by milling through the mask to form an MR multi-layered structure, forming a magnetic domain control bias layer by using a lift off method using the mask, after forming the magnetic domain control bias layer, forming an additional cap layer on the cap layer and a part of the magnetic domain control bias layer, planarizing a top surface of the additional cap layer and the magnetic domain control bias layer, and forming an upper electrode layer on the planarized top surface.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: August 10, 2010
    Assignee: TDK Corporation
    Inventors: Naoki Ohta, Takeo Kagami
  • Patent number: 7771570
    Abstract: This application discloses a method and apparatus for manufacturing a magnetoresistive multilayer film having a structure where an antiferromagnetic layer, a pinned-magnetization layer, a nonmagnetic spacer layer and a free-magnetization layer are laminated on a substrate in this order. A film for the antiferromagnetic layer is deposited by sputtering as oxygen gas is added to a gas for the sputtering. A film for an extra layer interposed between the substrate and the antiferromagnetic layer is deposited by sputtering as oxygen gas is added to a gas for the sputtering. The film for the antiferromagnetic layer is deposited by sputtering as a gas mixture of argon and another gas of larger atomic number than argon is used.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: August 10, 2010
    Assignee: Canon Anelva Corporation
    Inventors: David Djulianto Djayaprawira, Koji Tsunekawa, Motonobu Nagai
  • Patent number: 7764471
    Abstract: A magnetoresistance effect element (MR element) for use in a thin-film magnetic head has a buffer layer, an antiferromagnetic layer, a pinned layer, a spacer layer, a free layer, and a cap layer that are successively stacked. A sense current flows in a direction perpendicular to layer surfaces via a lower shield layer and an upper shield layer. The pinned layer comprises an outer layer having a fixed magnetization direction, a nonmagnetic intermediate layer, and an inner layer in the form of a ferromagnetic layer. The spacer layer comprises a first nonmagnetic metal layer, a semiconductor layer made of ZnO, and a second nonmagnetic metal layer. The inner layer or the outer layer includes a diffusion blocking layer made of an oxide of an element whose electronegativity is equal to or smaller than Zn, e.g., ZnO, TaO, ZrO, MgO, TiO, or HfO, or made of RuO.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: July 27, 2010
    Assignee: TDK Corporation
    Inventors: Tomohito Mizuno, Takahiko Machita, Kei Hirata, Yoshihiro Tsuchiya, Shinji Hara
  • Patent number: 7760473
    Abstract: An advantage of the application is to provide a magnetoresistance element capable of increasing a plateau magnetic field Hp1 while maintaining high ?RA. A magnetic layer 4c1 adjacent to a non-magnetic material layer 5 in a second fixed magnetic layer 4c constituting the fixed magnetic layer 4 is formed of a first Heusler-alloy layer represented by Co2x(Mn(1-z)Fez)x?y (where the element ? is any one element of 3B group, 4B group, and 5B group, x and y all are in the unit of at %, 3x+y=100 at %). Additionally, the content y is in the range of 20 to 30 at % and a Fe ratio z in MnFe is in the range of 0.2 to 0.8. Accordingly, the plateau magnetic field Hp1 may increase while maintaining high ?RA.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: July 20, 2010
    Assignee: TDK Corporation
    Inventors: Yosuke Ide, Ryo Nakabayashi, Masamichi Saito, Naoya Hasegawa
  • Patent number: 7742263
    Abstract: A magnetoresistance device is provided for improving thermal stability of a magnetoresistance element by preventing inter-diffusion between a conductor (such as a via and an interconnection) for connecting the magnetoresistance element to another element and layers constituting the magnetoresistance element. A magnetoresistance device is composed of a magnetoresistance element, a non-magnetic conductor providing electrical connection between the magnetoresistance element to another element, and a diffusion barrier structure disposed between the conductor and the magnetoresistance element, the magnetoresistance element including a free ferromagnetic layer having reversible spontaneous magnetization, a fixed ferromagnetic layer having fixed spontaneous magnetization, and a tunnel dielectric layer disposed between the free and fixed ferroelectric layers.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: June 22, 2010
    Assignee: NEC Corporation
    Inventors: Yoshiyuki Fukumoto, Ken-ichi Shimura, Atsushi Kamijo
  • Patent number: 7739787
    Abstract: In an MR element, each of a pinned layer and a free layer includes a Heusler alloy layer. The Heusler alloy layer has two surfaces that are quadrilateral in shape and face toward opposite directions. The Heusler alloy layer includes one crystal grain that touches four sides of one of the two surfaces. In a method of manufacturing the MR element, a layered film to be the MR element is formed and patterned, and then heat treatment is performed on the layered film patterned, so that crystal grains included in a film to be the Heusler alloy layer in the layered film grow and one crystal grain that touches four sides of one of the surfaces of the film to be the Heusler alloy layer is thereby formed.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: June 22, 2010
    Assignee: TDK Corporation
    Inventors: Koji Shimazawa, Yoshihiro Tsuchiya, Tomohito Mizuno, Daisuke Miyauchi, Shinji Hara, Takahiko Machita
  • Patent number: 7738218
    Abstract: A magnetic detection element capable of maintaining the ?RA at a high level and reducing the magnetostriction by improving a material for a free magnetic layer, as well as a method for manufacturing the same, is provided. The free magnetic layer includes a laminate composed of a CoMnX alloy layer formed from a metal compound represented by a compositional formula CoaMnbXc (where X represents at least one of Ge, Ga, In, Si, Pb, Zn, and Sb and a+b+c=100 atomic percent) and a CoMnZ alloy layer formed from a metal compound represented by a compositional formula CodMneZf (where Z represents at least one of Sn and Al and d+e+f=100 atomic percent). In this manner, the magnetostriction of the free magnetic layer can be reduced.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: June 15, 2010
    Assignee: TDK Corporation
    Inventors: Yosuke Ide, Masamichi Saito, Masahiko Ishizone, Naoya Hasegawa
  • Publication number: 20100142101
    Abstract: According to one embodiment, a differential magnetoresistive effect element comprises a first magnetoresistive effect element having a first pinning layer, a first intermediate layer, and a first free layer. The differential magnetoresistive effect element also comprises a second magnetoresistive effect element stacked via a spacer layer above the first magnetoresistive effect element, the second magnetoresistive effect element having a second pinning layer, a second intermediate layer, and a second free layer. The first magnetoresistive effect element and the second magnetoresistive effect element show in-opposite-phase resistance change in response to a magnetic field in the same direction, and tp2>tp1 is satisfied when a thickness of the first pinning layer is tp1, and a thickness of the second pinning layer is tp2. In another embodiment, the first and second magnetoresistive effect elements may be CPP-GMR elements.
    Type: Application
    Filed: December 1, 2009
    Publication date: June 10, 2010
    Inventors: Yo Sato, Katsumi Hoshino, Masato Shiimoto, Takeshi Nakagawa, Hiroyuki Hoshiya
  • Patent number: 7733613
    Abstract: A magnetic disk apparatus having a highly sensitive reproducing head and a method for manufacturing the magnetic disk apparatus are disclosed. A spin-value-type multilayer film composed of an antiferromagnetic layer, a ferromagnetic layer, a nonmagnetic layer and a free magnetic layer is used as a magnoresistive-effect device for the reproducing head. An antiferromagnetic reaction layer is formed between the antiferromagnetic layer and the ferromagnetic layer. The antiferromagnetic reaction layer is formed of a metallic compound containing oxygen.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: June 8, 2010
    Assignee: Panasonic Corporation
    Inventor: Akifumi Aono
  • Patent number: 7733612
    Abstract: In the GMR device of the CPP structure using the synthetic pinned layer as the fixed magnetization layer (pinned layer), the width W1 of the inner pin layer is set at 50 nm or less; the fixed magnetization layer is configured in such a way as to have a given angle range of tapers at both its ends as viewed from the medium opposite plane; the magnetic volume ratio between the inner and the outer pin layer is allowed to lie in the range of 0.9 to 1.1; and the magnetic thickness ratio between the inner and the outer pin layer is set at 0.8 or less. It is thus possible to make the outer pin layer thin at no cost of the thickness of the inner pin layer forming a part of the synthetic pinned layer yet without doing damage to the function of the synthetic pinned layer itself, viz., resistance to an external magnetic field.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: June 8, 2010
    Assignee: TDK Corporation
    Inventors: Daisuke Miyauchi, Takahiko Machita
  • Patent number: 7724481
    Abstract: A magnetic sensing element is provided. A free magnetic layer has a three-layer structure including CoMn? sublayers each composed of a metal compound represented by the formula: Co2xMnx?y. The ? contains an element ? and Sb, the element ? being at least one element selected from Ge, Ga, In, Si, Pb, Zn, Sn, and Al. The concentration x and the concentration y are each represented in terms of atomic percent and satisfy the equation: 3x+y=100 atomic percent. One of the CoMn? sublayers is in contact with a lower nonmagnetic material layer. The other CoMn? sublayer is in contact with upper nonmagnetic material layer. As a result, it is possible to achieve a high ?RA and a lower interlayer coupling magnetic field Hin compared with the known art.
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: May 25, 2010
    Assignee: TDK Corporation
    Inventors: Yosuke Ide, Masamichi Saito, Masahiko Ishizone, Kazumasa Nishimura, Naoya Hasegawa
  • Patent number: 7719799
    Abstract: A magnetoresistive element has a first magnetic layer and a second magnetic layer separate from each other, the first magnetic layer and the second magnetic layer each having a magnetization whose direction is substantially pinned, and a non-magnetic conductive layer formed in contact with the first magnetic layer and the second magnetic layer and electrically connecting the first and second magnetic layers, the non-magnetic conductive layer forming a path of spin-polarized electrons from one of the magnetic layer to the other magnetic layer, the non-magnetic conductive layer comprising a portion located between the first magnetic layer and the second magnetic layer, the portion being a sensing area.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: May 18, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Hiromi Yuasa, Susumu Hashimoto, Hitoshi Iwasaki
  • Patent number: 7715153
    Abstract: A magneto-resistive effect element includes a free layer having a magnetization direction which varies with respect to an external magnetic field; a pinned layer which includes a stacked structure comprising an outer pinned layer which has a magnetization direction that is fixed with respect to the external magnetic field, a non-magnetic intermediate layer which is made of ruthenium with a thickness of about 0.4 nm, and an inner pinned layer with a thickness of 3 nm or more, wherein the inner pinned layer has a magnetization direction which is fixed with respect to the external magnetic field due to anti-ferromagnetic coupling with the outer pinned layer via the non-magnetic intermediate layer; and a spacer layer sandwiched between the free layer and the inner pinned layer. Sense current flows through the pinned layer, the spacer layer, and the free layer substantially in a stacked direction.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: May 11, 2010
    Assignee: TDK Corporation
    Inventors: Tomohito Mizuno, Daisuke Miyauchi, Masashi Sano
  • Publication number: 20100103565
    Abstract: A memory cell including a free magnetic layer, the magnetization of which is free to rotate under the influence of spin torque; an insulating layer; and a pinned magnetic layer, wherein at least one of the free magnetic layer or the pinned magnetic layer includes a Heusler alloy, and wherein the insulating layer separates the free magnetic layer from the pinned magnetic layer.
    Type: Application
    Filed: October 27, 2008
    Publication date: April 29, 2010
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventor: Xiaohua Lou
  • Publication number: 20100091416
    Abstract: A magnetoresistive head which has a high head SNR by reducing generated mag-noise without deteriorating an output comprises, according to one embodiment, a magnetoresistive sensor having a laminated structure which includes an antiferromagnetic layer, a magnetization pinned layer, a non-magnetic intermediate layer, a magnetization free layer, and a magnetization stable layer arranged adjacent to the magnetization free layer. The magnetization stable layer comprises non-magnetic coupling layer, a first ferromagnetic stable layer, an antiparallel coupling layer, and a second ferromagnetic stable layer. A magnetization quantity of a first ferromagnetic stable layer and a second ferromagnetic stable layer are substantially equal, and the magnetization of the first ferromagnetic stable layer and the second ferromagnetic stable layer are magnetically coupled in the antiparallel direction from each other.
    Type: Application
    Filed: October 15, 2009
    Publication date: April 15, 2010
    Inventors: Hiroyuki Katada, Masato Shiimoto, Hiroyuki Hoshiya
  • Patent number: 7679866
    Abstract: A magnetoresistive sensor having a pinned layer that includes a first magnetic layer (AP1) a second magnetic layer (AP2) and an antiparallel coupling layer sandwiched between the AP1 and AP2 layers. The AP1 layer is adjacent to a layer of antiferromagnetic material (AFM layer) and is constructed so as to have a long spin diffusion length. The long spin diffusion length of the AP1 layer minimizes the negative GMR contribution of the AP1 layer, thereby increasing the overall GMR effect of the sensor.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: March 16, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Matthew Joseph Carey, Shekar Chandrashekariaih, Stefan Maat, Jeffrey Robinson Childress
  • Patent number: 7675129
    Abstract: A spin injection device capable of spin injection magnetization reversal at low current density, a magnetic apparatus using the same, and magnetic thin film using the same, whereby the spin injection device (14) including a spin injection part (1) comprising a spin polarization part (9) including a ferromagnetic fixed layer (26) and an injection junction part (7) of nonmagnetic layer, and a ferromagnetic free layer (27) provided in contact with the spin injection part (1) is such that in which the nonmagnetic layer (7) is made of either an insulator (12) or a conductor (25), a nonmagnetic layer (28) is provided on the surface of the ferromagnetic free layer (27), electric current is flown in the direction perpendicular to the film surface of the spin injection device (14), and the magnetization of the ferromagnetic free layer (27) is reversed. This is applicable to such various magnetic apparatuses and magnetic memory devices as super gigabit large capacity, high speed, non-volatile MRAM and the like.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: March 9, 2010
    Assignee: Japan Science and Technology Agency
    Inventors: Kouichiro Inomata, Nobuki Tezuka
  • Patent number: 7675717
    Abstract: A magnetic head of either CIP or CPP configuration is disclosed, having a read sensor with a strongly pinned ferromagnetic layer due to increased electronic exchange with the AFM layer. The read sensor includes a lower seed layer whose material is chosen from a group consisting of Ta, NiFeCr, NiFeCoCr, NiFe, Cu, Ta/NiFeCr, Ta/NiFeCr/NiFe, Ta/Ru and Ta/NiFeCoCr, and an upper seed layer where the upper seed layer material is chosen from a group consisting of Ru, Cu, NiFe, Cu(x)Au(1?x)(x=0.22-0.5) alloys, Ru(x)Cr(1?x)(x=0.1-0.5) alloys, NiFeCr and NiFeCoCr. An AFM layer is formed on the upper seed layer and a ferromagnetic pinned layer is formed on the AFM layer. The exchange coupling energy Jk between the AFM layer and pinned layers exceeds 1.3 erg/cm2. Also disclosed is a method of fabrication of a magnetic head including a read head sensor with a strongly pinned ferromagnetic layer due to increased electronic exchange.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: March 9, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Wen-Yaung Lee, Jinshan Li, Daniele Mauri, Brian R. York
  • Patent number: 7672088
    Abstract: A spin valve structure is disclosed in which an AP1 layer and/or free layer are made of a laminated Heusler alloy having Al or FeCo insertion layers. The ordering temperature of a Heusler alloy such as Co2MnSi is thereby lowered from about 350° C. to 280° C. which becomes practical for spintronics device applications. The insertion layer is 0.5 to 5 Angstroms thick and may also be Sn, Ge, Ga, Sb, or Cr. The AP1 layer or free layer can contain one or two additional FeCo layers to give a configuration represented by FeCo/[HA/IL]nHA, [HA/IL]nHA/FeCo, or FeCo/[HA/IL]nHA/FeCo where n is an integer ?1, HA is a Heusler alloy layer, and IL is an insertion layer. Optionally, a Heusler alloy insertion scheme is possible by doping Al or FeCo in the HA layer. For example, Co2MnSi may be co-sputtered with an Al or FeCo target or with a Co2MnAl or Co2FeSi target.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: March 2, 2010
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Yu-Hsia Chen, Hui-Chuan Wang, Tong Zhao
  • Patent number: 7672087
    Abstract: Provided is an MR effect element in which the magnetization of the pinned layer is stably fixed even after going through high temperature process. The MR effect element comprises: a non-magnetic intermediate layer; a pinned layer and a free layer stacked so as to sandwich the non-magnetic intermediate layer; an antiferromagnetic layer stacked to have a surface contact with the pinned layer, for fixing a magnetization of the pinned layer to a direction in-plane of the pinned layer and perpendicular to a track width direction; and hard bias layers provided on both sides in the track width direction of the free layer, for applying a bias field to the free layer, a product ?S×? of a saturation magnetostriction constant ?S of the pinned layer and an internal stress ? on a cross-section perpendicular to a layer surface of the hard bias layer being negative.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: March 2, 2010
    Assignee: TDK Corporation
    Inventors: Takayasu Kanaya, Katsuki Kurihara, Tetsuya Kuwashima
  • Patent number: 7672089
    Abstract: This invention provides a CPP TMR or GMR sensor with an amorphous ferromagnetic lower keeper layer and a crystalline ferromagnetic upper keeper layer. The amorphous ferromagnetic lower keeper layer strongly exchange-couples to an underlying antiferromagnetic pinning layer and planarizes its rough surface. The crystalline ferromagnetic upper keeper layer strongly antiparallel-couples to an adjacent ferromagnetic reference layer across a nonmagnetic spacer layer. The amorphous ferromagnetic lower keeper layer is preferably made of a Co—Fe—B alloy film with an Fe content high enough to ensure strong exchange-coupling to the underlying antiferromagnetic pinning layer, and with a B content high enough to ensure the formation of an amorphous phase for planarizing an otherwise rough surface due to the underlying antiferromagnetic pinning layer.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: March 2, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Tsann Lin
  • Patent number: 7663846
    Abstract: A magnetoresistive sensor having a lead overlay defined trackwidth and a pinned layer that extends beyond the stripe height defined by the free layer of the sensor. The extended pinned layer has a strong shape induced anisotropy that maintains pinning of the pinned layer moment. The extended portion of the pinned layer has sides beyond the stripe height that are perfectly aligned with the sides of the sensor within the stripe height. This perfect alignment is made possible by a manufacturing method that uses a mask structure for more than one manufacturing phase, eliminating the need for multiple mask alignments. The lead overlay design allows narrow, accurate trackwidth definition.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: February 16, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B. V.
    Inventors: James Mac Freitag, Kuok San Ho, Mustafa Michael Pinarbasi, Ching Hwa Tsang
  • Publication number: 20100033881
    Abstract: A magnetic field sensing system with a current-perpendicular-to-the-plane (CPP) sensor, like that used for giant magnetoresistive (GMR) and tunneling magnetoresistive (TMR) spin-valve (SV) sensors, operates in a mode different from conventional GMR-SV and TMR-SV systems. An alternating-current (AC) source operates at a fixed selected frequency and directs AC perpendicularly through the layers of the CPP sensor, with the AC amplitude being high enough to deliberately induce a spin-torque in the CPP sensor's free layer. The AC-induced spin-torque at the selected frequency causes oscillations in the magnetization of the free layer that give rise to a DC voltage signal VDC. VDC is a direct result of only the oscillations induced in the free layer. The value of VDC will change in response to the magnitude of the external magnetic field being sensed and as the free layer is driven in and out of resonance with the AC.
    Type: Application
    Filed: August 7, 2008
    Publication date: February 11, 2010
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Matthew J. Carey, Jeffrey R. Childress, Stefan Maat
  • Publication number: 20100020447
    Abstract: A system including a sense layer, a first pinned layer and a first interlayer. The first pinned layer is held in a fixed magnetic orientation. The first interlayer is configured to couple the sense layer and the first pinned layer and provide a magnetic orientation in the sense layer that is 90 degrees from the fixed magnetic orientation. The magnetic orientation in the sense layer rotates in response to an external magnetic field.
    Type: Application
    Filed: July 24, 2008
    Publication date: January 28, 2010
    Applicant: Infineon Technologies AG
    Inventor: Matthias Hawraneck
  • Patent number: 7652856
    Abstract: A current perpendicular to plane (CPP) magnetoresistive sensor that avoids spin torque noise while having high dr/R performance and small gap. The sensor is a dual magnetoresistive sensor having first and second pinned layers and a free layer disposed between the two pinned layers. One of the pinned layers is pinned by exchange coupling with an AFM layer, while the other pinned layer is self pinned by a shape enhanced magnetic anisotropy without the use of an AFM layer. The self pinned layer extends from the ABS to an extended stripe height distance that is greater than the stripe height distance of the AFM pinned layer and the free layer.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: January 26, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Mustafa Michael Pinarbasi
  • Patent number: 7649719
    Abstract: A current perpendicular to plane dual giant magnetoresistive sensor (dual CPP GMR sensor) that prevents spin torque noise while having high dR/R performance. The sensor has a design that maximizes the GMR effect (dR/R) by providing a pinned layer structure that maximizes the positive GMR contribution of the AP2 layer (or magnetic layer closest to the spacer layer) while minimizing the negative GMR contribution of the AP1 layer. The pinned layer structure includes an AP1 layer that includes a thin CoFe layer that is exchange coupled with an IrMn or IrMnCr AFM layer and has two or more Co layers with a spin blocking layer sandwiched between them. The use of the Co layers and the spin blocking layer in the AP1 layer minimizes the negative contribution of the AP1 layer. The AP2 layer has a plurality of CoFe layers with nano-layers such as Cu sandwiched between the CoFe layers.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: January 19, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Matthew Joseph Carey, Jeffrey Robinson Childress, Stefan Maat
  • Patent number: 7646569
    Abstract: A method for manufacturing a magnetic read sensor and a magnetic read sensor are provided. In one embodiment of the invention, the method includes providing a seed layer disposed over a substrate of the magnetic read sensor, providing a free layer disposed over a seed layer and providing a spacer layer disposed over the free layer. The method further includes providing a pinned layer disposed over the spacer layer. In one embodiment, the pinned layer includes cobalt and iron, wherein the concentration of iron in the pinned layer is between 33 and 37 atomic percent (at. %). The method further includes providing a pinning layer disposed over the pinned layer, wherein the pinning layer is in contact with the pinned layer.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: January 12, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Jinshan Li, Kouichi Nishioka, Satoshi Shigematsu, Alexander M. Zeltser
  • Patent number: 7646568
    Abstract: Improved magnetic devices have been fabricated by replacing the conventional seed layer (typically Ta) with a bilayer of Ru on Ta. Although both Ru and Ta layers are ultra thin (between 5 and 20 Angstroms), good exchange bias between the seed and the AFM layer (IrMn about 70 Angstroms thick) is retained. This arrangement facilitates minimum shield-to-shield spacing and gives excellent performance in CPP, CCP-CPP, or TMR configurations.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: January 12, 2010
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Hui-Chuan Wang, Tong Zhao, Yu-Hsia Chen, Min Li, Cherng-Chyi Han
  • Patent number: 7639458
    Abstract: A system, method and computer program product provide an annealing process for setting a magnetization condition of a read head. An amount of heat for stabilizing magnetization condition of a read head is calculated. A width and amplitude of a voltage pulse that generates the calculated amount of heat in the read head are calculated. A voltage pulse of the calculated width and amplitude is applied to the read head for generating Joule heating in the read head. The width of the voltage pulse is less than one second.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: December 29, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Lydia Baril, Ciaran A. Fox, Jih-Shiuan Luo, Peter J. Melz, Chin-Yu Yeh
  • Patent number: 7639457
    Abstract: A magnetic sensor is disclosed comprising an antiferromagnetic layer; a first ferromagnetic layer disposed over the antiferromagnetic layer, the first ferromagnetic layer having a magnetization that is pinned by the antiferromagnetic layer; a second ferromagnetic layer disposed over the first ferromagnetic layer, the second ferromagnetic layer having a magnetization that rotates due to an applied magnetic field; a third ferromagnetic layer disposed adjacent to an end of the second ferromagnetic layer, the third ferromagnetic layer having a primarily in-plane magnetization providing a magnetic field to stabilize the end of the second ferromagnetic layer; an amorphous, metallic, nonmagnetic underlayer disposed adjacent to the antiferromagnetic layer; and a crystalline seed layer disposed between the underlayer and the third ferromagnetic layer, the seed layer having a crystalline structure that promotes the in-plane magnetization of the third ferromagnetic layer.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: December 29, 2009
    Assignee: Western Digital (Fremont), LLC
    Inventors: Yingjian Chen, Wei Zhang, Jinqiu Zhang, Haifeng Wang, Satoru Araki, Mohamad T. Krounbi
  • Patent number: 7630176
    Abstract: A method for forming a bottom spin valve sensor element with a novel seed layer and synthetic antiferromagnetic pinned layer and the sensor so formed. The novel seed layer comprises an approximately 30 angstrom thick layer of NiCr whose atomic percent of Cr is 31%. On this seed layer there can be formed either a single bottom spin valve read sensor or a symmetric dual spin valve read sensor having synthetic antiferromagnetic pinned layers. An extremely thin (approximately 80 angstroms) MnPt pinning layer can be formed directly on the seed layer and extremely thin pinned and free layers can then subsequently be formed so that the sensors can be used to read recorded media with densities exceeding 60 Gb/in2. Moreover, the high pinning field and optimum magnetostriction produces an extremely robust sensor.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: December 8, 2009
    Assignee: Headway Technologies, Inc.
    Inventors: Cheng T. Horng, Hui-Chuan Wang, Ru-Ying Tong, Chyu-Jiuh Torng
  • Patent number: 7623323
    Abstract: Embodiments of the invention provide a reading head structure that ensures a stable magnetic moment of a pinned layer against a great external magnetic field, and minimizes the pinned-layer damage occurring during air-bearing surface machining. In one embodiment, a magnetoresistive head is based on a spin-valve effect and has free layers, a stacked-type pinned layer, and an electroconductive nonmagnetic spacer layer positioned between the free layers and the stacked-type pinned layer. The stacked-type pinned layer includes three ferromagnetic films, and antiferromagnetic coupling films interposed between the ferromagnetic films. Of these ferromagnetic films, the first two films have a high coercivity and a high resistivity. The third ferromagnetic film is made of a material that gives a great magnetoresistive effect. The sum of the magnetic moments generated from the stacked-type pinned layer is substantially zero.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: November 24, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Koichi Nishioka, Shuichi Kojima, Koji Kataoka, Takayoshi Ohtsu
  • Patent number: 7616409
    Abstract: A magnetoresistive sensor having a novel seed layer that allows a bias layer formed there over to have exceptional hard magnetic properties when deposited over a crystalline structure such as an AFM layer in a partial mill sensor design. The seed layer structure includes alternating layers of Ru and Si and a layer of CrMo formed thereover. The seed layer interrupts the epitaxial growth of an underlying crystalline structure, allowing a hard magnetic material formed over the seed layer to have a desired grain structure that is different from that of the underlying crystalline layer. The seed layer is also resistant to corrosion, providing improved sense current conduction to the sensor.
    Type: Grant
    Filed: January 10, 2005
    Date of Patent: November 10, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: James Mac Freitag, Mustafa Michael Pinarbasi
  • Patent number: 7612969
    Abstract: A magnetic memory device includes a pinning layer, a pinned layer, an insulation layer, which are sequentially stacked on a semiconductor substrate. The magnetic memory device further includes a free layer disposed on the insulation layer, a capping layer disposed on the free layer and an MR (magnetoresistance) enhancing layer interposed between the free layer and the capping layer. The MR enhancing layer is formed of at least one anti-ferromagnetic material.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: November 3, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Se-Chung Oh, Jang-Eun Lee, Hyun-Jo Kim, Kyung-Tae Nam, Jun-Ho Jeong
  • Patent number: 7609490
    Abstract: An MR device includes a magnetization pinned film having a nonmagnetic intermediate layer positioned on the opposite side of a magnetization free layer while sandwiching a nonmagnetic spacer layer and made of RuCu. In the case of passing read current in the stacking direction via lower and upper electrodes, decrease in a resistance change amount caused by a second magnetization pinned layer can be suppressed. Further, a first magnetization pinned layer and the second magnetization pined layer which are thicker can be antiferromagnetically coupled to each other in magnetic fields in a wider range. Thus, both increase in the resistance change amount and magnetic field stability can be achieved. Therefore, while maintaining stable operations by reducing the influence of external noise, the invention can address higher recording density by the increase in the resistance change amount as a whole.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: October 27, 2009
    Assignee: TDK Corporation
    Inventors: Tomohito Mizuno, Daisuke Miyauchi
  • Patent number: 7609489
    Abstract: A magnetic sensor comprising: a multilayer film which has a pinned magnetic layer, the magnetization thereof being pinned in one direction, and a free magnetic layer formed on the pinned magnetic layer with a nonmagnetic material layer provided therebetween, in which current is allowed to flow in a direction perpendicular to the surfaces of the layers forming the multilayer film, wherein the pinned magnetic layer has a NiaFeb alloy layer (where a and b each indicate atomic percent, and 0<a?25 and a+b=100 are satisfied).
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: October 27, 2009
    Assignee: TDK Corporation
    Inventors: Yosuke Ide, Masamichi Saito, Masahiko Ishizone, Naoya Hasegawa
  • Patent number: 7606008
    Abstract: A reader of a current-perpendicular-to-plane magnetoresistive head includes a spin valve with sensor having a stabilizer adjacent thereto, to substantially avoid magnetization distribution at the edge of the sensor due to vortex effect. At least one free layer is spaced apart from at least one pinned layer by a spacer. Above the free layer, a capping layer is provided. The stabilizer includes a pinned ferromagnetic layer adjacent to the free layer, and an antiferromagnetic layer positioned thereon. It becomes easy to provide an effective biasing using a variety of materials having different magnetic moments and thickness. Also problems related to sensor edge for small size will be overcome. A method of manufacturing the reader is also provided.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: October 20, 2009
    Assignee: TDK Corporation
    Inventors: Rachid Sbiaa, Haruyuki Morita