Double Layer Electrolytic Capacitor Patents (Class 361/502)
  • Patent number: 8773842
    Abstract: Disclosed is an electrical energy storage device provided with a metallic casing to receive a bare cell and first and second terminals located outside of the metallic casing corresponding to each electrode of the bare cell, including a plate-like member provided on at least one of the first and second terminals, an inner terminal contacting the plate-like member to form the boundary between the inner terminal and the plate-like member, and a laser welded portion formed along the boundary between the inner terminal and the plate-like member to connect the plate-like member with the inner terminal.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: July 8, 2014
    Assignee: LS Mtron, Ltd.
    Inventors: Ha-Young Lee, Jun-Ho Kim, Sang-Hyun Bae, Ji-Eun Kang
  • Publication number: 20140185191
    Abstract: Disclosed herein is an apparatus for storing an electric energy, the apparatus including: an electrode stack in which a cathode and an anode in which a cathode lead and an anode lead are respectively formed are alternately stacked; and collector plates disposed at both sides of the electrode stack, connected to the cathode lead and the anode lead, and provided with external terminals and one or more electrolyte flow holes.
    Type: Application
    Filed: March 15, 2013
    Publication date: July 3, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Se Woong PAENG, Eun Sil KIM, Bae Kyun KIM, Jae Hoon CHOI
  • Publication number: 20140184364
    Abstract: Certain aspects and features of the present invention are directed to a supercapacitor device that can be disposed in a wellbore through a fluid-producing formation. The supercapacitor device can include a body that can be disposed in the wellbore, a supercapacitor disposed in the body, at least two terminals disposed at least partially outside the body, and an actuation mechanism. The supercapacitor stores energy. The terminals can be electrically connected with the supercapacitor. An electrical connection between the supercapacitor and the terminals can cause the energy to be discharged from the supercapacitor in response to a conductive material providing an electrical path between the at least two terminals. The actuation mechanism can selectively prevent a deployment of the supercapacitor device in the wellbore from causing a discharge of the energy from the supercapacitor.
    Type: Application
    Filed: December 27, 2013
    Publication date: July 3, 2014
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Christopher M. McMillon, Robert M. Neely, Gregory T. Werkheiser
  • Publication number: 20140184162
    Abstract: Deterioration of a power storage device is reduced. Switches that control the connections of a plurality of power storage devices separately are provided. The switches are controlled with a plurality of control signals, so as to switch between charge and discharge of each of the power storage devices or between serial connection and parallel connection of the plurality of power storage devices. Further, a semiconductor circuit having a function of carrying out arithmetic is provided for the power storage devices, so that a control system of the power storage devices or a power storage system is constructed.
    Type: Application
    Filed: December 20, 2013
    Publication date: July 3, 2014
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Minoru TAKAHASHI, Junpei MOMO, Yutaka SHIONOIRI
  • Publication number: 20140183415
    Abstract: A graphene-based composite includes graphene and a structure former contacting the graphite, wherein the structure former is a metal oxide or a carbon compound and includes pores therein, and the graphene-based composite has a porous particle structure. The graphene-based composite can have a large specific surface area and excellent charge storage capacity.
    Type: Application
    Filed: December 17, 2013
    Publication date: July 3, 2014
    Applicant: Cheil Industries Inc.
    Inventor: Lee Hwa SONG
  • Patent number: 8767376
    Abstract: An object of the present invention is to provide an electric double layer capacitor which has a high withstand voltage, and is resistant to degradation and excellent in long term reliability. Disclosed is an electrolytic solution for an electric double layer capacitor including a solvent (I) for dissolving an electrolyte salt and an electrolyte salt (II), wherein the solvent (I) for dissolving an electrolyte salt includes a sulfolane compound and a fluorine-containing chain ether. Also disclosed is an electric double layer capacitor using the electrolytic solution.
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: July 1, 2014
    Assignee: Daikin Industries, Ltd.
    Inventors: Kenzou Takahashi, Meiten Koh, Mai Koyama, Emi Miyanaga
  • Patent number: 8767377
    Abstract: An electrolytic capacitor includes a capacitor element and an electrolyte solution impregnated into the capacitor element. The capacitor element includes an anode foil, cathode foil, separator, and a solid electrolytic layer. The anode foil has a dielectric layer on its surface, and the cathode foil confronts the anode foil. The separator is interposed between the anode foil and the cathode foil. The solid electrolytic layer is formed on the surfaces of the anode foil, cathode foil, and separator as an aggregate of fine particles of conductive polymer. The separator has an air-tightness not greater than 2.0 s/100 ml. Sizes of the fine particles measure not greater than 100 nm in diameter, and the fine particles are contained in an amount ranging from 0.3 mg/cm2 to 1.2 mg/cm2 converted to amounts per unit area of the anode foil.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: July 1, 2014
    Assignee: Panasonic Corporation
    Inventors: Tatsuji Aoyama, Hiroyuki Matsuura, Yuuki Murata, Yukiya Shimoyama, Jyunya Kushizaki, Hidehiro Sasaki
  • Publication number: 20140178759
    Abstract: A composition comprising at least one graphene-supported metal oxide monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds, wherein the graphene sheets are coated by at least one metal oxide such as iron oxide or titanium oxide. Also provided is an electrode comprising the aforementioned graphene-supported metal oxide monolith, wherein the electrode can be substantially free of any carbon-black and substantially free of any binder.
    Type: Application
    Filed: March 15, 2013
    Publication date: June 26, 2014
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventor: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
  • Publication number: 20140177136
    Abstract: Disclosed herein are an activated carbon in which pores with pore sizes of 0.3˜5 nm account for 80% or higher based on an overall pore volume, a method for preparing the activated carbon, and an electrochemical capacitor including the activated carbon, so that, since the activated carbon has uniform sized fine pores, high-rate discharge characteristics, high-rate charging and discharging characteristics, and low-temperature characteristics can be improved; since the content of functional groups on the surface of the activated carbon is low, there can be provided a supercapacitor and a lithium ion capacitor, having improved high voltage and lifespan characteristics; and the time for preparing an active material can be significantly shortened and thus the material cost and the process cost can be remarkably reduced.
    Type: Application
    Filed: December 13, 2013
    Publication date: June 26, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Eun Sil Kim, Se Woong Paeng, Bae Kyun Kim, Jae Hoon Choi
  • Publication number: 20140178766
    Abstract: Provided is a technique to confirm the performance of the conductive resin layer of a current collector without actually preparing an electrode structure, a non-aqueous electrolyte battery, an electrical double layer capacitor, a lithium ion capacitor, or an electrical storage device, and to confirm the performance of the conductive resin layer easily with high accuracy by a non-destructive test. A current collector includes a conductive substrate and a resin layer possessing conductivity, the resin layer being formed on at least one side of the conductive substrate. The resin layer possessing conductivity contains a resin and a conductive material containing carbon as a main component. When the color tone of the surface of the resin layer possessing conductivity is specified with L*a*b* color system, L* is 60 or lower, a* is ?1.0 to 1.0, and b* is ?1.0 to 3.0.
    Type: Application
    Filed: July 27, 2012
    Publication date: June 26, 2014
    Applicants: UACJ FOIL CORPORATION, UACJ CORPORATION
    Inventors: Osamu Kato, Sohei Saito, Yukiou Honkawa, Mitsuyuki Wasamoto, Kenichi Kadowaki, Satoshi Yamabe
  • Publication number: 20140177135
    Abstract: An electrochemical device that can ensure long-term reliability is equipped with a solution chamber and an electric storage element. The solution chamber houses electrolytic solution and has a first face and a second face opposing the first face. The electric storage element is positioned in the solution chamber and has a first electrode provided on the first face and a second electrode provided on the first face away from the first electrode. This way, an electrochemical device that can ensure long-term reliability can be provided.
    Type: Application
    Filed: October 23, 2013
    Publication date: June 26, 2014
    Applicant: TAIYO YUDEN CO., LTD.
    Inventors: Kyotaro MANO, Naoto HAGIWARA, Katsuei ISHIDA
  • Patent number: 8760846
    Abstract: An apparatus and associated method for an energy-storage device (e.g., a capacitor) having a plurality of electrically conducting electrodes including a first electrode and a second electrode separated by a non-electrically conducting region, and wherein the non-electrically conducting region further includes a non-uniform permittivity (K) value. In some embodiments, the method includes providing a substrate; fabricating a first electrode on the substrate; and fabricating a second electrode such that the second electrode is separated from the first electrode by a non-electrically conducting region, wherein the non-electrically conducting region has a non-uniform permittivity (K) value. The capacitor devices will find benefit for use in electric vehicles, of all kinds, uninterruptible power supplies, wind turbines, mobile phones, and the like requiring wide temperature ranges from several hundreds of degrees C. down to absolute zero, consumer electronics operating in a temperature range of ?55 degrees C.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: June 24, 2014
    Assignee: GranBlueTech, L.L.C.
    Inventor: John P. Snyder
  • Patent number: 8756775
    Abstract: A method is provided for efficiently and securely smoothing a surface of an electrode disposed on a base, such as a ceramic substrate, without damaging the electrode or the base. The electrode is fired by a non-shrinkage process using a constraining layer and is separated from the constraining layer. The base including the electrode disposed thereon is prepared and a surface of the electrode is smoothed by vibrating media such that the media are arranged to be in contact with the electrode.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: June 24, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Akiyoshi Kawamura, Takako Sato, Osamu Chikagawa
  • Patent number: 8760851
    Abstract: Methods and apparatus for an electrochemical double-layer capacitor for hostile environments. An electrochemical double-layer capacitor includes two electrodes wetted with an electrolyte, each electrode being attached to or in contact with or coated onto a current collector and separated from each other by a separator porous to the electrolyte, the electrodes, electrolyte and current collector containing less than 1,000 parts per million (ppm) of impurities, while exhibiting a leakage current less than 1 amp per liter of volume over a range of operating temperatures and at a voltage up to a rated voltage.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: June 24, 2014
    Assignee: Fastcap Systems Corporation
    Inventors: Riccardo Signorelli, Lindsay A. Wilhelmus
  • Patent number: 8760850
    Abstract: In some embodiments, an apparatus includes a housing and a purge valve. The housing defines a cavity and a lumen extending from a volume of the cavity to a volume outside the cavity. The purge valve is disposed within the lumen and includes an occlusion member. A portion of the occlusion member has a width substantially equal to a width of an end portion of the lumen such that the portion of the occlusion member is disposed within the end portion of the lumen when the purge valve is in a first configuration. The portion of the occlusion member being disposed outside the end portion of the lumen when the purge valve is in a second configuration.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: June 24, 2014
    Assignee: Ioxus, Inc.
    Inventors: Thor E. Eilertsen, Chad Hall, Lothar Franz Bieg
  • Publication number: 20140170502
    Abstract: An electric storage apparatus has a positive electrode plate, a negative electrode plate, and a separator. Each of the positive electrode plate and the negative electrode plate has a collector plate and an active material layer containing an electrolytic solution, and the active material layer is formed in a predetermined width on a partial region of a collector plate. The separator is placed between the positive electrode plate and the negative electrode plate and contains an electrolytic solution. At least one of the positive electrode plate and the negative electrode plate, an edge of the active material layer in a width direction has a waveform. A set value Wn of the width of the active material layer and a variation ?W of the width of the active material layer satisfy a condition of 0.03??W/Wn?0.056.
    Type: Application
    Filed: August 23, 2011
    Publication date: June 19, 2014
    Inventor: Hiroaki Ikeda
  • Publication number: 20140170488
    Abstract: An object of the present invention is to provide a current collector which can decrease the internal resistance of a non-aqueous electrolyte battery, be used suitably for a non-aqueous electrolyte battery such as a lithium ion secondary battery and the like or for an electrical storage device such as a lithium ion capacitor and the like, and improve high rate characteristics. According to the present invention, a current collector which is structured by forming a resin layer possessing conductivity on at least one side of a conductive substrate is provided. The resin layer contains a chitosan-based resin and a conductive material, and the water contact angle of the surface of the resin layer measured by ?/2 method in a thermostatic chamber at 23° C. is 5 degrees or more and 60 degrees or less. In addition, an electrode structure, a non-aqueous electrolyte battery, and an electrical storage device which use the current collector are provided.
    Type: Application
    Filed: July 27, 2012
    Publication date: June 19, 2014
    Applicants: UACJ FOIL CORPORATION, UACJ CORPORATION
    Inventors: Osamu Kato, Sohei Saito, Yukiou Honkawa, Mitsuyuki Wasamoto, Kenichi Kadowaki, Satoshi Yamabe
  • Publication number: 20140168853
    Abstract: Disclosed herein is a super capacitor including: an electrode assembly; a pouch cell enclosing an outer peripheral surface of the electrode assembly; a resin case molding the pouch cell; and a lead wire of which one side is electrically connected to the electrode assembly and the other side exposed to the outside of the resin case is bonded to an outer peripheral surface of the resin case. According to the present invention, the super capacitor may have durability against external impact, and cycle life characteristics of the super capacitor may be significantly improved.
    Type: Application
    Filed: March 15, 2013
    Publication date: June 19, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jae Hoon Choi, Yeong Su Cho, Eun Sil Kim, Se Woong Paeng, Bae Kyun Kim, Ji Sung Cho
  • Publication number: 20140168854
    Abstract: Disclosed herein are an electrode structure and an energy storage apparatus including the same, the electrode structure including: a first current collector having a flat plate structure; second current collectors stacked on the first current collector and having a mesh structure; and active material layers formed on the first and second current collectors.
    Type: Application
    Filed: December 9, 2013
    Publication date: June 19, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Bae Kyun KIM, Eun Sil KIM, Se Woong PAENG, Yeong Su CHO, Jae Hoon CHOI
  • Publication number: 20140168855
    Abstract: The present invention relates to ionic liquids comprising, as cation, a specific phosphonium cation, as anion, a formiate anion, which can be used, alone or as a mixture, to constitute electrolytes for energy storage devices.
    Type: Application
    Filed: August 3, 2012
    Publication date: June 19, 2014
    Applicants: Universite Francois Rabelais, Commissariat a l'energie atomique et aux ene alt
    Inventors: Herve Galiano, Meriem Anouti, Daniel Lemordant, Laure Timperman
  • Patent number: 8755170
    Abstract: A metal electrolytic capacitor capable of quickly absorbing and immobilizing a belching vapor of a driving electrolyte and widely reducing leakage when an explosion-proof valve operates. An aluminum electrolytic capacitor body is configured by housing a capacitor element in a cylindrical aluminum case, a pair of leads extend from the capacitor body, an explosion-proof valve. is formed on a top panel portion of the metal case, a cylindrical cap as a casing is attached from above to the capacitor body, a plurality of small openings are formed on a top panel portion (bottom portion) of the cap, and an absorbent or a mixture of an absorbent and a water molecular compound wrapped in a permeable fiber material, such as unwoven fabric and filter paper, is placed in a space between the cap and the top panel portion of the capacitor body.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: June 17, 2014
    Assignee: Kurita Water Industries Ltd.
    Inventors: Koichi Mori, Mitsuru Nozue, Minoru Yagi
  • Patent number: 8755169
    Abstract: An electrochemical capacitor capable of increasing a capacity is proposed. The electrochemical capacitor is a positive electrode and a negative electrode formed over a surface plane of a substrate. Additionally, the electrochemical capacitor has an electrolyte, and the positive electrode and the negative electrode are in contact with a same surface plane of the electrolyte. In other words, the electrochemical capacitor has a positive electrode active material and a negative electrode active material over a surface plane of an electrolyte, a positive electrode current collector which is in contact with the positive electrode active material, and a negative electrode current collector which is in contact with the negative electrode active material. By the aforesaid structure, a capacity of the electrochemical capacitor can be increased.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: June 17, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazutaka Kuriki, Kiyofumi Ogino, Yumiko Saito
  • Publication number: 20140162122
    Abstract: An object of the present invention is to improve an adhesion between the surface of a conductive resin layer and an active material, which are provided to a current collector. Another object of the present invention is to improve a high rate characteristics or electrode lifetime of a non-aqueous electrolyte battery, an electrical double layer capacitor, a lithium ion capacitor and the like which uses the current collector. A current collector prepared by forming a resin layer possessing conductivity on a conductive substrate, is provided. A surface roughness Ra of the resin layer possessing conductivity is 0.1 ?m or higher and 1.0 ?m or lower. In addition, when a coating thickness of the resin layer possessing conductivity is taken as t [?m] and the average angle of inclination of the resin layer surface is taken as ?a [degree], (?)t+0.5??a?(?)t+10 is met.
    Type: Application
    Filed: July 27, 2012
    Publication date: June 12, 2014
    Applicants: UACJ FOIL CORPORATION, UACJ CORPORATION
    Inventors: Osamu Kato, Sohei Saito, Yukiou Honkawa, Mitsuyuki Wasamoto, Kenichi Kadowaki, Satoshi Yamabe
  • Publication number: 20140160630
    Abstract: Disclosed is a free-standing hybrid nanomembrane capable of energy storage. The free-standing hybrid nanomembrane includes carbon nanotube sheets and a conducting polymer coated on the carbon nanotube sheets. The carbon nanotube sheets are densified sheets formed by evaporating an alcohol from carbon nanotube aerogel sheets. The conducting polymer is coated on the carbon nanotube sheets by vapor phase polymerization. Further disclosed is a method for fabricating the free-standing hybrid nanomembrane.
    Type: Application
    Filed: December 11, 2012
    Publication date: June 12, 2014
    Applicant: IUCF-HYU (Industry-University Cooperation Foundation Hanyang University)
    Inventor: IUCF-HYU (Industry-University Cooperation Foundation Hanyang University)
  • Publication number: 20140160631
    Abstract: The present invention relates to an electrolyte of an energy storage device. An electrolyte composition in accordance with an embodiment of the present invention includes an electrolyte salt, a carbonate solvent, and at least one nitrile solvent of acetonitrile and propionitrile.
    Type: Application
    Filed: March 15, 2013
    Publication date: June 12, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jae Hoon Hoon CHOI, Ji Sung CHO, Eun Sil KIM, Se Woong PAENG, Bae Kyun KIM
  • Publication number: 20140162094
    Abstract: The purpose of the present invention is to provide an electrochemical element to which a high-concentration and high-viscosity electrolyte is supplied. The electrolyte is dispersed and supplied instantaneously to the electrochemical element in a small fixed quantity.
    Type: Application
    Filed: June 13, 2012
    Publication date: June 12, 2014
    Applicants: OPTNICS PRECISION CO., LTD., FUJIKIN INCORPORATED
    Inventors: Atsushi Nishino, Ryousuke Dohi, Nobukazu Ikeda, Kouji Nishino, Seichin Kinuta, Yoshiaki Saita, Masashi Kobayashi
  • Patent number: 8749950
    Abstract: An ionic polymer metal composite (IPMC) capacitor is disclosed which includes a thin single layer non-hydrated ionic polymer substrate with conductive film electrodes applied to at least a portion of each side of the non-hydrated ionic polymer substrate. The disclosed capacitor is suited for providing thin capacitance structures made to substantially any desired dimensions and shape and may be particularly suited for short term power storage in low power electronics, sensors, micro-electronics, MEMs and high temperature applications. A method of manufacturing an IPMC capacitor is also disclosed including providing a thin single layer non-hydrated ionic polymer substrate, applying a conductive film electrode to both sides of the substrate, and attaching electrical connections to the electrodes. The disclosed method of manufacture may optionally also include heat curing the capacitor and coating the capacitor with at least one moisture-resistant protective coating layer.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: June 10, 2014
    Assignee: Simon Fraser University
    Inventors: Bozena Kaminska, Clinton K. Landrock
  • Patent number: 8748039
    Abstract: An electrode of an energy storage device with less deterioration by charge and discharge can be manufactured. In addition, an energy storage device which has large capacity and high endurance can be manufactured. A manufacturing method of an electrode of an energy storage device is provided in which a high-wettability regions and a low-wettability region are formed at a surface of a current collector, a composition containing silicon, germanium, or tin is discharged to the high-wettability regions and then baked to form separate active materials over a surface of the current collector. Thus, an electrode of an energy storage device with less deterioration due to charge and discharge can be manufactured.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: June 10, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kiyofumi Ogino, Kazutaka Kuriki
  • Patent number: 8749953
    Abstract: A thin energy storage device having high capacity is obtained. An energy storage device having high output is obtained. A current collector and an active material layer are formed in the same manufacturing step. The number of manufacturing steps of an energy storage device is reduced. The manufacturing cost of an energy storage device is suppressed. One embodiment of the present invention relates to an electric double layer capacitor which includes a pair of electrodes including a porous metal material, and an electrolyte provided between the pair of electrodes; or a lithium ion capacitor which includes a positive electrode that is a porous metal body functioning as a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte provided between the positive electrode and the negative electrode.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: June 10, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junpei Momo, Yumiko Saito, Rie Matsubara, Hiroatsu Todoriki
  • Patent number: 8749952
    Abstract: The invention relates to a supercapacitor with a double electrochemical layer that comprises at least two complexes (2, 3) and at least one spacer (4) between the two complexes (2, 3), the complexes (2, 3) and the spacer (4) being spirally wound together in order to form a coiled member (10), characterized in that it further comprises at least another complex (1) and at least another spacer (4), the other complex (1) and the other spacer (4) being spirally wound together around the coiled member (10) in order to form at least one subsequent coiled member (20), the consecutive coiled members (10, 20) being separated by an electronic insulation space.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: June 10, 2014
    Assignee: Batscap
    Inventors: Philippe Azais, Olivier Caumont, Jean-Michel Depond
  • Patent number: 8749954
    Abstract: Electrode foil includes an aluminum alloy having a composition in a region at least 10 ?m deep from a surface of the foil. The composition includes aluminum as a main component and zirconium of at least 0.03 at % and at most 0.5 at %.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: June 10, 2014
    Assignee: Panasonic Corporation
    Inventors: Masashi Shoji, Hitoshi Ishimoto, Ayumi Kochi, Tomohiro Maruoka, Naomi Kurihara, Takao Sato
  • Patent number: 8748020
    Abstract: An energy storage device includes an electrode unit in which a cathode having a cathode lead, an anode having an anode lead, and a separator located between the cathode and the anode to separate the cathode and the anode from each other are rolled together; a housing receiving the electrode unit; an electrolyte filled in the housing; an inner terminal arranged in the housing to face the electrode unit; and an outer terminal connected to the inner terminal. A groove is formed in a side of the inner terminal, and a side protrusion is formed on an inner wall of the housing at a location corresponding to the groove.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: June 10, 2014
    Assignee: LS Mtron, Ltd
    Inventors: Ha-Young Lee, Jin-A Kang, Jun-Ho Kim, Sang-Hyun Bae
  • Publication number: 20140154569
    Abstract: To provide a conductive adhesive composition for an electrochemical element electrode and used in forming a conductive adhesive layer that is highly uniform and is interposed between a collector and an electrode composition layer, being able to contribute to increased adhesion between the two. The conductive adhesive composition for an electrochemical element electrode is characterized by containing: conductive carbon; a particulate copolymer (A) containing a dibasic acid monomer unit; a particulate copolymer (B) containing an ethylenically unsaturated carboxylic acid amide derivative unit; and a dispersing agent.
    Type: Application
    Filed: August 3, 2012
    Publication date: June 5, 2014
    Applicant: ZEON CORPORATION
    Inventors: Koichiro Maeda, Naoki Yoshida
  • Publication number: 20140153158
    Abstract: The present invention relates in particular to a conductive electrode for an electrical energy storage system (1) having an aqueous electrolyte solution, said electrode comprising a metallic current collector (3) and an active material (7), said metallic current collector (3) comprising a protective conductive layer (5) placed between said metallic current collector (3) and said active material (7), characterized in that said protective conductive layer (5) comprises:—between 30% and 85% as a proportion by weight of dry matter of a copolymer matrix,—between 70% and 15% as a proportion by weight of dry matter of conductive fillers, in addition to the proportion by weight of dry matter of copolymer in order to achieve a total of 100%.
    Type: Application
    Filed: July 2, 2012
    Publication date: June 5, 2014
    Applicant: Hutchinson
    Inventors: Bruno Dufour, David Ayme-Perrot, Marie Dieudonne, Philippe Sonntag
  • Publication number: 20140154548
    Abstract: The invention relates to a storage unit (1) for storing electrical energy. The storage unit (1) has at least one energy store (3, 5, 6, 7). According to the invention, the storage unit (1) also has a contact area for giving off heat to a heat sink (45). The storage unit (1) has at least one heat pipe (50), which is connected to the contact area and is connected to the energy store (3, 5, 6, 7) in such a way that heat dissipated inside the energy store (3, 5, 6, 7) can be carried away to the contact area via the heat pipe (50).
    Type: Application
    Filed: May 30, 2012
    Publication date: June 5, 2014
    Applicant: ROBERT BOSCH GMBH
    Inventors: Adolf Dillmann, Stefan Huehner, Reiner Holp
  • Publication number: 20140147772
    Abstract: A polarizable ion-conducting material. The material contains mobile ions and a matrix formed of a polymer having ionic groups of a charge opposite to that of the mobile ions, wherein the material has a polarization of at least 0.2 mC/g, a capacitance of at least 0.1 mF/g, and a polarization retention time of at least 5 seconds. Also disclosed is a device containing such a polarizable ion-conducting material.
    Type: Application
    Filed: July 30, 2012
    Publication date: May 29, 2014
    Inventor: Xian Ning Xie
  • Publication number: 20140147398
    Abstract: The present invention includes a solvent system comprising a pristine nanoparticle solute suspended in a liquid solvent. The solute is selected from the group consisting of a metal oxide, a mixed metal oxide, a chalcogenide, and a mixed metal chalcogenide; and the solvent system is characterized by a value of chi less than about 0.00.
    Type: Application
    Filed: March 5, 2012
    Publication date: May 29, 2014
    Applicant: WiSys Technology Foundation
    Inventors: James P. Hamilton, Lester F. Lampent
  • Publication number: 20140146439
    Abstract: Disclosed herein is an electrode structure for an energy storage device, the electrode structure including a current collector and an active material layer formed on the current collector, the active material layer including a carbon material and metal particles formed on the carbon material.
    Type: Application
    Filed: March 14, 2013
    Publication date: May 29, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jae Hoon Choi, Yong Suk Kim, Eun Sil Kim, Se Woong Paeng, Bae Kyun Kim
  • Patent number: 8737039
    Abstract: The present invention is concerned with novel polar solvents and novel electrolytic compositions comprising such solvents, and having a high range of stability, as required for applications in the field of electrochemistry. The present solvents have a highly polar amide function, and preferably combine with a salt soluble in the solvent and having an anion with a delocalized charge, and at least one polymer, to form an electrolytic composition.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: May 27, 2014
    Assignees: ACEP Inc., Centre National de la Recherche Scientifique, Universite de Montreal
    Inventors: Christophe Michot, Dany Brouillette, Daniel Baril, Jean-Yves Bergeron, Michel Armand
  • Patent number: 8734999
    Abstract: Provided are a substrate on which carbon nanotubes each having one end connected to the substrate can be formed at a high synthetic rate and from which the carbon nanotubes are less likely to be peeled off. The substrate is a substrate for forming the carbon nanotubes and includes a buffer layer 13 formed on at least one of surfaces of a substrate main body 14 and containing aluminum atoms and fluorine atoms. The carbon nanotube complex includes the substrate and a plurality of carbon nanotubes 11 each having one end connected to a surface of the buffer layer 13.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: May 27, 2014
    Assignee: Panasonic Corporation
    Inventors: Takuma Asari, Hironori Kumagai, Shigeo Hayashi, Yasuhiro Hashimoto, Naoki Yoshikawa, Takashi Okada
  • Patent number: 8737040
    Abstract: A pseudocapacitor employs plates having an active material of a nanoparticles sized ceramic mixed ionic-electronic conductor such as may have the nominal formula of ABO3, A2BO4, AB2O4, and AO2, where A and B are metals. The active material may be prepared to promote sublattice vacancies to provide for the storage of additional charge.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: May 27, 2014
    Assignee: Wisys Technology Foundation, Inc.
    Inventors: Charles P. Gibson, Annamalai Karthikeyan
  • Patent number: 8737038
    Abstract: An electroactive polymer based super capacitor capable of operation at MILSPEC temperatures, with electroactive polymers acting as the charge storage layers, and a mixture of electrolytes enabling operation down to ?60° C.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: May 27, 2014
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: David J. Irvin, Jennifer A. Irvin, John D. Stenger-Smith
  • Publication number: 20140139975
    Abstract: Multilayer carbon nanotube capacitors, and methods and printable compositions for manufacturing multilayer carbon nanotubes (CNTs) are disclosed. A first capacitor embodiment includes: a first conductor; a plurality of fixed CNTs in an ionic liquid, each fixed CNT comprising a magnetic catalyst nanoparticle coupled to a carbon nanotube and further coupled to the first conductor; and a first plurality of free CNTs dispersed and moveable in the ionic liquid. Another capacitor embodiment includes: a first conductor; a conductive nanomesh coupled to the first conductor; a first plurality of fixed CNTs in an ionic liquid and further coupled to the conductive nanomesh; and a plurality of free CNTs dispersed and moveable in the ionic liquid. Various methods of printing the CNTs and other structures, and methods of aligning and moving the CNTs using applied electric and magnetic fields, are also disclosed.
    Type: Application
    Filed: January 23, 2014
    Publication date: May 22, 2014
    Applicant: NthDegree Technologies Worldwide Inc.
    Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Vera Nicholaevna Lockett, Theodore I. Kamins, Thomas William Clinton
  • Publication number: 20140139974
    Abstract: An energy storage device comprises a capacitor having a dielectric between opposite electrodes and a nonconductive coating between at least one electrode and the dielectric. The nonconductive coating allows for much higher voltages to be employed than in traditional EDLCs, which significantly increases energy stored in the capacitor. Viscosity of the dielectric material may be increased or decreased in a controlled manner, such as in response to an applied external stimulus, to control discharge and storage for extended periods of time.
    Type: Application
    Filed: January 16, 2014
    Publication date: May 22, 2014
    Applicant: Carver Scientific, Inc.
    Inventors: David R. Carver, Robert G. Carver, Sean W. Reynolds, Sean Claudius Hall, Noah Anthony Davis
  • Publication number: 20140139973
    Abstract: A titanium oxide composite, a titanium oxide composite manufacturing method, and a super capacitor using the same are provided. The titanium oxide composite is prepared to surround graphene on a surface of granule type titanium oxide. One of a granule type LixTiyOz and a granule type HxTiyOz is selected and thereby used for the granule type titanium oxide, the granule type LixTiyOz satisfies 1?x?4, 1?y?5, and 1?z?12, and the granule type HxTiyOz satisfies 1?x?2, 1?y?12, and 1?z?25.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 22, 2014
    Applicant: SAMHWA CAPACITOR CO., LTD.
    Inventors: Young Joo OH, Jung Rag YOON, Kyung Min LEE, Byung Gwan LEE
  • Publication number: 20140141355
    Abstract: The disclosure provides a graphene electrode, an energy storage device employing the same, and a method for fabricating the same. The graphene electrode includes a metal foil, a non-doped graphene layer, and a hetero-atom doped graphene layer. Particularly, the hetero-atom doped graphene layer is separated from the metal foil by the non-doped graphene layer.
    Type: Application
    Filed: July 24, 2013
    Publication date: May 22, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Hsiao-Feng HUANG, Ping-Chen CHEN, Chun-Hsiang WEN, Wei-Jen LIU
  • Publication number: 20140139972
    Abstract: The present application provides an electric double-layer capacitor capable of reducing an internal resistance without exerting a large stress on a positive electrode body, a negative electrode body, and separators. The electric double-layer capacitor according to the present invention is obtained by housing a capacitor element impregnated with an electrolytic solution in a case. The capacitor element is obtained by stacking and winding a positive electrode body, separators, and a negative electrode body. The positive electrode body has positive electrode current collector tabs fixed on positive electrode current collectors. The negative electrode body has negative electrode current collector tabs fixed on negative electrode current collectors. The paired positive electrode current collector tab are displaced from each other and the paired negative electrode tabs are displaced from each other in a state where the positive electrode body and the negative electrode body are not wound.
    Type: Application
    Filed: July 20, 2012
    Publication date: May 22, 2014
    Applicant: Nichicon Corporation
    Inventor: Katsunori Yokoshima
  • Patent number: 8730649
    Abstract: A method for decreasing resistivity of an electrolyte for an electric double-layer capacitor is provided. In this method, an aqueous electrolyte solution comprising LiNO3 and LiOH in a molar ratio of 1:9 to 9:1 is prepared first, and then purged with nitrogen or oxygen. An electric double-layer capacitor having the gas-purging aqueous electrolyte solution above is also provided.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: May 20, 2014
    Assignee: Taiwan Textile Research Institute
    Inventors: Wen-Hsien Ho, Chung-Bo Tsai, Shao-Wei Chieh, Po-Chou Chen, Chia-Hui Lee
  • Publication number: 20140134503
    Abstract: A printed energy storage device includes a first electrode, a second electrode, and a separator between the first and the second electrode. At least one of the first electrode, the second electrode, and the separator includes frustules, for example of diatoms. The frustules may have a uniform or substantially uniform property or attribute such as shape, dimension, and/or porosity. A property or attribute of the frustules can also be modified by applying or forming a surface modifying structure and/or material to a surface of the frustules. The frustules may include multiple materials. A membrane for an energy storage device includes frustules. An ink for a printed film includes frustules.
    Type: Application
    Filed: January 22, 2014
    Publication date: May 15, 2014
    Applicant: NthDegree Technologies Worldwide Inc.
    Inventors: Vera N. Lockett, John G. Gustafson, Mark D. Lowenthal, William J. Ray
  • Publication number: 20140134487
    Abstract: An electric storage device includes an electrolyte and an electric storage unit including a positive electrode including a positive-electrode collector electrode and a positive-electrode active-material layer disposed on the positive-electrode collector electrode; a negative electrode including a negative-electrode collector electrode and a negative-electrode active-material layer disposed on the negative-electrode collector electrode and facing the positive-electrode active-material layer; a first insulating layer bonded to the positive electrode and the negative electrode to isolate the positive electrode and the negative electrode from each other; and a region that is sealed with the first insulating layer in plan view and that holds the electrolyte between the positive electrode and the negative electrode, wherein an air permeability P of the first insulating layer satisfies the formula 1250 s/100 cc<P<95000 s/100 cc.
    Type: Application
    Filed: December 19, 2013
    Publication date: May 15, 2014
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Masaharu Itaya, Keiji Horikawa, Manabu Sawada, Hiroyuki Harada, Yuusuke Ueba, Yukio Ehara, Yasuhiko Ueda, Yasutake Fukuda