Casing Patents (Class 361/517)
  • Patent number: 7688596
    Abstract: A protective housing for a circuit board mounted on an end of a cell is described. The protective housing includes a cut-out in its sidewall and a retaining wall centered in the cut-out. This provides a pair of gaps, one on each side of the retaining wall between the cut-out. These gaps are size so that lead wires extending from the circuit board are captured therein in a tight-fitting relationship. Consequently, the lengths of the leads extending from the protective housing of the cell to a quick disconnect at the distal end of the leads is precisely controlled. If desired, there can be more than one retaining wall providing a plurality of gaps for capturing a plurality of lead wires therein.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: March 30, 2010
    Assignee: Electrochem Solutions, Inc.
    Inventors: William Gardner, Glen Dupliesea, John Hession, Douglas Woodnorth, Walter Carlson, Kevin Li
  • Patent number: 7684837
    Abstract: A cellular phone and a manufacturing method thereof capable of achieving attractive design as well as high operating efficiency in the assembly process. A cellular phone comprises a first housing, a second housing, a first circuit board, a second circuit board, a flexible cable to electrically connect the first and second circuit boards, and a hinge that rotates about a prescribed rotation axis. When the first and second housings are in their open positions resulting from the rotation of the hinge, one edge of the second housing is located vertically above one edge of the first housing. The hinge includes hinge semi-cylindrical portions that form a hollow part capable of accommodating the flexible cable. The first and second circuit boards are mounted on the first and second housings, respectively. The flexible cable is accommodated in the hollow part. One end of the flexible cable is threaded through an aperture formed at the one edge of the second housing.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: March 23, 2010
    Assignee: NEC Corporation
    Inventor: Takao Ito
  • Patent number: 7663864
    Abstract: The electrolytic capacitor includes two chemically processed anode foils, two cathode foils, four separator sheets, four lead tab terminals, two anode leads and two cathode leads. The two chemically processed anode foils, two cathode foils and four separator sheets are arranged alternately and rolled, to form a capacitor element. Two lead tab terminals are connected to the two chemically processed anode foils, respectively, and the remaining two lead tab terminals are connected to two cathode foils, respectively. The two anode leads are connected to two lead tab terminals, respectively, and the two cathode leads are connected to two lead tab terminals, respectively. As a result, equivalent series resistance can stably be reduced.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: February 16, 2010
    Assignees: Sanyo Electric Co., Ltd., Saga Sanyo Industries Co., Ltd.
    Inventors: Kazumasa Fujimoto, Satoshi Aikawa
  • Patent number: 7599721
    Abstract: Disclosed is a novel mobile phone wherein a one-push open/close mechanism slideably intercoupling upper and lower housings causes a tension of a spring member to function for sliding movements of the upper and lower housings along an open direction in an opening event, and inverts the tension of the spring member for the sliding movements of the upper and lower housings along a close direction in a closing event. An elevation mechanism operates in association with the sliding movement of the upper housing to perform ascending control of a key operation section in the opening event, and operates in association with the sliding movement of the upper housing to perform descending control of the key operation section in the closing event. Thereby, the mobile phone can be set by a one-push operation to an open state or closed state. In the opening event, the key operation section automatically ascends; and in the closing event, the key operation section automatically descends to be store in the lower housing.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: October 6, 2009
    Assignee: Sony Ericsson Mobile Communications Japan, Inc.
    Inventors: Shunsuke Taki, Toru Amano, Yoshikazu Iino
  • Publication number: 20090237864
    Abstract: A resin-coated aluminum alloy sheet material for an aluminum electrolytic capacitor case has a superior formability even when being formed into an aluminum electrolytic capacitor case having a large height/diameter ratio, using a volatile press oil. A resin layer contains wax composed of at least one of polyethylene wax and carnauba wax, and has a thickness falling within a range from at least 2 ?m to at most 22 ?m. A total of lengths of wax particles, defined when the wax particles are cut along a straight line of 100 ?m optionally drawn on the surface of the resin layer, is at least 10 ?m. A number of the wax particles, featured by a cross-sectional shape having a size of at most 80% of the thickness of the resin layer and of at least 0.1 ?m, is from at least 3 to at most 50. A number of the wax particles, featured by a cross-sectional shape featured by a major axis extent having a size of more than 80% of the thickness of the resin layer is less than 10.
    Type: Application
    Filed: January 11, 2008
    Publication date: September 24, 2009
    Inventors: Osamu Kato, Toshiki Maezono, Masatsugu Saito
  • Patent number: 7586288
    Abstract: A manufacturing method of a secondary battery according to the present invention includes a charging/discharging process wherein the secondary battery is arranged to a restraining jig, that restricts an expansion caused on the battery case with respect to at least a part of the battery case and that is configured to be removable from a charging/discharging device with the secondary battery arranged thereto regardless of the magnitude of the internal pressure in the secondary battery; a charging/discharging is performed to the secondary battery with the restraining jig mounted to the charging/discharging device; and after the completion of the charging/discharging, the restraining jig is removed from the charging/discharging device with the secondary battery arranged to the restraining jig.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: September 8, 2009
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masato Onishi, Yasufumi Tanaka, Kojiro Ito
  • Patent number: 7576973
    Abstract: An exemplary capacitor has a capacitor stack positioned in a case with a conductor positioned between the case and a lid. In one embodiment the conductor is positioned between the lid and an upper rim of the case and is welded to the lid and case. In one aspect, a capacitor constructed with round wire connectors for interconnecting anode and cathode layers. In one aspect, a configuration for electrically connecting a terminal wire to a capacitor case in which an end of the wire is attached to the case in end-on fashion. The terminal wire may have an expanded end for attaching to the capacitor case in a manner that minimizes the effect on the height profile of the case.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: August 18, 2009
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Brian L. Schmidt, Michael J. O'Phelan, James M. Poplett, Robert R. Tong
  • Patent number: 7576972
    Abstract: A method is described for applying a double sealing system to an electro-technical device and an electro-technical device with a double seal. Said Electro-technical device has; a container (5) housing a functional unit (2) and including one aperture (52) provided with a cover (6), wherein said cover has a first face (61) abutting an annular surface (520) which borders said aperture (52); a first sealing joint (7) accommodated in a first groove (64) provided in the first face (61) of the annular surface (520), a second groove (65) provided on said first face (61) of the annular surface (520), and surrounding the first groove (64), said second groove (65) having a closed concavity not directly accessible from the exterior of the electro-technical device (1) when the cover is applied to the annular surface (520).
    Type: Grant
    Filed: November 28, 2003
    Date of Patent: August 18, 2009
    Assignee: Maxwell Technologies, Inc.
    Inventors: Etienne Savary, Cédric Scheidegger, Albert Galley
  • Patent number: 7555339
    Abstract: A capacitor for use in implantable medical devices (IMDs) such as implantable defibrillators, implantable cardioverter-defibrillators, implantable pacemaker-cardioverter-defibrillators, and the like stores charge for use in the delivery of high voltage electrical therapy. The capacitor design can reduce capacitor volume significantly and may also improve charge holding capacity relative to conventional capacitor designs. Moreover, since capacitors typically comprise a significant portion of the volume of an IMD, significant reductions in capacitor volume can likewise significantly reduce the size of the IMD.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: June 30, 2009
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, John D. Norton, Mark E. Viste, Joachim Hossick-Schott, Anthony W. Rorvick
  • Patent number: 7515395
    Abstract: There is provided a casing material for a storage cell having sufficient corrosion resistance and strength even under a charging environment of a high voltage exceeding 2.8 V. This casing material for the storage cell comprises C: not more than 0.03 mass %, Si: 0.01-0.50 mass %, Mn: not more than 0.20 mass %, P: not more than 0.04 mass %, S: not more than 0.0010 mass %, Ni: 20.0-40.0 mass %, Cr: 20.0-30.0 mass %, Mo: 5.0-10.0 mass %, Al: 0.001-0.10 mass %, N: 0.10-0.50 mass %, Ca: not more than 0.001 mass %, Mg: 0.0001-0.0050 mass %, 0: not more than 0.005 mass %, provided that contents of Cr, Mo and N satisfy Cr+3.3×Mo+20×N?43, and the balance being substantially Fe and inevitable impurities, in which a content of CaO as an oxide inclusion in steel is not more than 20 mass %.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: April 7, 2009
    Assignees: Panasonic Corporation, Nippon Yakin Kogyo Co., Ltd.
    Inventors: Koichi Morikawa, Masashige Ashizaki, Eri Hirose, Yutaka Kobayashi
  • Patent number: 7511943
    Abstract: A wet electrolytic capacitor that includes an anode, cathode, and an electrolyte is provided. The cathode contains a substrate and a coating overlying the substrate. The coating comprises a sintered body containing carbonaceous particles (e.g., activated carbon) and inorganic particles (e.g., NbO2).
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: March 31, 2009
    Assignee: AVX Corporation
    Inventors: James Allen Fife, Gang Ning, Zebbie Lynn Sebald, James Steven Bates, Robert Hazen Pease
  • Patent number: 7508652
    Abstract: A solid electrolytic capacitor which is easy to make and a method of making the same are provided. In a solid electrolytic capacitor in accordance with the present invention, a substrate on which a capacitor device is mounted includes anode electrode parts and cathode electrode parts of a lead frame, and a resin plate, whereas parts exposed from the upper face of the resin plate construct anode electrode terminals and cathode electrode terminals. Therefore, this substrate can easily be made by mold-sealing the anode electrode parts and cathode electrode parts with the resin plate. Consequently, the solid electrolytic capacitor in accordance with the present invention using such a substrate can also be made easily.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: March 24, 2009
    Assignee: TDK Corporation
    Inventor: Masaaki Kobayashi
  • Patent number: 7508651
    Abstract: Dry process based energy storage device structures and methods for using a dry adhesive therein are disclosed.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: March 24, 2009
    Assignee: Maxwell Technologies, Inc.
    Inventors: Porter Mitchell, Linda Zhong, Xiaomei Xi, Bin Zou
  • Patent number: 7495888
    Abstract: In an electrolytic capacitor 1 in which a capacitor element 2 is enclosed in an external casing 3, a heat conductive material 5 having heat conductivity of 1 W/m·K or more is disposed between the external casing 3 and the capacitor element 2 so as to be in contact with them. Alternatively, in an electrolytic capacitor 1 in which a capacitor element 2 is enclosed in an external casing 3 made of aluminum, an external peripheral surface of the external casing 3 is covered with an insulation film 4.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: February 24, 2009
    Assignee: Showa Denko K.K.
    Inventor: Koichiro Take
  • Patent number: 7495889
    Abstract: A method for manufacturing an electrochemical cell first includes providing a cup-shaped housing with at least one first indentation. Thereafter, an electrode stack is placed in the housing and then, the first indentation is indented further in a direction towards the inside of the housing by a applying a force on the housing laterally to the first indentation, during which the electrode stack becomes fixed in the housing. As a result, electrode stacks can be fixed particularly easily and reliably in cup-shaped housings. An electrochemical cell is also provided.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: February 24, 2009
    Assignee: EPCOS AG
    Inventor: Norbert Will
  • Publication number: 20090046413
    Abstract: The method for manufacturing a supercapacitor according to the present invention includes the following steps. First, stack a bottom electrode plate and a top electrode plate in parallel. Then, install a first rubber frame and a second rubber frame face-to-face on the bottom and the top electrode plates. The first rubber frame is adapted with a first opening, while the second rubber frame is adapted with a second opening. Next, install an isolation membrane in a space surrounded by the first and the second rubber frames. Afterwards, bind the first and the second rubber frames. Then, produce vacuum in the space. Next, place the bottom and the top electrode plates into an electrolyte to make the electrolyte flow into the space. Finally, use a first resin to seal the first and the second openings. Thereby, the short-circuit phenomenon caused by long-term usage of the supercapacitor can be prevented.
    Type: Application
    Filed: October 17, 2008
    Publication date: February 19, 2009
    Inventor: Yung Sheng Huang
  • Patent number: 7492574
    Abstract: Porous separator is sandwiched between electrode films with attached current collector foil to obtain an electrode sheet. The electrode sheet is formed into a jellyroll for use in a double layer capacitor. The jellyroll is inserted into a can through an open end to rest against the can's bottom. A collector plate is pressed against the jellyroll, crunching current collector foil protruding from each end of the jellyroll. The bottom and the collector plate include indentations of reduced thickness. Laser is applied to the indentations to weld the foil on each end of the jellyroll to the bottom or collector plate. The laser application pattern, for example, a zigzag pattern, results in the total length of laser welds along each indentation being considerably longer than the length of the indentation, reducing contact resistance between (1) the foil and the bottom, and (2) the foil and the current collector.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: February 17, 2009
    Assignee: Maxwell Technologies, Inc.
    Inventors: Alex Fresard, Robert Crawford
  • Publication number: 20090002922
    Abstract: The present subject matter includes a capacitor stack disposed in a case, the capacitor stack including one or more substantially planar electrode layers. The one or more substantially planar electrode layers have an etched surface, an unetched surface, and a grade bordering the etched surface and the unetched surface. Also, the present subject matter includes a lid conforming sealingly connected to the material defining the first aperture. Additionally, the present subject matter includes a feedthrough assembly connected to the capacitor stack and passing through the feedthrough hole and sealingly connected to the material defining the feedthrough hole. In the present subject matter, the one or more substantially planar electrode layers are made by printing a curable resin mask onto the one or more substantially planar electrode layers and etching the layers, the curable resin mask defining the grade and adapted to resist etching.
    Type: Application
    Filed: August 28, 2008
    Publication date: January 1, 2009
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Brian Doffing, James M. Poplett, Jeffry Abel, Gregory J. Sherwood
  • Publication number: 20080304209
    Abstract: A capacitor is presented that includes a housing, an electrode assembly, a liner, and a fill port. The liner is located between the housing and the electrode assembly. The liner includes a recessed portion. A fill port extends through the housing across from the recessed portion in the liner. A gap is formed between the recessed portion and the fill port.
    Type: Application
    Filed: May 5, 2008
    Publication date: December 11, 2008
    Inventors: Leo J. Brabeck, Jeffrey D. Chaput, Thomas M. Henderson, Thomas W. Kanitz, Jeffrey J. Louwagie, Christian S. Nielsen, Walter C. Sunderland
  • Patent number: 7426104
    Abstract: The present subject matter includes an apparatus including a capacitor stack, including at least one substantially planar anode layer arranged in stacked alignment adjacent at least one substantially planar cathode layer, with at least one separator layer disposed therebetween. In this embodiment, the present subject matter includes at least one conformed film at least partially enveloping the capacitor stack in a bound state and adapted to electrically isolate the capacitor stack.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: September 16, 2008
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Ron Dombro, John Longsy Dinh, Gregory J. Sherwood, Mark A. Lamberty, Leonard Goldstein, Brian D. Schenk
  • Patent number: 7426101
    Abstract: In one embodiment, a container with an overpressure safety device comprises a wall having a depression in at least a portion of the wall that expands when the pressure inside the container exceeds a predetermined level. The container further comprises a clamp bridging over the depression and restraining the angular expansion of the depression, while at the same time enabling the depression to expand radially. As a consequence, the outer dimensions of the container remain essentially constant when the pressure inside the container exceeds the predetermined level. The container may be tubular in shape and the depression may be shaped like a groove extending parallel to the longitudinal axis of the container, while the clamp may be shaped like a bar affixed to the outer wall of the container in two or more points spaced angularly on opposite sides of the depression.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: September 16, 2008
    Assignee: Maxwell Technologies, Inc.
    Inventors: Dominique Guillet, Mariano Teira, Rolland Gallay
  • Patent number: 7400491
    Abstract: Disclosed is an aluminum electrolytic capacitor, which comprises a capacitor element prepared by rolling an anode foil and a cathode foil together with a separator and impregnating them with a driving electrolyte, an anode lead electrically connected to the anode foil, a cathode lead electrically connected to the cathode foil, a tubular metal case having one closed end and the other open end and containing the capacitor element, and a sealing member hermetically closing the open end, wherein the anode and cathode leads are bent along an outer surface of the sealing member. In this aluminum electrolytic capacitor, the sealing member is comprised of a rubber composition containing a rubber component having, as a constituent, a butyl rubber prepared by crosslinking an isobutylene-isoprene copolymer having an unsaturation degree of 1.2 to 2.5 mol %, with an alkyl-phenol-formaldehyde resin, and 100 to 200 mass parts of reinforcing filler with respect to 100 mass parts of the rubber component.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: July 15, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Koichiro Minato, Hiroshi Kurimoto, Junji Yamane, Yoshihiro Watanabe
  • Patent number: 7387648
    Abstract: The invention relates to a coil type solid electrolytic capacitor containing solid organic polymer with high electrical conductivity as electrolyte and its manufacturing method. In the invention, such processes as oxidation, carbonization, immersing, chemical oxypolymerization, and so on are fully disclosed. The solid electrolytic capacitor of the invention has a pretty low equivalent series resistance (ESR), good impedance frequency properties, so can be used at a frequency above 1 MHz. And it has a high anti-ripple current capacity, wide applicable range of temperature, good temperature properties, large capacity, long life, and reliable performance, therefore can be widely applied in the fields of modern communication, computer, and high performance civilian and military electronic products.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: June 17, 2008
    Assignee: Samxon Electronics (Dong Guan) Co., Ltd.
    Inventor: Lik Wing Kee
  • Patent number: 7355840
    Abstract: One embodiment of the present subject matter includes a capacitor, comprising a first cupped shell having a first opening, and a second cupped shell having a second opening, wherein the first opening and the second opening are adapted to sealably mate to form a closed shell defining a volume therein. In the embodiment, the closed shell is adapted for retaining electrolyte. A plurality of capacitor layers in a substantially flat arrangement are disposed within the volume, along with electrolyte, in the present embodiment. The present closed shell includes one or more ports for electrical connections.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: April 8, 2008
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Brian Doffing, James A. Taller, Gregory J. Sherwood, Jason A. Shiroff
  • Patent number: 7351921
    Abstract: An electrode assembly includes an electrode electrically connected to a capacitor with a wire. An assembly carrier may be used to hold and secure at least the wire and capacitor during assembly. A method of assembly for attaching a wire to a capacitor and an electrode may include an assembly carrier for housing and securing the wire, capacitor, and electrode during assembly.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: April 1, 2008
    Assignee: Boston Scientific Corporation
    Inventors: Matthew I. Haller, Tom Xiaohai He, Jay Daulton
  • Patent number: 7348194
    Abstract: An improved capacitor with an anode with an anode wire and an oxide layer on the surface of the anode. A cathode layer is exterior to the oxide layer. A carbon conductive layer is exterior to the cathode layer wherein the cathode layer comprises 5-75 wt % resin and 25-95 wt % conductor. The conductor has carbon nanotubes. An anode lead is in electrical contact with the anode wire and a cathode lead is in electrical contact with the carbon conductive layer.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: March 25, 2008
    Assignee: Kemet Electronics Corporation
    Inventors: Antony P. Chacko, Qingping Chen, Randy S. Hahn, John T. Kinard, Philip M. Lessner, Anita Melody, legal representative, Brian J. Melody
  • Publication number: 20080050649
    Abstract: One embodiment of the present subject matter includes a stack of substantially planar electrodes, the stack in alignment and having a stack form factor. Embodiments include a first housing portion including a first beveled edge at least partially defining a first stack aperture adapted to at least partially receive the stack, the first stack opening having a first thickness proximal the beveled edge, and a second thickness away from the first beveled edge and a second housing portion including a second edge defining a second stack aperture adapted to at least partially receive the stack. Embodiments are included wherein the second housing portion is joined to the first housing portion such that the first housing portion and the second housing portion define an interior space which substantially conforms to the stack form factor.
    Type: Application
    Filed: August 28, 2006
    Publication date: February 28, 2008
    Inventors: Leonard I. Goldstein, Peter J. Lamb, Jason A. Shiroff, Eric Stemen, Steven E. Schultz
  • Publication number: 20080030925
    Abstract: The present invention discloses a power connector used as an electric conducting component between output terminals having an equal electric potential, so that the output terminals having an equal electric potential can share the same electric wire of the same electric potential, so as to save the material cost of wires.
    Type: Application
    Filed: August 3, 2006
    Publication date: February 7, 2008
    Inventor: Wen-Chi Liu
  • Patent number: 7304832
    Abstract: A ceramic container includes a ceramic base having a hollow or open portion for accommodating a battery element or an electric double layer capacitor element, defined by a bottom portion and a side wall which surrounds a bottom surface of the bottom portion which bottom face faces the hollow or open portion, a ceramic coating layer formed on a periphery of the bottom face along an inner face of the side wall, a first metallized layer extending, on the bottom face, from a portion provided immediately under the side wall to an inside of an inner end of the ceramic coating layer via a portion provided immediately under the ceramic coating layer, and a conductive layer formed on the bottom face in order to cover an extended portion of the first metallized layer and the ceramic coating layer.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: December 4, 2007
    Assignee: Kyocera Corporation
    Inventors: Yoshihiro Ushio, Kiyotaka Yokoi, Manabu Miyaishi, Masakazu Yasui
  • Patent number: 7298605
    Abstract: The present invention provides a low-cost electrolytic capacitor wherein the deformation of the casing due to the thermal expansion during reflowing is prevented. An electrolytic capacitor of a surface mounting type having a capacitor element that consists of a dielectric film and an electrode foil, a metal casing that holds the capacitor element, and an electrolyte solution in which the capacitor element held in the casing is immersed, wherein the casing is equipped with a gas absorbing member that absorbs the gas generated in the casing.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: November 20, 2007
    Assignee: Fujitsu Limited
    Inventors: Masayuki Itoh, Kiyokazu Moriizumi, Takao Ishikawa, Tomokazu Nakashima, Masako Okazaki
  • Patent number: 7271994
    Abstract: An electrical energy storage device such as a wet tantalum electrolytic capacitor or an electrochemical cell such as a lithium/silver vanadium oxide cell is described. The enclosure comprises a drawn casing portion having a planar face wall supporting a surrounding sidewall and is shaped to nest the anode, cathode and intermediate separator components. A mating cover is a stamped planar piece of similar material having a periphery edge welded to the edge of the casing portion surrounding sidewall. In order to prevent heat generated during the welding process from damaging the separator, the anode portion adjacent to the weld site is contoured. This provides sufficient space between the weld and the separator supported on the anode at the contour so that what heat is transmitted to the separator by convection and conduction mechanism will not damage the separator.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: September 18, 2007
    Assignee: Greatbatch Ltd.
    Inventors: Eric Stemen, Troy Lindke, Edward Gloss, Rodney Stringham, Neal Nesselbeck, Joseph Spaulding, Barry Muffoletto, Doug Eberhard
  • Patent number: 7247178
    Abstract: A miniature solid electrolytic capacitor is provided, which is suitable for being disposed within an electrically insulating layer, and is connected to other component using an electrically conductive adhesive with a connection resistance at an anode low and with connection reliability improved. Specifically, the electrolytic capacitor includes a valve metal element for an anode 10 having a capacitor forming part 10A and an electrode lead part 10B, a dielectric oxide film 11 formed on the valve element, a solid electrolyte layer 12 formed on the dielectric oxide film 11 and a charge collecting element for a cathode 13 formed on the solid electrolyte layer 12, wherein at least one through hole 15 is formed in the electrode lead part 10B so as to expose a core 10C of the valve metal element, and an exposed portion 10D of the core is used for connecting portion.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: July 24, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Koichi Hirano, Tsunenori Yoshida, Hiroyuki Handa, Yoshihisa Yamashita, Seiichi Nakatani
  • Patent number: 7160615
    Abstract: An electrode sheet of an electric double layer capacitor is produced by using granules for formation of an electrode of an electric double layer capacitor which are obtained by kneading and then crushing materials including an activated material, a conductive filler, and a binder at 50 to 97 mass-%, 1 to 30 mass-%, and 2 to 20 mass-%, respectively, and which are essentially granules whose diameter is in a range of 47 to 840 ?m. A method for manufacturing a sheet-like electrode by mixing and kneading materials including an activated carbon, carbon black, and PTFE into a kneaded material, producing a forming material by converting the kneaded material into granules, and forming and rolling the forming material.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: January 9, 2007
    Assignees: Honda Motor Co., Ltd., Daido Metal Company Ltd.
    Inventors: Manabu Iwaida, Shigeki Oyama, Kenichi Murakami, Kouki Ozaki, Masanori Tsutsui
  • Patent number: 7141332
    Abstract: The present invention pertains to lightweight, hard and leakproof prismatic packaging structures for electrochemical devices and economical method of assembly and hermetic sealing of said structures by plastic layers attached to their metal walls. Metal welding is avoided and superior protection of lithium polymer cells and other cells is thus provided at lesser cost.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: November 28, 2006
    Inventors: Joseph B. Kejha, David Chua, Hsiu-Ping Lin
  • Patent number: 7130183
    Abstract: An implantable cardioverter-defibrillator has a housing containing cardioverter-defibrillator circuitry and a capacitor assembly. The capacitor assembly includes at least two flat capacitors each having opposed major surfaces. Each capacitor has an anode contact at one major surface, and a cathode contact at the opposite major surface. The anode contact of one of the capacitors contacts the cathode contact of the other. Each capacitor contact may be a thin metal plate covering the entire surface of the capacitor, with each plate connected to corresponding interleaved cathode or anode flat sheets between the plates. A non-conductive perimeter may enclose the sheets and connect the plates to each other.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: October 31, 2006
    Assignee: PaceSetter, Inc.
    Inventor: Timothy A. Fayram
  • Patent number: 7119663
    Abstract: A remote control key that may easily be disassembled while preventing theft of its transponder. The remote control key includes a transmitter for transmitting a signal to remotely control locking and unlocking of a door. The transponder transmits a predetermined ID code. A housing retains the transmitter and the transponder. A pad is formed on the housing to operate the transmitter. A seal seals the transponder that is retained in the housing. The seal and the pad are formed from the same material.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: October 10, 2006
    Assignee: Kabushiki Kaisha Tokai Rika Denki Seisakusho
    Inventors: Toshiharu Katagiri, Yoshihiro Kawai
  • Patent number: 7107099
    Abstract: A flat capacitor includes a case having a feedthrough hole, a capacitor stack located within the case, a coupling member having a base surface directly attached to the capacitor stack and having a portion extending through the feedthrough hole, the coupling member having a mounting hole, a feedthrough conductor having a portion mounted within the mounting hole, and a sealing member adjacent the feedthrough hole and the feedthrough conductor for sealing the feedthrough hole. Other aspects of the invention include various implantable medical devices, such as pacemakers, defibrillators, and cardioverters, incorporating one or more features of the exemplary feedthrough assembly.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: September 12, 2006
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Richard J. Kavanagh, James M. Poplett, A. Gordon Barr, Brian D. Schenk, Brian L. Schmidt
  • Patent number: 7085126
    Abstract: A polymeric cradle molded about the periphery of an anode pellet in an electrolytic capacitor is described. The polymeric cradle contacts between a welding strap surrounding the butt seam between mating “clam shell” casing portions and the anode pellet sidewall. This prevents the anode pellet from moving along both an x- and y-axes. Having the cathode active material contacting the opposed major casing sidewalls being in a closely spaced relationship with the anode pellet through an intermediate separator prevents movement along the z-axis. The resulting capacitor is particularly well suited for use in high shock and vibration conditions.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: August 1, 2006
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: Barry Muffoletto, Laurie O'Connor
  • Patent number: 7075777
    Abstract: One embodiment of the present subject matter includes a capacitor, comprising a first cupped shell having a first opening, and a second cupped shell having a second opening, wherein the first opening and the second opening are adapted to sealably mate to form a closed shell defining a volume therein. In the embodiment, the closed shell is adapted for retaining electrolyte. A plurality of capacitor layers in a substantially flat arrangement are disposed within the volume, along with electrolyte, in the present embodiment. The present closed shell includes one or more ports for electrical connections.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: July 11, 2006
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Brian Doffing, James A. Taller, Gregory J. Sherwood, Jason A. Shiroff
  • Patent number: 7031139
    Abstract: An implantable cardioverter-defibrillator has a housing containing cardioverter-defibrillator circuitry and a capacitor assembly. The capacitor assembly includes at least two flat capacitors each having opposed major surfaces. Each capacitor has an anode contact at one major surface, and a cathode contact at the opposite major surface. The anode contact of one of the capacitors contacts the cathode contact of the other. Each capacitor contact may be a thin metal plate covering the entire surface of the capacitor, with each plate connected to corresponding interleaved cathode or anode flat sheets between the plates. A non-conductive perimeter may enclose the sheets and connect the plates to each other.
    Type: Grant
    Filed: December 5, 2002
    Date of Patent: April 18, 2006
    Assignee: Pacesetter, Inc.
    Inventor: Timothy A. Fayram
  • Patent number: 7031140
    Abstract: The invention provides an electric double layer capacitor which has a container made from a resin in a substantially rectangular parallelepipedal form by joining a first container half segment and a second container half segment each in the form of a box. The second container segment is provided at one end thereof with an extension extending along an outer side surface of the first container segment to the bottom outer surface thereof. A first lead member has a portion closer to one end thereof, embedded in the first container segment, the first lead member portion, bent as embedded in the first container segment and led out of the container to outside thereof. A second lead member has a portion closer to one end thereof, embedded in the second container segment, bent as embedded in the second container segment and extending through the extension to outside of the container.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: April 18, 2006
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Seiji Omura, Kiyotaka Ito
  • Patent number: 7019960
    Abstract: The invention provides an electric double-layer capacitor sealed up by a flexible casing material that ensures a release of pressure upon an increasing internal pressure. A pressure release valve (1) is attached to the flexible casing material. The pressure release valve (1) comprises a collar airtightly joined to the flexible casing material and a cylindrical portion (3) connected to the collar, extending out of a capacitor enclosure. The cylindrical portion (3) comprises an end part (5) having a self-closing passage (6) that is opening to the outside only upon a pressure release and is closed up in a normal state, and a channel (4) in communication with the interior of the capacitor enclosure.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: March 28, 2006
    Assignees: Power Systems Co., Ltd., Japan Gore-Tex Inc., Kokoku Intech Co., Ltd.
    Inventors: Michio Okamura, Hitoshi Nakamura, Kotaro Kobayashi
  • Patent number: 7016177
    Abstract: High capacitance capacitors are provided to supply or accept large currents. As current flow through a capacitor increases, heat may be generated. Above a certain threshold temperature or current, a capacitor may fail. The present invention addresses capacitor's tendency to fail at higher currents and/or higher temperatures.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: March 21, 2006
    Assignee: Maxwell Technologies, Inc.
    Inventor: Guy C. Thrap
  • Patent number: 7016178
    Abstract: A housing for an electrochemical cell having at least a first electrode and a second electrode. The housing includes a lid having a first indentation to contact the first electrode, and a bottom having a second indentation to contact the second electrode. The first indentation has a first cross-section and the second indentation has a second cross-section. The first cross-section and the second cross-section get narrower as the first indentation and the second indentation progress into an interior of the housing.
    Type: Grant
    Filed: March 4, 2003
    Date of Patent: March 21, 2006
    Assignee: EPCOS AG
    Inventors: Werner Erhardt, Hubertus Goesmann, Gerhard Niederberger, Stefan Nowak, Klaus Schoch
  • Patent number: 7012799
    Abstract: An enclosure for an electrical energy storage device such as a wet tantalum electrolytic capacitor or an electrochemical cell such as a lithium/silver vanadium oxide cell is described. The enclosure comprises two metallic casing components or portions. The first is a drawn member having a planar face wall supporting a surrounding sidewall and is shaped to nest the anode, cathode and intermediate separator components. The surrounding sidewall has an annular flange at its outer periphery. A mating cover is a stamped planar piece of similar material whose periphery fits inside the annular flange or rim as a complementary piece.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: March 14, 2006
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: Barry Muffoletto, Edward J. Gloss, Douglas Eberhard, Joseph Spaulding, Yanming Liu, Neal Nesselbeck, Louis Marinaccio, Eric Stemen, Rodney Stringham
  • Patent number: 6967829
    Abstract: Structures for serially connecting at least two capacitors together are described. Serially connecting capacitors together provides device manufactures, such as those selling implantable medical devices, with broad flexibility in terms of both how many capacitors are incorporated in the device and what configuration the capacitor assembly will assume.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: November 22, 2005
    Assignees: Greatbatch, Inc.
    Inventors: Keith W. Seitz, Kenneth Talamine, Laurie O'Connor, Michael Streun, Wayne Glidden, Barry Muffoletto
  • Patent number: 6961232
    Abstract: An electrolytic capacitor with a polymeric housing in the form of a pocket defining a chamber, with an opening along a selected edge. The opening has opposed sides that are sealed together to provide a seam. A number of conductive layers are positioned within the chamber, and a feed-through conductor element has a first end electrically connected to the layers. An intermediate portion of the feed through passes through the seam, and an external portion extends from the housing. The housing may be vacuum formed high density polyethylene, with the feed-through contained in an elastomeric sleeve having a flattened cross section to be readily received in the seam, and to accommodate thermal expansion differences between the housing and the feedthrough. The device may be manufactured by inserting a stack of layers in the pocket, and thermally welding across the opening of the pocket on a single weld line.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: November 1, 2005
    Assignee: Pacesetter, Inc.
    Inventor: Dean F. Carson
  • Patent number: 6952338
    Abstract: A housing is provided for connecting two capacitor cells in a series or parallel combination and for providing the two cells as one integral product.
    Type: Grant
    Filed: July 12, 2004
    Date of Patent: October 4, 2005
    Assignees: Sony Corporation, Sony Electronics Inc.
    Inventors: Roland Gallay, Daniel Schlunke
  • Patent number: 6906911
    Abstract: An electric double layer capacitor includes, contained in a casing, an electrolyte, a positive electrode and a negative electrode each being an electrode containing carbon black, to form an electric double layer at the interface with the electrolyte, and a separator interposed between the positive electrode and the negative electrode. At least one electrode of the positive electrode and the negative electrode has protruded portions or bent portions formed continuously in the height direction against the bottom face of the casing. Further, a space due to the height of the protruded portions or the bent portions is formed between the at least one electrode and the separator.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: June 14, 2005
    Assignee: Asahi Glass Company, Limited
    Inventors: Katsuji Ikeda, Yasuo Shinozaki
  • Patent number: 6898066
    Abstract: The present invention relates to a structure of chip type electrolytic capacitor, which comprises a casing cover and a partition to separate space of casing cover into a dielectric chamber and a buffer chamber, a dielectric which includes lead pins, holes on the partition for the lead pins pass through. The dielectric is installed in the dielectric chamber, and lead pins pass through the holes on partition and extend to the buffer chamber. The buffer chamber is sealed with a bottom cover which also includes holes for lead pins. A stuff of epoxide is filled into the buffer chamber to fix the dielectric and its lead pins. A top cover is to seal the dielectric chamber for filling electrolyte. The casing cover is made with high strength engineering plastic by plastic injection machine. A supersonic welding and the epoxide adhesive solidification package technologies replace rubber packing.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: May 24, 2005
    Inventor: Chieh-Fu Lin