With More Than Three Wires Patents (Class 361/48)
  • Patent number: 11958369
    Abstract: A method for preparing a transmission of energy to a vehicle by an inductive charging system, which has a base plate arranged on a primary side of the charging system and a secondary side arranged in or on the vehicle. A first coil is provided in the base plate and a second coil is provided on the secondary side in a vehicle plate. The method includes energizing the second coil provided on the secondary side from a vehicle-based power source and diagnosing the functionality of components arranged on the secondary side of the inductive charging system by evaluating the energization carried out on the secondary side of the inductive charging system. Also disclosed is a device for preparing a transmission of energy to a vehicle by an inductive charging system.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: April 16, 2024
    Assignee: Vitesco Technologies GmbH
    Inventors: Urs Kalt, Andrees Beekmans, Bernhard Michel
  • Patent number: 11855436
    Abstract: An electrical wiring device including a housing assembly including a plurality of terminals at least partially disposed therein, the plurality of terminals including a HOT/LOAD terminal, a NEUTRAL terminal, a first traveler terminal, and a second traveler terminal, wherein, when in use, at least one of the terminals is connected to line hot; a first series FET and a second series FET disposed in series between the HOT/LOAD terminal and one of the first traveler terminal or the second traveler terminal; at least one of a first sensor producing a first sensor output according to current flow or a voltage at the one of the first traveler terminal or the second traveler terminal and a second sensor producing a second sensor output according to current flow through the NEUTRAL terminal or according to a voltage between the first series FET and second series FET; and a controller configured to determine to which of the plurality of terminals line hot is connected based, at least, on the first sensor output or the s
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: December 26, 2023
    Assignee: Pass & Seymour, Inc.
    Inventors: Brian Mueller, Joshua P. Haines, David A. Finlay, Sr., Gerald R. Savicki, Jr.
  • Patent number: 11807384
    Abstract: A device includes a current difference measurement module for measuring the difference between a current flowing in a positive contact of the electrical installation and a current flowing in a negative contact of the electrical installation, a low-pass filter for filtering the differential current, a full-wave rectifier without threshold module for rectifying the filtered current and a trip module for emitting a trip command when the rectified current is greater than or equal to a predetermined threshold for a predetermined duration. The device thus makes it possible to protect a DC-voltage electrical installation in a noisy environment.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: November 7, 2023
    Assignee: Airbus Operations SAS
    Inventor: Patrick Oms
  • Patent number: 11799272
    Abstract: A panelboard assembly for a harsh and/or hazardous environment is provided. The panelboard assembly includes a main breaker assembly, a first subpanel assembly, and a second subpanel assembly. The first subpanel assembly includes a first contactor assembly, and a first branch breaker assembly electrically connected to the first contactor assembly and configured to be electrically connected to a first group of loads. The first contactor assembly is configured to switch the first group of loads on and off all at once. The second subpanel assembly is electrically connected in parallel to the first subpanel assembly, and includes a second contactor assembly and a second branch breaker assembly electrically connected to the second contactor assembly and configured to be electrically connected to a second group of loads. The second contactor assembly is configured to switch the second group of loads on and off all at once.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: October 24, 2023
    Assignee: Eaton Intelligent Power Limited
    Inventors: Andrew D. Blum, Terry L. Moser
  • Patent number: 11757280
    Abstract: Provided is a DC current damper for a medium voltage or high voltage transformer. The DC current damper includes at least one pair of diodes. The two diodes in each pair of diodes are in an anti-parallel configuration. The at least one pair of diodes is configured to be connected between a neutral connection of a medium voltage or high voltage transformer and ground potential.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: September 12, 2023
    Assignee: Hitachi Energy Switzerland AG
    Inventors: Thomas Schmidt, Dietrich Bonmann
  • Patent number: 11596047
    Abstract: A fracturing well site system includes an electric-driven apparatus, a fuel-driven apparatus, an electric-power supply apparatus and a grounding system. The grounding system includes a first grounding terminal which is spaced from each of the electric-driven apparatus, the fuel-driven apparatus and the electric-power supply apparatus by a preset distance. The fuel-driven apparatus and at least one of the electric-driven apparatus and the electric-power supply apparatus are connected to the first grounding terminal, and the first grounding terminal is configured to ground the fuel-driven apparatus and the at least one of the electric-driven apparatus and the electric-power supply apparatus.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: February 28, 2023
    Assignee: YANTAI JEREH PETROLEUM EQUIPMENTS TECHNOLOGIES CO., LTD.
    Inventors: Kaishen Liu, Shouzhe Li, Zhuqing Mao
  • Patent number: 10983155
    Abstract: An apparatus and method for managing the detection of faults in a wiring system. The wiring system is made up of supply wires and can include return wires. The supply wire connects a power supply to a load end. The fault detecting apparatus is positioned along the wire between the power supply and the load end and can include a first and second resistor, a voltage monitor, and an indicator.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: April 20, 2021
    Assignee: GE Aviation Systems Limited
    Inventors: John Oliver Collins, Russell Mark Compton, Peter James Handy, Denis Vaughan Weale
  • Patent number: 10735105
    Abstract: In one embodiment, a method includes receiving power at an optical transceiver module at a remote network device on a cable delivering power and data from a central network device, operating the remote network device in a low voltage startup mode during fault sensing at the remote network device, transmitting on the cable, a data signal to the central network device, the data signal indicating an operating status based on the fault sensing, and receiving high voltage power from the central network device on the cable at the remote network device upon transmitting an indication of a safe operating status at the remote network device, wherein the remote network device is powered by the high voltage power. An apparatus is also disclosed herein.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: August 4, 2020
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Joel Richard Goergen, Chad M. Jones, Douglas Paul Arduini, Richard Anthony O'Brien, Daniel Lee Barsotti, Sung Kee Baek
  • Patent number: 10020676
    Abstract: One example discloses a watchdog circuit: wherein the watchdog circuit is configured to receive a primary ground from a primary power supply, and a backup ground from a backup power supply; wherein the watchdog circuit includes a ground switch coupled to the primary ground and the backup ground; and wherein the ground switch is configured to isolate the primary ground from the backup ground in response to a fault signal.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: July 10, 2018
    Assignee: NXP B.V.
    Inventors: Ge Wang, Harold Garth Hanson
  • Patent number: 9716380
    Abstract: A power supply circuit for a trip unit of a circuit interrupter includes a current transformer, a startup circuit receiving a regulated voltage and a DC/DC converter. The startup circuit is structured to: (i) burden the current transformer with an impedance approximating the trip unit and cause the DC/DC converter to enter the shutdown mode when the regulated voltage is below a predetermined value, (ii) remove the burden and cause the DC/DC converter to exit the shutdown mode and provide power to the trip unit responsive to the regulated voltage reaching the predetermined value, and (iii) remove the burden and cause the DC/DC converter to exit the shutdown mode and provide power to the trip unit responsive to a rate of change of the regulated voltage being at least a predetermined level.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: July 25, 2017
    Assignee: EATON CORPORATION
    Inventor: Theodore James Miller
  • Patent number: 9225327
    Abstract: In some implementations, a control device is coupled with an output, the output to be coupled with a remote device via a line, for example, in an industrial environment. A burst detector is coupled with the output to detect bursts on the line. In response to detected bursts, a switch device may couple the output with a reference potential.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: December 29, 2015
    Assignee: Infineon Technologies Austria AG
    Inventor: Burkhard Becker
  • Patent number: 9197055
    Abstract: A ground monitor apparatus for monitoring ground current includes a DC detection module, a DC threshold module, and a trip module. The current monitor module monitors current in a pilot conductor or a ground return. The pilot conductor injects current in a grounding conductor of a power cable assembly connecting a power source to a load. A voltage source is connected to the pilot conductor and the ground return. The DC detection module determines a direct current (“DC”) current present in the current monitored by the current monitor module and the DC threshold module determines if the DC current is above a DC current threshold. The trip module opens a contact in response to the DC threshold module determining that the DC current is above the DC current threshold. The contact disconnects the power source from the power cable assembly.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: November 24, 2015
    Assignee: Intermountain Electronices, Inc.
    Inventors: Dale Curtis, Robin Vice
  • Patent number: 9124089
    Abstract: An apparatus includes an accessory module for a ground monitor that monitors current in a pilot conductor and/or a grounding conductor, which is in a power cable assembly connecting a power source and load. The pilot conductor injects a signal in the grounding conductor. The accessory module includes signal connectors that include multiple connection points. Each connection point provides access to a signal within the ground monitor. The connection points access signals for an output of a circuit monitoring current in the pilot conductor or ground return, a circuit responding to a peak current in the pilot conductor or ground return transitioning below a threshold, a circuit responding to an average current in the grounding conductor transitioning below a threshold, and/or a circuit indicating trip status of a contact in the power source. The connection point signals are in addition to signals from the ground monitor to the power source.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: September 1, 2015
    Assignee: Intermountain Electronics, Inc.
    Inventors: Dale Curtis, Robin Vice
  • Patent number: 8947837
    Abstract: An overcurrent fault protection method includes detecting an overcurrent fault in a variable frequency electric power generation system having a first main generator connected to a first alternating current bus through a first generator line contactor, a second main generator connected to a second alternating current bus through a second generator line contactor and an auxiliary power generator connected to a plurality of bus tie contactors, through a third generator line contactor, and connected to at least one of the first and second alternating current buses through the plurality of bus tie contactors, in response to detecting the overcurrent fault, locking out one or more of the plurality of bus tie contactors and in response to a continued detection of the overcurrent fault, opening at least one of the first second and third generator line contactors.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: February 3, 2015
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Nebojsa Novakovic, Jef William Good
  • Patent number: 8749929
    Abstract: A circuit interrupter includes a trip actuator configured to cooperate with an operating mechanism to trip open separable contacts. The circuit interrupter also includes a ground fault sensor configured to sense a difference between a current through a first electrical conductor and a current through a second electrical conductor and to output an output current based on the sensed difference and a ground fault amplifier circuit configured to convert the output current to an output voltage. The circuit interrupter also includes first and second switches configured to electrically connect the output of the ground fault sensor to the ground fault amplifier circuit and the trip actuator, respectively. The circuit interrupter also includes a processor configured to control operation of the first and second switches and, when the first switch is closed, to control operation of the trip actuator based on the output voltage.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: June 10, 2014
    Assignee: Eaton Corporation
    Inventor: Theodore Miller
  • Patent number: 8717718
    Abstract: Electrical load controls are provided which include an electrical switch assembly and a fault protection device within a common housing. The switch assembly includes an actuator, and is responsive to actuation of the actuator to switch ON or OFF electricity to the load. The protection device automatically responds to a fault condition by overriding the switch assembly by automatically blocking electrical connection between phase input and output terminals and neutral input and output terminals of the load control. The actuator includes a single external interface element. In one embodiment, actuation of the actuator switches ON or OFF electricity via control of the fault protection device, and in another embodiment, movement of the interface away from the housing exposes within the housing an internal user interface for the fault protection device.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: May 6, 2014
    Assignee: Leviton Manufacturing Company, Inc.
    Inventors: Michael Kamor, Adam Kevelos
  • Patent number: 8537509
    Abstract: The present invention relates to a ground fault detecting and controlling method for a parallel-structured high voltage system, and more particularly, such a ground fault detecting and controlling method for a parallel-structured high voltage system, in which it can be more precisely determined whether or not the system operation is emergently stopped based on individual insulation resistance values for respective items of the system, and it can be determined whether there is the possibility of temporary operation of the system in the emergency stop situation of the system operation. According to the present invention, a combined insulation resistance ground fault reference value is calculated based on individual insulation resistance values for respective items of the system, and the entire system is controlled by using the calculated combined insulation resistance ground fault reference value such that a high-accuracy ground fault detecting and controlling method can be provided.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: September 17, 2013
    Assignee: Hyundai Motor Company
    Inventor: Sang Yon Yoon
  • Patent number: 8537516
    Abstract: Disclosed are apparatus, methods, and systems for the monitoring of grounding components in an electrical system. Methods of monitoring grounding components comprise a signal or plurality of signals imposed on a ground loop circuit by a first inductive element, a second inductive element which receives the signal(s), and circuitry which compares changes in the imposed signal(s) to a baseline to calculate impedance. Active monitoring of impedance enables contractors to ensure installation of a grounding system was performed correctly, and allows a user to track changes in impedance over the life of the electrical system such that, if an impedance threshold is reached, appropriate action may be taken.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: September 17, 2013
    Assignee: Musco Corporation
    Inventor: Darrell N. Chelcun
  • Patent number: 8537510
    Abstract: For monitoring the isolation of an IT-grid with respect to ground, an inverter connecting a direct current side with an alternating current side of the IT-grid and a photovoltaic device on the direct current side of the IT-grid, at least one isolation resistance of the direct current side with respect to ground is monitored for falling below a resistance threshold value while the inverter is running, and additionally a leakage current via the inverter towards ground is monitored for exceeding a current threshold value.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: September 17, 2013
    Assignee: SMA Solar Technology AG
    Inventor: Reinhard Lehmann
  • Patent number: 8487635
    Abstract: A system for determining a system charging current in a three-phase power system has a first grounding circuit that joins a neutral of the power transformer with a ground through a first resistor. System charged capacitance voltage in one phase is discharged through a second resistor in a second grounding circuit joining the one phase of the power system with the ground. A magnitude of the currents in the first and second grounding circuits are measured when the one phase is short circuited to ground. The preliminary system charging current is calculated as the root of the difference between the squares of the measured currents grounding circuits. The same procedure may be repeated for different values of the first resistor and for each of the phases, and the calculated preliminary system charging currents may be averaged to arrive at a net system charging current.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: July 16, 2013
    Inventor: Dev Paul
  • Patent number: 8331067
    Abstract: An apparatus and method for providing ground fault protection to a lifting device utilizing an electromagnet and powered by a generator. The apparatus and method rectifies an AC voltage emanating from the generator source and monitors unsafe operating conditions of the generator's circuit wherein operation of the lifting device is ceased when predetermined electrical operating parameters are exceeded.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: December 11, 2012
    Assignee: Ephaugh, Inc.
    Inventor: John Samila
  • Patent number: 8259423
    Abstract: An automotive vehicle includes a charge port integrated with the vehicle. The charge port includes electrical contacts configured to receive electrical power from an electric grid, and a fault interrupt circuit electrically connected with the electrical contacts.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: September 4, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: Allan Roy Gale, Michael W. Degner, Steven F. Chorian, Venkateswa Anand Sankaran
  • Publication number: 20120147508
    Abstract: A ground loop detection and prevention system includes multiple electric power generators driven by one or more rotational power sources. Each of the electrical generators has a set of generator windings with a neutral point. A transformer having a number of primary windings as well as a secondary winding is connected to the neutral points via the primary transformer windings. An interrupter device such as a GFCI is connected across the transformer's secondary winding, such that when a ground loop current occurs in any of the generator windings, the interrupter device detects the loop and stops the operation of the generators.
    Type: Application
    Filed: December 8, 2010
    Publication date: June 14, 2012
    Applicant: CATERPILLAR INC.
    Inventor: Richard Starkweather
  • Patent number: 8174804
    Abstract: A circuit breaker apparatus may be used to interrupt overcurrent and ground fault in a circuit. The circuit breaker apparatus may include an overcurrent coil for tripping the circuit breaker apparatus, a voltage coil also for tripping the circuit breaker apparatus located proximate to the overcurrent coil, ground fault electronics connected to the voltage coil and structured to detect a ground fault in the circuit when the ground fault exceeds a threshold level, and a solid state switch. The ground fault electronics can be structured to send a trip signal to close the solid state switch when a ground fault is detected, the solid state switch is configured to force a current through the voltage coil when the solid state switch is closed, the current being of sufficient magnitude to trip the circuit breaker apparatus.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: May 8, 2012
    Assignee: Carling Technologies, Inc.
    Inventor: Michael Fasano
  • Patent number: 8064174
    Abstract: A circuit is disclosed for disconnecting a power source upon the detection of a leakage current comprising a power cable having an insulated first and a second wire. The power cable has a conductive shield surrounding the first and second wires with a drain wire electrically contacting the conductive shield. A disconnect switch is interposed between the power source and the power cable. A primary circuit controls the disconnect switch. A secondary circuit is connected to the drain wire for sensing a leakage current between the conductive shield and one of the first and second wires. An optical switch interconnects the primary circuit and the secondary circuit for opening the disconnect switch upon the secondary circuit sensing a leakage current.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: November 22, 2011
    Assignee: Technology Research Corporation
    Inventors: Thomas S. Williams, Frank S. Brugner, Jr., Paul R. Gandolfi
  • Patent number: 8045303
    Abstract: A ground fault interrupter to be used by utility company while effecting repairs to the electrical service for a building is positioned to interrupt the power supply to the building in case of a detected ground fault and utilizes a sensor for detecting the fault current at the service entrance to a building; a contact switch, selectively movable between open and closed positions, mounted for temporary use in series with said power supply to the building; and a microprocessor based circuit for measuring and evaluating fault current detected by the sensor and controlling the selective movement of the contact switch between its open and closed positions.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: October 25, 2011
    Assignee: The Von Corporation
    Inventors: Ricky Curl, Fred von Herrmann
  • Patent number: 8022709
    Abstract: A method and a system for determining a circular characteristic for distance protection of a three-phase electric line, the system comprising means for detecting a fault on the electric line, means for identifying a faulted phase or phases of the electric line, means for determining, at a measuring point, a first fault loop impedance by using voltage(s) of the faulted phase(s), a second fault loop impedance by using a polarization voltage and a third fault loop impedance by using predetermined line parameters, and means for determining a radius and midpoint of the circular characteristic.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: September 20, 2011
    Assignee: ABB Technology AG
    Inventors: Ari Wahlroos, Janne Altonen
  • Patent number: 8018697
    Abstract: A switching circuit, e.g. an RCD, comprises a pair of mechanical contacts (M) in an alternating current electricity supply (N, L) and circuit means (SCR) for opening the contacts to cut off the supply in response to a switching signal (S). The switching circuit includes further circuit means (Rs, Cs, D2, D3, Q1, Q2) for defining successive periods of time (“activation windows”) during which the magnitude of the supply voltage is not at a maximum and allowing the contacts to open in response to a switching signal only during such windows.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: September 13, 2011
    Assignee: Shakira, Limited
    Inventor: Patrick Ward
  • Patent number: 7948722
    Abstract: A differential protection device comprising: differential current measuring means, processing means connected to the measuring means and comprising operating rating selection means and time delay selection means to select tripping curves, actuating means, and test means connected to the measuring means. In the protection device the test means are associated with the operating rating selection means and with the time delay selection means to select a minimum or reduced operating rating and to select a minimum or reduced time delay when said test means are actuated.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: May 24, 2011
    Assignee: Schneider Electric Industries SAS
    Inventor: Mustapha Chelloug
  • Patent number: 7835120
    Abstract: A circuit breaker apparatus may be used to interrupt overcurrent and ground fault in a circuit. The circuit breaker apparatus may include an overcurrent coil for tripping the circuit breaker apparatus, a voltage coil also for tripping the circuit breaker apparatus located proximate to the overcurrent coil, and ground fault electronics connected to the voltage coil and structured to detect a ground fault in the circuit when the ground fault exceeds a threshold level. The ground fault electronics can be structured to send a trip signal to the voltage coil when a ground fault is detected, and the voltage coil can be structured to trip the circuit breaker apparatus when it receives the trip signal from the ground fault electronics.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: November 16, 2010
    Assignee: Carling Technologies, Inc.
    Inventor: Michael A. Fasano
  • Patent number: 7764473
    Abstract: A circuit breaker includes for each neutral and phase power conductor, a current sensor sensing an alternating current flowing in a corresponding power conductor, a comparator determining whether the sensed alternating current is positive or negative, a rectifier rectifying the sensed alternating current to provide a rectified current value, and an analog-to-digital converter converting the rectified current value to a signed digital value having a positive sign. A processor cooperates with the comparators and the analog-to-digital converters and includes a routine that changes the positive sign of the signed digital value to a negative sign if the sensed alternating current is negative, adds the signed digital value for each power conductor to provide a sum, and employs the sum to determine whether to output a ground fault signal. The processor further cooperates with an operating mechanism to trip open separable contacts responsive to the ground fault signal.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: July 27, 2010
    Assignee: Eaton Corporation
    Inventors: Todd M. Shaak, Harry J. Carlino
  • Patent number: 7732940
    Abstract: An apparatus for reducing a neutral current using a load switching method in accordance with the present invention includes a phase current detection unit for detecting a phase current in each of a top stage power line and a bottom stage power line, a load switching unit for changing an arrangement of a load connected each phase of at least one among the top stage power line and the bottom stage power line and a control unit for controlling the load switching unit so as to compare a strength of the detected phase current of the top stage power line with a strength of the detected phase current of the bottom stage power line and to change the arrangement of the load connected to each phase of at least one among the top stage power line and the bottom stage power line according to the comparison result.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: June 8, 2010
    Assignee: Sungkyunkwan University Foundation For Corporate Collaboration
    Inventors: Chul Hwan Kim, Keon Woo Park
  • Patent number: 7719285
    Abstract: The present invention relates to a ground fault detection arrangement for a synchronous three-phase electrical machine, and an electrical system comprising a ground fault detection arrangement and a synchronous three-phase electrical machine. The ground fault detection arrangement injects an off-nominal frequency voltage between a neutral point of the synchronous three-phase electrical machine and ground and measure resultant currents to detect a ground fault.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: May 18, 2010
    Assignee: ABB Research Ltd.
    Inventors: Stefan G. Johansson, Marek Fulczyk, Tord Bengtsson, Sture Lindahl, Gabriel Olguin
  • Patent number: 7636224
    Abstract: The invention refers to a method and an apparatus (1) for protecting people against leakage currents while using appliances such as home appliances or the like. The apparatus (1) is provided with a differential switch (20) normally open and a differential current transformer (39) which generates a signal proportional to the leakage current, an elaboration unit (50) interfaced with the latter acquires said signal and keeps the switch (20) closed until a dangerous condition is met, corresponding to an acquired signal having a magnitude greater than a limit value.
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: December 22, 2009
    Assignee: Trinity S.A.
    Inventor: Sandro Zandonella Balco
  • Patent number: 7633728
    Abstract: An arc fault circuit interrupter includes separable contacts, an operating mechanism, a current sensor sensing current flowing through the contacts and outputting a sensed current, and a processor determining and storing peak values of the sensed current for plural half-cycles. The processor provides arc fault detection, determines whether a first predetermined plurality of half-cycles occur in succession and correspond to non-unity power factor, and responsively inhibits the detection for a first predetermined time, and whether a second predetermined plurality of half-cycles occur in succession, each with smaller peak amplitude than that of an immediately preceding half-cycle of like or differing polarity, and responsively inhibits the detection for a second predetermined time.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: December 15, 2009
    Assignee: Eaton Corporation
    Inventors: Kevin L. Parker, Robert T. Elms
  • Patent number: 7633727
    Abstract: A circuit interrupter includes band pass filters cooperating with a current sensor to output bands having different, non-overlapping ranges of frequencies, peak detectors cooperating with the filters to detect corresponding peak current values, envelope detectors cooperating with the filters to detect corresponding occurrences from the bands being within corresponding predetermined magnitude ranges, a counter counting the occurrences, and a processor providing and disabling series arc detection when sensed current is greater than a first predetermined value. The processor determines tallies responsive to peak current values exceeding corresponding thresholds, determines series arcing from sensed current being less than the first predetermined value for a predetermined time, the tally for a current half-cycle being nonzero, and a count for the current half-cycle being different than the count for an immediately previous half-cycle of like polarity by at least a second predetermined value.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: December 15, 2009
    Assignee: Eaton Corporation
    Inventors: Xin Zhou, John J. Shea, Kevin L. Parker, Theodore J. Miller
  • Patent number: 7558033
    Abstract: An arc fault circuit interrupter includes separable contacts, a neutral conductor, an operating mechanism structured to open and close the separable contacts, at least one current sensor structured to sense current flowing through the separable contacts and output a sensed current value; and a processor. The processor includes a first routine structured to provide parallel arc fault detection, a second routine structured to provide series arc fault detection, and a third routine structured to enable the first routine and disable the second routine for a predetermined time when the sensed current value is greater than a predetermined value and to enable the second routine and disable the first routine for the predetermined time when the sensed current value is less than the predetermined value.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: July 7, 2009
    Assignee: Eaton Corporation
    Inventors: Xin Zhou, John J. Shea, Joseph C. Engel, Kevin L. Parker, Theodore J. Miller
  • Patent number: 7538647
    Abstract: A ground fault circuit interrupter device is described.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: May 26, 2009
    Assignee: Cooper Technologies Company
    Inventor: Howard S. Leopold
  • Patent number: 7440246
    Abstract: The present disclosure relates to resettable circuit interrupting devices and apparatus capable of being tested and reset from remote locations, and in particular to portable circuit interrupting devices and apparatus capable of being tested and reset from remote locations.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: October 21, 2008
    Assignee: Leviton Manufacturing Co., Inc.
    Inventors: Gaetano Bonasia, James Richter, Steve Campolo
  • Publication number: 20070268636
    Abstract: A ground detector includes a pair of lines, a first series circuit, a reference portion, a second series circuit, and a detection point. The first series circuit connects the lines to each other. The first series circuit includes first capacitors that are connected in series. The reference portion is connected to a portion of the first series circuit between two of the first capacitors for DC insulating the lines from the reference portion. The second series circuit connects the lines to each other. The second series circuit includes second capacitors that are connected in series. The detecting point is provided in the second series circuit. Each of the lines is connected to the detecting point through at least corresponding one of the second capacitors. The ground detector detects a change of impedance between the lines and the reference portion based on a change of potential of the detecting point with respect to potential of the reference portion.
    Type: Application
    Filed: September 25, 2006
    Publication date: November 22, 2007
    Inventors: Sadanori Suzuki, Kiminori Ozaki
  • Patent number: 7205668
    Abstract: A multi-layer printed circuit board (PCB) includes a first wire layer, a middle layer above the first wire layer, a second wire layer above the middle layer, and a slanting via formed in the middle layer and the second wire layer. The manufacturing method includes the steps of providing a first wire layer and forming a first wiring on the first wire layer, forming a middle layer on the first wire layer, forming a second wire layer on the middle layer, forming a slanting via in the middle layer and the second wire layer wherein the direction of the slanting via is not orthogonal to the first and the second wire layers, forming a second wiring on the second wire layer by an etching method, and forming an electroplated layer in the via to connect the first wiring and the second wiring.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: April 17, 2007
    Assignee: Benq Corporation
    Inventors: Ching-Yuan Wu, Kuang-Jen Liu, Chun-Chi Hsu
  • Patent number: 7184251
    Abstract: A power supply assembly for a lighting system is directly mountable onto a standard electrical junction box. The power supply circuit provides an electronically power limited output through multi-conductor power connectors. The power supply assembly is used as part of a lighting system. The power supply output is used to connect to luminaires using a multi-conductor cable having multi-conductor power connectors which mate with the multi-conductor power connectors on the power supply and luminaire. The luminaires use a circuit to interface between the power supply output and the lamp.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: February 27, 2007
    Inventor: Dale E. Fiene
  • Publication number: 20030235018
    Abstract: A method of reducing parasitic capacitance in an integrated circuit having three or more metal levels is described. The method comprises forming a bond pad at least partially exposed at the top surface of the integrated circuit, forming a metal pad on the metal level below the bond pad and forming an underlying metal pad on each of the one or more lower metal levels. In the illustrated embodiments, the ratio of an area of at least one of the underlying metal pads to the area of the bond pad is less than 30%. Parasitic capacitance is thus greatly reduced and signal propagation speeds improved.
    Type: Application
    Filed: November 12, 2002
    Publication date: December 25, 2003
    Inventors: Shubneesh Batra, Michael D. Chaine, Brent Keeth, Salman Akram, Troy A. Manning, Brian Johnson, Chris G. Martin, Todd A. Merritt, Eric J. Smith
  • Patent number: 6625001
    Abstract: In a directional tap, a splitting circuit receives a video signal from an input port and outputs a distributed video signal corresponding to the video signal from the input port at each of multiple directional output ends. Each of multiple directional output terminals is connected electrically to a respective one of the directional output ends for outputting the distributed video signal to a client end. One of multiple surge protection circuit units is connected between the input port and an input of the splitting circuit. The remaining surge protection circuit units are connected between a respective directional output end of the splitting circuit and a respective directional output terminal. Each surge protection circuit unit includes an inductor having a first terminal connected electrically to the splitting circuit, and a second terminal cooperating with a ground terminal to define a gap.
    Type: Grant
    Filed: January 17, 2002
    Date of Patent: September 23, 2003
    Assignee: Cable Vision Electronics Co., Ltd.
    Inventor: Micki Tseng
  • Patent number: 6618229
    Abstract: The aircraft applicable current imbalance detection and circuit interrupter interrupts an electrical circuit when a current imbalance is sensed. The current imbalance detection and circuit interrupter includes a housing, power supplies, a sensor for sensing a current imbalance at the line side of the electrical circuit, a logic controller and a power controller. In a preferred embodiment, the invention can also include a fault indicator, a press to test switch and a reset switch. The power supplies provide power to the sensor, logic controller, and the power controller. The logic controller receives input from the sensor and the relay control signal, and the power controller receives input from the logic controller, and interrupts power to the load side of the electrical circuit when the sensor senses a current imbalance. Power interruption due to a sensed current imbalance is maintained until the line side power source is cycled.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: September 9, 2003
    Assignee: Hydro-Aire, Inc.
    Inventor: Ronald A. Bax
  • Patent number: 6567256
    Abstract: The relay obtains three-phase current signals from two power line sources thereof, typically two independent feeder lines. The two sets of signals are processed by a single processing means, which independently controls the circuit breakers associated with each feeder line, depending on the values of current obtained.
    Type: Grant
    Filed: March 31, 1995
    Date of Patent: May 20, 2003
    Assignee: Schweitzer Engineering Labs, Inc.
    Inventor: Edmund O. Schweitzer, III
  • Publication number: 20030043516
    Abstract: The electrical ground fault protection circuit (10) includes power and ground LINE connections (12) that are connectable to power (18a, 18b, 18c) and ground lines of an electrical distribution system. They also include power and ground LOAD connections (14) that are connectable to a load (29). Power and ground paths extend from the power and ground LINE connections to the power and ground LOAD connections and include an interrupter (72) having a connect position in which it allows current flow from the LINE connections to the LOAD connections and a disconnect position in which it interrupts such current flow. A ground line monitor (64) detects the presence or absence of a fault condition in the ground line (20). In response to the presence of a fault condition, the circuit switches the interrupter from its connect position to its disconnect position. The power path monitor (66) detects the presence or absence of a fault condition in the power path (18a, 18b, 18c).
    Type: Application
    Filed: August 14, 2002
    Publication date: March 6, 2003
    Inventors: Michael R. Ahlstrom, Dennis R. Robbins
  • Patent number: 6465979
    Abstract: A method and device for providing series compensation for rotating electric alternating current machines connected either directly, or via a static current converter, to a three-phase distribution or transmission network. The stator of the electric machine is Y-connected. A capacitive circuit for the fundamental frequency of the voltage is connected to each phase between the low voltage side of the winding and a ground of the transmission network.
    Type: Grant
    Filed: October 4, 1999
    Date of Patent: October 15, 2002
    Assignee: ABB AB
    Inventors: Mats Leijon, Lars Gertmar, Jan-Anders Nygren, Peter Templin
  • Patent number: 6188552
    Abstract: A normally ungrounded power system for a oil well is provided which includes a power transformer above ground and a pump motor below ground. There is provided a signal system which includes a below ground sensor system and an above ground signal conditioning and monitoring unit where the sensor system utilizes the main power lines for carrying the sensor signals. A connectable high resistance grounding scheme is provided to the aforementioned floating system, so that in the event of a arcing ground fault or similar occurrence the system may be immediately grounded, thus compensating for the effects of the arcing ground fault and providing personnel safety and electrical equipment protection. When the high resistance grounding system is not utilized the aforementioned signals from the sensors are easily carried by the power conductors.
    Type: Grant
    Filed: August 7, 1998
    Date of Patent: February 13, 2001
    Assignee: Eaton Corporation
    Inventors: James R. Jaeschke, William E. Berkopec, David D. Shipp, Martin Baier
  • Patent number: 6043664
    Abstract: A method for turn fault detection in a multi-phase alternating current machine includes obtaining instantaneous line-to-neutral voltages from each phase of the machine, calculating the sum of the line-to-neutral voltages, and using the sum to determine whether a turn fault exists. The line-to-neutral voltages can be filtered to reduce harmonics. In one embodiment, deviations in a time-averaged function of the sum are examined. The time-averaged function can be exponentially weighted. Each of the line-to-neutral voltages can be calibrated to remove inherent machine phase impedance imbalance prior to calculating the sum of the line-to-neutral voltages.
    Type: Grant
    Filed: October 27, 1997
    Date of Patent: March 28, 2000
    Assignee: General Electric Company
    Inventors: Gerald Burt Kliman, Thomas Gerard Habetler, Marcus Alex Cash