Salt Solute Patents (Class 361/505)
  • Patent number: 7656645
    Abstract: An electrolytic solution for an electric double layer capacitor comprising a quaternary ammonium salt in a mixed solvent containing ethylene carbonate and propylene carbonate as an electrolyte. The electrolytic solution for electric double layer capacitor has a low coefficient of viscosity, has an excellent low temperature characteristics of not coagulating at a low temperature, possesses high electrical conductivity over a wide temperature range, and has a long-term reliability.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: February 2, 2010
    Assignee: Japan Carlit Co., Ltd.
    Inventor: Kazumi Chiba
  • Patent number: 7617577
    Abstract: A digital variable capacitor package is provided as having a ground plane disposed on predetermined portion of the top surface of a substrate. An elongated signal electrode may also be disposed on the substrate and including a first end defining an input and a second end extending to a substantially central region of the top surface of the substrate. This elongated signal electrode is disposed to be electrically isolated from the ground plane. A number of elongated cantilevers are disposed on the substrate and each include first ends coupled to the second end of the signal electrode and each further include second ends suspended over different predetermined portions of the ground plane. In operation, one or more of the cantilevers may be actuated to move portion thereof into close proximity to the ground plane for providing one or more discrete capacitance values.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: November 17, 2009
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: John L. Ebel, Rebecca Cortez, Richard E. Strawser, Kevin D. Leedy
  • Publication number: 20090246626
    Abstract: A lithium ion capacitor includes, as a lithium ion supply source, a lithium metal foil for batteries or capacitors. A current collector 4 and a separator 3 formed of a paper or resin nonwoven fabric are preliminarily pressure-bonded and integrated to opposite surfaces of a lithium metal foil 1 for batteries or capacitors.
    Type: Application
    Filed: December 12, 2006
    Publication date: October 1, 2009
    Applicant: FUJI JUKOGYO KABUSHIKI KAISHA
    Inventors: Shinichi Tasaki, Mitsuru Nagai, Nobuo Ando
  • Publication number: 20090174986
    Abstract: It is to provide a lithium ion capacitor having a high capacity retention at the time of continuous charge at a high temperature and excellent in durability. A lithium ion capacitor comprising a positive electrode, a negative electrode and an aprotic organic solvent electrolyte solution of a lithium salt as an electrolytic solution, characterized in that a positive electrode active material is a material capable of reversibly supporting lithium ions and/or anions, a negative electrode active material is a material capable of reversibly supporting lithium ions, the negative electrode and/or the positive electrode is doped with lithium ions so that the potential of the positive electrode is at most 2.0 V after the positive electrode and the negative electrode are short-circuited, and the electrolytic solution contains vinylene carbonate or its derivative.
    Type: Application
    Filed: October 28, 2005
    Publication date: July 9, 2009
    Applicant: FUJI JUKOGYO KABUSHIKI KAISHA
    Inventors: Kohei Matsui, Risa Takahata, Nobuo Ando, Atsuro Shirakami, Shinichi Tasaki, Yukinori Hato
  • Publication number: 20090161295
    Abstract: The present invention has its object to provide an electrolyte anion which is high in decomposition temperature, in order to inhibit the electrolyte anion in the electrolyte solution for electrolytic capacitors from undergoing decarboxylation in the lead-free solder reflowing step to thereby prevent valve opening. The present invention uses an electrolyte solution comprising, as an electrolyte, the salt (A) composed of ammonium cation (a) and a polybasic carboxylic acid (b) anion, wherein the proton part charge of each carboxyl group in the polybasic carboxylic acid (b) as calculated by the quantum mechanics calculation software CAChe-based AM1 method is not higher than 0.243.
    Type: Application
    Filed: October 16, 2006
    Publication date: June 25, 2009
    Applicants: SANYO CHEMICAL INDUSTRIES, LTD., MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Shinsuke Kuroda, Shinya Sasada, Kazumitsu Honda, Keiko Hamada
  • Publication number: 20090161296
    Abstract: A lithium ion capacitor includes a positive electrode, a negative electrode, and a non-protonic organic solvent electrolytic solution of a lithium salt. A positive electrode active material is a material capable of reversibly doping a lithium ion and/or an anion. A negative electrode active material is a material capable of reversibly doping a lithium ion. The lithium ion is doped in advance to either one or both of the negative electrode and the positive electrode so that a positive electrode potential after the positive electrode and the negative electrode are short-circuited is 2.0 V (relative to Li/Li+) or less when capacitance per unit weight of the positive electrode is C+(F/g), weight of the positive electrode active material is W+(g), capacitance per unit weight of negative electrode is C?(F/g), and weight of the negative electrode active material is W?(g), a value of (C?×W?)/(C+×W+) is 5 or more.
    Type: Application
    Filed: December 7, 2006
    Publication date: June 25, 2009
    Applicant: FUJI JUKOGYO KABUSHIKI KAISHA
    Inventors: Kohei Matsui, Atsuro Shirakami, Nobuo Ando, Shinichi Tasaki, Risa Miyagawa, Osamu Hatozaki, Yukinori Hato
  • Publication number: 20090154064
    Abstract: A lithium ion capacitor including a positive electrode, a negative electrode, and an aprotic organic solvent solution of a lithium salt as an electrolytic solution. The positive electrode active material is capable of reversibly supporting lithium ions and/or anions, the negative electrode active material is capable of reversibly supporting lithium ions and anions, and the potentials of the positive electrode and the negative electrode are at most 2.0 V after the positive electrode and the negative electrode are short-circuited. The positive electrode and the negative electrode are alternately laminated with a separator interposed therebetween to constitute an electrode unit, the cell is constituted by at least two such electrode units, lithium metal is disposed between the electrode units, and lithium ions are preliminarily supported by the negative electrode and/or the positive electrode by electrochemical contact of the lithium metal with the negative electrode and/or the positive electrode.
    Type: Application
    Filed: October 19, 2005
    Publication date: June 18, 2009
    Inventors: Shinichi Tasaki, Nobuo Ando, Mitsuru Nagai, Atsuro Shirakami, Kohei Matsui, Yukinori Hato
  • Publication number: 20090147444
    Abstract: An electrolytic solution for an electrolytic capacitor includes a solvent and an electrolyte dissolved in the solvent. This electrolyte includes at least one of a carboxylic acid and a salt of the carboxylic acid. The carboxylic acid has a carboxyl group and at least one or more of substituents bonded to each terminal carbon of a straight main chain. The substituent bonded to the each terminal carbon of the main chain is hydrophilic, and/or a hydrophilic substituent is bonded to at least one of carbons other than the both terminal carbons of the main chain.
    Type: Application
    Filed: December 3, 2008
    Publication date: June 11, 2009
    Applicant: Panasonic Corporation
    Inventor: Ryoko Takaoka
  • Patent number: 7531010
    Abstract: According the present invention, anode foils are encapsulated in separator material so as to insulate them from the metal housing of an electrolytic capacitor. The present invention also provides for enclosed capacitor configurations for use in stacked capacitor configurations. Preferably, heat-sealable polymeric materials are used as separator materials to encapsulate or enclose the anode assemblies and capacitor configurations. The encapsulated anode assemblies and capacitor configurations of the present invention may be used in implantable cardioverter defibrillators.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: May 12, 2009
    Assignee: Pacesetter, Inc.
    Inventors: Christopher R. Feger, Thomas F. Strange
  • Patent number: 7525788
    Abstract: An electrochemical capacitor including a separating layer on a support. The separating layer represents a porous inorganic, electrically non-conducting coating which is provided with particles of compounds of the elements Al, Si, and/or Zr, the particles being bonded to each other and to the support by an inorganic adhesive. The support can represent a porous electrode or a porous and planar substrate that is provided with polymer fibers.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: April 28, 2009
    Assignee: Degussa AG
    Inventors: Gerhard Hoerpel, Volker Hennige, Chistian Hying, Sven Augustin
  • Publication number: 20090086410
    Abstract: The electrolytic capacitor includes a capacitor element and an electrolyte solution with which the capacitor element is impregnated. The capacitor element is composed of a positive electrode made of a valve metal, an etched negative electrode containing copper, and a separator disposed therebetween. The electrolyte solution contains complex salt of an azole ring compound with copper ions.
    Type: Application
    Filed: October 10, 2006
    Publication date: April 2, 2009
    Inventors: Masami Tsubaki, Hisao Nagara, Kazumitsu Honda
  • Publication number: 20090034161
    Abstract: Provided is an electrolytic capacitor which is advantageous in that an electrolyte is remarkably prevented from leaking from the anode. The present invention is directed to an electrolytic capacitor comprising: a capacitor element which comprises an anode foil with an anode lead means and a cathode foil with a cathode lead means being spirally wound together with a separator disposed therebetween, the capacitor element being impregnated with an electrolyte; a casing for containing therein the capacitor element; and a closure for sealing up an opening portion of the casing, wherein the anode lead means has a ceramic coating layer and/or an insulating synthetic resin layer at least part of the portion in contact with the closure.
    Type: Application
    Filed: September 29, 2006
    Publication date: February 5, 2009
    Applicants: MITSUBISHI CHEMICAL CORPORATION, NIPPON CHEMI-CON CORPORATION
    Inventors: Masayuki Takeda, Hiroo Miyauchi, Masashi Ozawa
  • Publication number: 20090034160
    Abstract: Provided is an electrolyte containing tetrafluoroaluminate ions, which is advantageous in that the electrolyte can be prevented from leaking from both the cathode and the anode in an electrolytic capacitor.
    Type: Application
    Filed: September 29, 2006
    Publication date: February 5, 2009
    Applicants: MITSUBISHI CHEMICAL CORPORATION, NIPPON CHEMI-CON CORPORATION
    Inventors: Masayuki Takeda, Hiroo Miyauchi, Masashi Ozawa
  • Patent number: 7485240
    Abstract: An electrolyte including ?-butyrolactone, a cosolvent and an alcohol is disclosed, which may be used in an electrolytic capacitor with very high operating voltage. Optional additional additives are added to the electrolyte to enhance its conductivity and reliability.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: February 3, 2009
    Assignee: Pacesetter, Inc.
    Inventors: Christopher R. Feger, Jesse S. Shaffer
  • Patent number: 7479353
    Abstract: Pyrrolidinium-based room temperature ionic liquids, and phosphorus and arsenic analogues, are used as electrolytes in energy storage devices including secondary lithium batteries, supercapacitors and asymmetric battery-supercapacitors. The electrolytes preferably contain lithium ions as the charge-carrying species. The electrolytes are in a liquid state at the operating temperature.
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: January 20, 2009
    Assignees: Commonwealth Scientific and Industrial Research Organisation, Monash University
    Inventors: Anthony Frank Hollenkamp, Patrick Craig Howlett, Douglas Robert MacFarlane, Stewart Alexander Forsyth, Maria Forsyth
  • Publication number: 20080304208
    Abstract: The present invention provides means for forming an oxide film on a metal surface, means for repairing a defect of an oxide film, a high-performance electrolytic capacitor using the means, and an electrolyte of the capacitor. Namely, the prevent invention provides a method for easily forming an oxide film on the surface of a metal or an alloy thereof by anodization using a solution containing an ionic liquid. In an application of this method, an electrolytic capacitor having means for repairing a defect of an oxide film can be formed by a method using, as an electrolyte, an ionic liquid, a solution containing an ionic liquid and a salt, or a solution containing an ionic liquid and a conductive polymer or a TCNQ salt, and a valve metal or an alloy thereof as a metal.
    Type: Application
    Filed: July 15, 2008
    Publication date: December 11, 2008
    Inventors: Mutsuaki Murakami, Masamitsu Tachibana, Hiroyuki Furutani, Hideo Yamagishi
  • Patent number: 7460356
    Abstract: A working electrolyte for use in a wet electrolytic capacitor is provided. The electrolyte is relatively neutral and has a pH of from about 5.0 to about 8.0, in some embodiments from about 5.5 to about 7.5, and in some embodiments, from about 6.0 to about 7.5. Despite possessing a neutral pH level, the electrolyte is nevertheless electrically conductive. For instance, the electrolyte may have an electrical conductivity of about 10 milliSiemens per centimeter (“mS/cm”) or more, in some embodiments about 30 mS/cm or more, and in some embodiments, from about 40 mS/cm to about 100 mS/cm, determined at a temperature of 25° C.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: December 2, 2008
    Assignee: AVX Corporation
    Inventor: Gang Ning
  • Publication number: 20080285208
    Abstract: Provided is an electric double-layer capacitor. The electric double-layer capacitor comprises an electrode portion composed of an anode and a cathode; a separator for providing electrical isolation between the anode and cathode; and an electrolyte solution which is filled in a space between the anode and cathode so as to form electric double-layers on surfaces of the anode and cathode upon application of a predetermined voltage, and in which a solvent and a solute are mixed so as to have a concentration of 1.25 to 2.5 mol/L.
    Type: Application
    Filed: June 14, 2006
    Publication date: November 20, 2008
    Inventors: Do Kyong Sung, Jun Tae Jung, Jin Woo Hur
  • Publication number: 20080247119
    Abstract: An electrolytic capacitor includes a cathode body. The cathode body includes a conductive solid layer having particles of conductive solid, formed using a dispersion including particles of conductive solid and a solvent. The particles of the conductive solid in the dispersion have a first particle size distribution peak and a second particle size distribution peak satisfying ?1>?2, where ?1 and ?2 are the average particle size of the first and second particle size distribution peaks, respectively, in particle size distribution measurement. Accordingly, there is provided an electrolytic capacitor reduced in ESR, and further having high withstand voltage and low leakage current.
    Type: Application
    Filed: April 3, 2008
    Publication date: October 9, 2008
    Applicants: SANYO ELECTRIC CO., LTD., SUN ELECTRONIC INDUSTRIES CORP., SHIN-ETSU POLYMER CO., LTD.
    Inventors: Kenji KAKUMA, Masakazu HOSOGI
  • Publication number: 20080218939
    Abstract: A nanowire super-capacitor electrode for storing electrical energy. The electrode is formed by anodizing a porous membrane having a uniform pore size and diameter, depositing a metal layer on the membrane back, electroplate metal through the pores of the membrane, dissolving the porous membrane. The formed nanowire electrode is placed in an electrolyte to integrate said nanowire into an electrolytic capacitor.
    Type: Application
    Filed: March 9, 2007
    Publication date: September 11, 2008
    Inventors: Matthew S. Marcus, Yuandong Gu
  • Publication number: 20080212261
    Abstract: Embodiments of the invention relate to energy storage devices, e.g., capacitors and batteries, that may include a composite article of elongated conductive structures embedded in a polymer matrix. In some embodiments, a liquid containing ionic species may be dispersed within the polymer matrix of the article. The liquid may contact the elongated conductive structures within the polymer matrix. When the composite article is used as an energy storage device, the large surface area at the interface between the elongated conductive structures and the liquid can provide high energy storage. Embodiments of the invention enable storing energy using a composite article that exhibits both high and low temperature stability, high cyclic repeatability, and mechanical flexibility. The composite article can also be non-toxic, biocompatible and environmentally friendly. Thus, the composite article may be useful for a variety of energy storage applications, such as in the automotive, RFID, MEMS and medical fields.
    Type: Application
    Filed: August 24, 2006
    Publication date: September 4, 2008
    Applicant: Rensselaer Polytechnic Institute
    Inventors: Pulickel M. Ajayan, Robert J. Linhardt, Omkaram Nalamasu, Ashavani Kumar, Saravanababu Murugesan, Shaijumon M. Manikoth, Victor L. Pushparaj
  • Patent number: 7402260
    Abstract: A non-aqueous mixture solvent for a non-aqueous electrolytic solution to be used for electrochemical energy devices, which contains an aprotic solvent, and a fluorinated ketone of the formula: (wherein Rf1 and Rf2 each independently represents a fluorinated aliphatic group, or Rf1 and Rf2 together form a cyclic group, Q represents a fluorinated or non-fluorinated alkylene group or a bond, and n represents 0 or 1), and an electrolytic solution containing the mixture solvent.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: July 22, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: Haruki Segawa, Hideto Yanome
  • Patent number: 7279117
    Abstract: The electrical properties and high-temperature characteristics of an electrolytic capacitor are rendered satisfactory by addition of a compound with an unsaturated bond-containing chain which serves to absorb hydrogen gas generated by reaction between the aluminum electrode foil and the electrolyte solution. The electrolytic capacitor contains the unsaturated compound which allows hydrogen addition, or the electrolytic solution, which comprises a solvent composed of 10-80 wt % of an organic solvent and 90-20 wt % water and at least one electrolyte selected from the group consisting of carboxylic acids or their salts and inorganic acids or their salts, also comprises one or more unsaturated compounds which are water-soluble or soluble in polar and protic polar solvents.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: October 9, 2007
    Assignee: Rubycon Corporation
    Inventors: Akihiko Komatsu, Toshikazu Iida, Takashi Nozawa, Taketo Matsuzawa, Tetsushi Ogawara, Shigeru Uzawa
  • Patent number: 7268996
    Abstract: The present invention is directed to an electrolyte for use in very high voltage electrolytic capacitors and to an electrolytic capacitor impregnated with the electrolyte of the present invention for use in an implantable cardioverter defibrillator (ICD). The electrolyte according to the present invention is composed of a mixture of an alkoxy-substituted alcohol, such as 2-methoxyethanol, 2-ethoxyethanol, or 2-butoxyethanol, and a long chain dicarboxylic acid, where the acid functional groups are separated by 34 carbons (referred to as “dimer acid”) or 54 carbons (referred to as “trimer acid”). The solution is then neutralized with ammonium hydroxide or other amine, such as ammonia, dimethylamine, trimethylamine, diethylamine, triethylamine, ethanolamine, diethanolamine, triethanolamine, diisopropylethylamine and N-methylimidazole.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: September 11, 2007
    Assignee: Pacesetter, Inc.
    Inventors: Roland Francis Dapo, Christopher Feger
  • Patent number: 7214328
    Abstract: An electrolytic solution for operating electrolytic capacitors which deteriorates extremely little in electrical properties even when used in a high-tension capacitor. The electrolytic solution comprises a compound expressed by general formula (1) below and a compound expressed by general formula (2) below or their salts: where each R is a same or different alkyl group, and R? is hydrogen, a methyl group or an ethyl group, and n is an integer of 0 to 14.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: May 8, 2007
    Assignee: Okamura Oil Mill, Ltd.
    Inventors: Noritaka Miyoshi, Masashi Nakagawa, Yasuyuki Yamagawa, Kazuhisa Takii
  • Patent number: 7179883
    Abstract: Devices formed of or including biocompatible polyhydroxyalkanoates are provided with controlled degradation rates, preferably less than one year under physiological conditions. Preferred devices include sutures, suture fasteners, meniscus repair devices, rivets, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone filling augmentation material), adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, atrial septal defect repair devices, pericardial patches, bulking and filling agents, vein valves, bone marrow scaffolds, meniscus regeneration devices, ligament and tendon grafts, ocular cell implants, spinal fusion cages, skin substitutes, dural substitutes, bone graft substitutes, bone dowels, wound dressings, and hemostats.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: February 20, 2007
    Assignee: Metabolix, Inc.
    Inventors: Simon F. Williams, David P. Martin, Frank A. Skraly
  • Patent number: 7079378
    Abstract: An object of the present invention is to provide an electrolyte for an electrolytic capacitor, which is advantageous not only in that both electric conductivity and withstand voltage property are high, but also in that thermal stability is excellent, and an electrolytic capacitor using the electrolyte. Specifically, the present invention provides an electrolyte for an electrolytic capacitor, comprising a solvent, at least one quaternary amidinium salt selected from the group consisting of a quaternary amidinium salt of a hydroxy-substituted aromatic monocarboxylic acid and a quaternary amidinium salt of phthalic acid, and metal oxide particles, and an electrolytic capacitor using the electrolyte.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: July 18, 2006
    Assignees: Nippon Chemi-Con Corporation, Mitsubishi Chemical Corporation
    Inventors: Masayuki Takeda, Takako Takahashi, Makoto Ue, Tatsunori Tsuji, Masashi Ozawa
  • Patent number: 7033637
    Abstract: Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein.
    Type: Grant
    Filed: January 12, 2000
    Date of Patent: April 25, 2006
    Assignee: MicroCoating Technologies, Inc.
    Inventors: Andrew Tye Hunt, Girish Deshpande, Wen-Yi Lin, Tzyy-Jiuan Jan
  • Patent number: 6911281
    Abstract: A non-aqueous electrolyte is disclosed, which comprises a non-aqueous solvent and a solute represented by the general formula(1): MBR1R2R3R4, wherein M is an alkali metal atom or an ammonium group and R1 to R4 are each independently electron withdrawing groups or electron withdrawing atoms bound to B where at least one of R1 to R4 is other than a fluorine atom. The solute has a thermal stability substantially equal to that of LiBF4 and an anion portion having a high electronegativity, and easily dissociates into ions. Therefore, a non-aqueous electrolyte containing this solute has a high ionic conductivity and is difficult to cause a generation of a gas or deterioration in characteristics due to the decomposition of the solute, which occurs during use at high temperatures or after storage at high temperatures.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: June 28, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kumiko Sonoda, Atsushi Ueda, Kazuya Iwamoto
  • Patent number: 6902684
    Abstract: A non-aqueous electrolyte for electric storage devices consisting of a nitrile solvent and a complex salt formed by the reaction of a tetraalkyl ammonium salt and hydrogen fluoride. The electrolyte may include a component which a cation of an imidazolium or quaternary tetraalkylammonium salt.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: June 7, 2005
    Assignee: Lithdyne International
    Inventors: W. Novis Smith, Joel McCloskey
  • Patent number: 6896807
    Abstract: A method for recovering and recycling expensive and hazardous components from capacitors containing an electrolyte salt dissolved in an aprotic organic solvent. The method includes disintegrating a plurality of capacitor casings and their contents into fragments and forming an aqueous slurry of water insoluble fragments, filtering fractionally distilling the filtrate to remove the solvent as a distillate and recovering the electrolyte salt.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: May 24, 2005
    Assignee: Toxco Inc
    Inventors: W. Novis Smith, Terry Adams
  • Patent number: 6893774
    Abstract: Fluoroalkylphosphate salts of Formula I, described herein, are suitable for use, alone or in mixtures with, e.g., other salts, in electrolytes, primary batteries, secondary batteries, capacitors, supercapacitors or galvanic cells.
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: May 17, 2005
    Assignee: Merck Patent GmbH
    Inventors: Michael Schmidt, Andreas Kuhner, Nikolai Ignatyev, Peter Sartori
  • Patent number: 6841301
    Abstract: The present invention relates to fluoroalkyl phosphates, to a process for the preparation, and to their use as conductive salts in batteries, capacitors, supercapacitors and galvanic cells.
    Type: Grant
    Filed: August 1, 2001
    Date of Patent: January 11, 2005
    Assignee: Merck Patent GmbH
    Inventors: Udo Heider, Michael Schmidt, Andreas Kühner, Peter Sartori, Nikolai Ignatyev
  • Patent number: 6826033
    Abstract: The present invention relates to a compound formula (I) wherein X1 is bond or —O—CH2—, (II) or (III) R1 is hydrogen or an amino protective group, a is phenyl, indolyl or carbazolyl, each of which may be substituted with one or two substituent(s), and B is hydrogen; halogen; lower alkyl; lower alkoxycarbonyl; cyclo(lower)alkyl; or a heterocyclic group, naphthyl, 1,2,3,4-tetrahydronaphthyl, benzyl or phenyl, each of which may be substituted with one or two substituent(s), or a salt thereof. The compound (I) of the present invention and pharmaceutically acceptable salts thereof are useful for the prophylactic and/or the therapeutic treatment of pollakiures or urinary incontinence.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: November 30, 2004
    Assignee: Fujisawa Pharmaceutical Co., Ltd.
    Inventors: Minoru Sakurai, Kenichi Washizuka, Hitoshi Hamashima, Yasuyo Tomishima, Masashi Imanishi, Yutaka Nakajima, Hiroaki Ohtake, Satoru Kuroda, Masayoshi Murata, Hiroshi Kayakiri, Naoaki Fujii, Kiyoshi Taniguchi
  • Patent number: 6787267
    Abstract: The invention relates to an electrolyte for an electrochemical device. This electrolyte includes a first compound that is an ionic metal complex represented by the general formula (1); and at least one compound selected from special second to fourth compounds, fifth to ninth compounds respectively represented by the general formulas Aa+(PF6−)a, Aa+(ClO4−)a, Aa+(BF4−)a, Aa+(AsF6−)a, and Aa+(SbF6−)a, and special tenth to twelfth compounds, The electrolyte is superior in cycle characteristics and shelf life as compared with conventional electrolytes.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: September 7, 2004
    Assignee: Central Glass Company, Limited
    Inventors: Shoichi Tsujioka, Hironari Takase, Mikihiro Takahashi, Hiromi Sugimoto, Makoto Koide
  • Patent number: 6783896
    Abstract: The invention relates to an electrolyte for an electrochemical device. This electrolyte includes a first compound that is an ionic metal complex represented by the general formula (1). The electrolyte may further include at least one compound selected from second to sixth compounds respectively represented by the general formulas Aa+(PF6−)a, Aa+(ClO4−)a, Aa+(BF4−)a, Aa+(AsF6−)a, and Aa+(SbF6−)a, and special seventh to twelfth compounds. The electrolyte can be superior in heat resistance, hydrolysis resistance, cycle characteristics and shelf life as compared with conventional electrolytes.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: August 31, 2004
    Assignee: Central Glass Company, Limited
    Inventors: Shoichi Tsujioka, Hironari Takase, Mikihiro Takahashi, Hiromi Sugimoto, Makoto Koide
  • Publication number: 20040118144
    Abstract: A multiple zone hermetic inverter/converter chamber for cooling power electronics using direct contact cooling in the liquid refrigerant zone and vapor refrigerant zone located in the hermetic container, and indirect non-contact cooling in the ambient cooling zone located in the interstitial space between the hermetic container and the thermally isolated housing. The ambient cooling zone operates at atmospheric pressure.
    Type: Application
    Filed: November 18, 2003
    Publication date: June 24, 2004
    Inventors: John S. Hsu, Donald J. Adams, Gui-Jia Su, Laura D. Marlino, Curtis W. Ayers, Chester Coomer
  • Patent number: 6733544
    Abstract: A method for producing an electrical double layer capacitor comprising the steps of assembling together components comprised of a positive electrode, a negative electrode, a non-aqueous solvent, an electrolyte containing a supporting salt, a separator, and a gasket to form a coin- or button-type electrical double layer capacitor, heating the assembled coin- or button-type electrical double layer capacitor so that a temperature profile of the heating step is approximately the same as a temperature profile of reflow soldering, and welding an outer connection terminal to the heated assembled coin- or button-type electrical double layer capacitor after the heating step.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: May 11, 2004
    Assignee: SII Micro Parts Ltd.
    Inventors: Shinichi Takasugi, Yoshimi Kanno, Shunji Watanabe, Tsugio Sakai, Yoshibumi Nakamura, Hideharu Onodera
  • Patent number: 6710999
    Abstract: An electric double layer capacitor having a pair of polarized electrodes and an electrolytic solution capable of forming an electric double layer at the interface with the polarized electrodes, wherein the electrolytic solution contains a salt of the Formula 1 as the electrolyte and at least dimethyl carbonate as a solvent: R1R2R3R4N+X−  Formula 1 wherein R1 is a n-propyl group and each of R2, R3 and R4 which are independent of one another, is a methyl group or an ethyl group, provided that two selected from R1 to R4 may together form a tetramethylene group, and X− is an anion.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: March 23, 2004
    Assignee: Asahi Glass Company, Limited
    Inventors: Takeshi Kawasato, Kazuya Hiratsuka, Naoki Yoshida, Katsuji Ikeda
  • Patent number: 6652729
    Abstract: An electrolyte comprising a polyester condensation product of 2-methyl-1,3-propane diol and boric acid; and further comprising dimethyl amino ethoxy ethanol in an amount to reduce the resistance of the electrolyte. The electrolyte may further comprise ortho-phosphoric acid and at least one substituted pyrrolidone or lactone, such as N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-hydroxy ethyl-2-pyrrolidone or 4-butyrolactone. The ortho-phosphoric acid prevents hydration of anodic aluminum oxide in contact with the solution. The pyrrolidone or lactone reduce the resistance of the electrolyte. The electrolyte may also comprise sodium silicate.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: November 25, 2003
    Assignee: Kemet Electronics Corporation
    Inventors: Brian John Melody, John Tony Kinard, David Alexander Wheeler
  • Publication number: 20030152838
    Abstract: An object of the present invention is to provide an electrolyte for an electrolytic capacitor, which is advantageous not only in that both electric conductivity and withstand voltage property are high, but also in that thermal stability is excellent, and an electrolytic capacitor using the electrolyte. Specifically, the present invention provides an electrolyte for an electrolytic capacitor, comprising a solvent, at least one quaternary amidinium salt selected from the group consisting of a quaternary amidinium salt of a hydroxy-substituted aromatic monocarboxylic acid and a quaternary amidinium salt of phthalic acid, and metal oxide particles, and an electrolytic capacitor using the electrolyte.
    Type: Application
    Filed: January 13, 2003
    Publication date: August 14, 2003
    Inventors: Masayuki Takeda, Takako Takahashi, Makoto Ue, Tsunori Tsuji, Masashi Ozawa
  • Publication number: 20030137798
    Abstract: An electric double layer capacitor having a pair of polarized electrodes and an electrolytic solution capable of forming an electric double layer at the interface with the polarized electrodes, wherein the electrolytic solution comprises a salt of the Formula 1 as the electrolyte and at least dimethyl carbonate as a solvent:
    Type: Application
    Filed: December 10, 2002
    Publication date: July 24, 2003
    Applicant: ASAHI GLASS COMPANY
    Inventors: Takeshi Kawasato, Kazuya Hiratsuka, Naoki Yoshida, Katsuji Ikeda
  • Patent number: 6582849
    Abstract: The invention relates to stable (CF3)2N− salts, to a process for preparing them and to their use as precursor for organic compounds.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: June 24, 2003
    Assignee: Merck Patent Gesellschaft mit beschraenkter Haftung
    Inventors: Udo Heider, Michael Schmidt, Peter Sartori, Nikolai Ignatev, Adrji Kucherna
  • Patent number: 6574092
    Abstract: A carbonaceous material having a pore size distribution, as determined from a nitrogen adsorption isotherm, in which pores with a radius of up to 10 Å account for at most 70% of the total pore volume, and having a specific surface area, as measured by the nitrogen adsorption BET method, of 1-500 m2/g is optimized for the penetration of non-aqueous electrolyte solution to the interior thereof and the surface adsorption of ionic molecules so as to form an electrical double layer thereon. Electrical double-layer capacitors assembled using polarizable electrodes made with the carbonaceous material have a high voltage, a high energy density, a high capacitance, a long cycle life, and are amenable to miniaturization.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: June 3, 2003
    Assignees: Nisshinbo Industries, Inc., Itochu Corporation
    Inventors: Takaya Sato, Hiroshi Yoshida, Hideto Mitsuhashi, Shigenori Minamiru, Zenzo Hashimoto, Tatsuo Shimizu
  • Publication number: 20030076648
    Abstract: The polymer electrolyte composite, for driving an electrolytic capacitor, according to the present invention is a composite body comprising an electrolyte and an acrylic polymer containing a copolymer of acrylic derivative. The electrolyte comprises a polar solvent and a solute comprising at least one of inorganic acids, organic acids and salts of such acids. The copolymer of acrylic derivative is a polymer of: a first monomer of at least one of a group of monofunctional monomers of acrylic derivatives each having at least one hydroxyl group at a terminal thereof and a polymerizable unsaturated double bond; and a second monomer of at least one of a group of multifunctional monomers of acrylic derivatives each having plural polymerizable unsaturated double bonds.
    Type: Application
    Filed: May 31, 2002
    Publication date: April 24, 2003
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kazumitsu Honda, Nario Niibo, Yuichiro Tsubaki, Junji Ozaki
  • Patent number: 6491841
    Abstract: Novel organic electrolytes comprising tetrafluoroborates and hexafluorophosphates of doubly charged cations of N,N-dialkyl-1,4-diazabicyclo[2.2.2]octanediium (DADACO) are disclosed, which have general formula (2), where R is the alkyl C1-C4, and Y31 is a BF4− or PF6− anion. The invention also comprises a process for the preparation of said electrolytes comprising at least one compound of formula (2) and the use of compounds of formula (2) dissolved in an aprotic polar solvent or a mixture of such solvents as an electrolyte for an electrochemical double layer capacitor.
    Type: Grant
    Filed: November 16, 2000
    Date of Patent: December 10, 2002
    Assignee: Superfared Ltd.
    Inventors: Yuril Maletin, Natalie Strizhakova, Vladimir Izotov, Antonia Mironova, Valery Danilin, Sergey Kozachov
  • Patent number: 6461773
    Abstract: The invention relates to an electrolyte for an electrochemical device. This electrolyte includes a first compound that is an ionic metal complex represented by the general formula (1); and at least one compound selected from special second to fourth compounds, fifth to ninth compounds respectively represented by the general formulas Aa+(PF6−)a, Aa+(ClO4−)a, Aa+(BF4−)a, Aa+(AsF6−)a, and Aa+(SbF6−)a, and special tenth to twelfth compounds, The electrolyte is superior in cycle characteristics and shelf life as compared with conventional electrolytes.
    Type: Grant
    Filed: May 8, 2001
    Date of Patent: October 8, 2002
    Assignee: Central Glass Company, Limited
    Inventors: Shoichi Tsujioka, Hironari Takase, Mikihiro Takahashi, Hiromi Sugimoto
  • Patent number: 6451073
    Abstract: A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator is positioned against the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal.
    Type: Grant
    Filed: May 16, 2000
    Date of Patent: September 17, 2002
    Assignee: Maxwell Electronic Components Group, Inc.
    Inventors: C. Joseph Farahmandi, John M. Dispennette, Edward Blank, Alan C. Kolb
  • Publication number: 20020081496
    Abstract: The invention relates to an electrolyte for an electrochemical device. This electrolyte includes a first compound that is an ionic metal complex represented by the general formula (1). The electrolyte may further include at least one compound selected from second to sixth compounds respectively represented by the general formulas Aa+(PF6−)a, Aa+(ClO4−)a, Aa+(BF4−)a, Aa+(AsF6−)a, and Aa+(SbF6−)a, and special seventh to twelfth compounds.
    Type: Application
    Filed: October 3, 2001
    Publication date: June 27, 2002
    Inventors: Shoichi Tsujioka, Hironari Takase, Mikihiro Takahashi, Hiromi Sugimoto, Makoto Koide
  • Publication number: 20020028389
    Abstract: A non-aqueous electrolyte is disclosed, which comprises a non-aqueous solvent and a solute represented by the general formula(1): MBR1R2R3R4, wherein M is an alkali metal atom or an ammonium group and R1 to R4 are each independently electron withdrawing groups or electron withdrawing atoms bound to B where at least one of R1 to R4 is other than a fluorine atom. The solute has a thermal stability substantially equal to that of LiBF4 and an anion portion having a high electronegativity, and easily dissociates into ions. Therefore, a non-aqueous electrolyte containing this solute has a high ionic conductivity and is difficult to cause a generation of a gas or deterioration in characteristics due to the decomposition of the solute, which occurs during use at high temperatures or after storage at high temperatures.
    Type: Application
    Filed: July 10, 2001
    Publication date: March 7, 2002
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kumiko Sonoda, Atsushi Ueda, Kazuya Iwamoto