Liquid Patents (Class 361/679.53)
  • Patent number: 8081473
    Abstract: A cooling apparatus, system and like method for an electronic device includes a plurality of heat producing electronic devices affixed to a wiring substrate. A plurality of heat transfer assemblies each include heat spreaders and thermally communicate with the heat producing electronic devices for transferring heat from the heat producing electronic devices to the heat transfer assemblies. The plurality of heat producing electronic devices and respective heat transfer assemblies are positioned on the wiring substrate having the regions overlapping. A heat conduit thermally communicates with the heat transfer assemblies. The heat conduit circulates thermally conductive fluid therethrough in a closed loop for transferring heat to the fluid from the heat transfer assemblies via the heat spreader.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: December 20, 2011
    Assignee: International Business Machines Corporation
    Inventors: Thomas M. Cipolla, Evan George Colgan, Paul W. Coteus, Shawn Anthony Hall, Shurong Tian
  • Patent number: 8081478
    Abstract: An electronics component assembly for cooling high power density components including a fluid cooled module cover. In one embodiment, the electronics component assembly includes a module cover that is configured to make thermal contact with heat-generating electronic components of a module. The module cover includes an inlet, an outlet and at least one fluid passageway between the inlet and the outlet. The fluid passageway permits fluid to flow through the module cover, thereby allowing the module cover to act as a heat sink.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: December 20, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Gregory M. Drexler, Melissa A. Grette, Kevin J. Thorson
  • Patent number: 8081461
    Abstract: A cooling apparatus and method of fabrication are provided for facilitating cooling of an electronic device. The cooling apparatus includes a thermally conductive porous material and a liquid coolant supply. The thermally conductive porous material (such as metal foam material) is coupled to a surface of the electronic device to be cooled, or a structure coupled to the electronic device. The liquid coolant supply includes a jet impingement structure, which includes one or more jet nozzles for directing liquid coolant onto the surface to be cooled. The jet nozzle(s) extends into the thermally conductive porous material, and facilitates delivery of liquid coolant onto the surface to be cooled. The thermally conductive porous material is in thermal contact with the surface to be cooled and facilitates cooling of the electronic device by boiling of the liquid coolant passing through the porous material.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: December 20, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 8077462
    Abstract: A cooling apparatus and method are provided which include an air-to-liquid heat exchanger and system coolant inlet and outlet plenums mounted to an electronics rack door along an edge of the door remote from the edge hingedly mounted to the rack. The plenums are in fluid communication with the heat exchanger and respectively include an inlet and outlet. Coolant supply and return hoses are disposed above the electronics rack and couple the inlet plenum to a coolant supply header and the outlet plenum to a coolant return header. The hoses are sufficiently long and flexible to open or close the door. A stress relief structure is attached to the top of the door and clamps the supply and return hoses in fixed relation to relieve stress on connect couplings at the ends of the hoses to the plenum inlet and outlet during opening or closing of the door.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: December 13, 2011
    Assignee: International Business Machines Corporation
    Inventors: Wayne A. Barringer, David P. Graybill, Madhusudan K. Iyengar, Roger R. Schmidt, James J. Steffes, Gerard V. Weber, Jr.
  • Patent number: 8077457
    Abstract: In one example, a data center may be built in modular components that may be pre-manufactured and separately deployable. Each modular component may provide functionality such as server capacity, cooling capacity, fire protection, resistance to electrical failure. Some components may be added to the data center by connecting them to the center's utility spine, and others may be added by connecting them to other components. The spine itself may be a modular component, so that spine capacity can be expanded or contracted by adding or removing spine modules. The various components may implement functions that are part of standards for various levels of reliability for data centers. Thus, the reliability level that a data center meets may be increased or decreased to fit the circumstances by adding or removing components.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: December 13, 2011
    Assignee: Microsoft Corporation
    Inventors: David Thomas Gauthier, Scott Thomas Seaton, Allan Joseph Wenzel, Cheerei Cheng, Brian Clark Andersen, Daniel Gerard Costello, Christian L. Belady, Jens Conrad Housley, Brian Jon Mattson, Stephan W. Gilges, Kenneth Allen Lundgren
  • Patent number: 8077464
    Abstract: Electronic circuitry comprises a circuit board (34) and at least one component (30,32) mounted on the circuit board (34), wherein the at least one component (30,32) generates heat in use, the circuit board (34) includes at least one aperture (48, 50) aligned with the component (30,32) or a respective one of the components, and the electronic circuitry is configured to provide, in use, a path for coolant fluid to flow through the or each aperture (48, 50) and past the at least one component (30,32).
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: December 13, 2011
    Assignee: Thales Nederland B.V.
    Inventors: Gerrit Johannes Hendrikus Maria Brok, Wessel Willems Wits, Jan Hendrik Mannak, Rob Legtenberg
  • Patent number: 8072758
    Abstract: In an embodiment, an automotive inverter assembly has at least one component for cooling. The inverter assembly has a supporting body for supporting the at least one component. The supporting body defines at least part of a volume through which flows a cooling fluid coupled thermally with the at least one component for cooling.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: December 6, 2011
    Assignee: C.R.F. Societa Consortile per Azioni
    Inventors: Riccardo Groppo, Giuseppe Catona, Andrea Pizzato
  • Publication number: 20110292595
    Abstract: A computing system is provided. In the computing system, a plurality of modules physically arranged in a three dimensional hexadron configuration. In the computing system, the at least one module is either a liquid-tight module filled with a non-conductive liquid coolant or a module cooled with a liquid coolant circulating through cold plates mounted on electronic components. In the computing system, the liquid coolant is circulated in a closed loop by at least one pump through a plurality of hoses through at least one of a plurality of heat exchangers. In the computing system, the plurality of heat exchangers is coupled to an exterior portion of the surface of the computing system. In the computing system, the plurality of heat exchangers cool the liquid coolant through finned tubes exposed to the surrounding air.
    Type: Application
    Filed: May 27, 2010
    Publication date: December 1, 2011
    Applicant: International Business Machines Corporation
    Inventors: Wael R. El-Essawy, Thomas W. Keller, JR., Jarrod A. Roy, Juan C. Rubio
  • Publication number: 20110286177
    Abstract: A liquid submersion-cooled computer that is configured to reduce physical structures passing through walls of the computer liquid-tight computer case, which eliminates the amount of sealing needed around those physical structures and reduces the number of possible fluid leakage paths from the interior of the computer that contains a cooling liquid submerging at least some of the computer components. The computer includes a mechanism to pass input/output signals into and from the computer without any physical structure extending through any of the plurality of walls. The computer also has a mechanism for wirelessly transferring power into the interior space of the computer case, and a switch that controls power in the computer without having any physical structure extending through any of the plurality of walls.
    Type: Application
    Filed: August 4, 2011
    Publication date: November 24, 2011
    Applicant: HARDCORE COMPUTER, INC.
    Inventor: Chad Daniel ATTLESEY
  • Patent number: 8064198
    Abstract: A cooling device for a semiconductor element module and a magnetic part, includes: a water-cooled type heat sink having a cooling water passage; a semiconductor element module including a plurality of chips arranged side by side in a circulation direction in the cooling water passage, the semiconductor element module being mounted on the heat sink; and a magnetic part including a core and a winding portion mounted on the core, the magnetic part being mounted on the heat sink or another heat sink. In the cooling device, a plurality of cooling fins is disposed to extend along the circulation direction in the cooling water passage in a manner that the plurality of cooling fins are separated into groups for the respective chips arranged side by side in the circulation direction, and that the groups of the cooling fins are offset from each other in a direction perpendicular to the circulation direction. Accordingly, it is possible to have improved cooling efficiency of a heat sink with cooling fins.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: November 22, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yoshihiko Higashidani, Takeshi Kato, Masao Nagano, Tsutomu Yoshino
  • Patent number: 8064197
    Abstract: A multi-core microprocessor provides an indication of the power management state of each of the cores on output terminals. Cooling of the cores is adjusted responsive to the indication of the power management state of the respective cores with additional cooling being provided to those cores in a more active state and less cooling provided to those cores in a less active state.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: November 22, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Anthony C. Mowry, David G. Farber, Michael J. Austin, John E. Moore
  • Patent number: 8059411
    Abstract: An electronics assembly for use in a vehicle is provided. The assembly comprises a heat sink, a dam coupled to the heat sink, the dam and the heat sink combining to form a reservoir, an electronic component positioned within the reservoir, and a thermally conductive layer conformally molded to the electronic component and disposed between the electronic component and the heat sink.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: November 15, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Yunqi Zheng, John E. Proulx
  • Patent number: 8059406
    Abstract: In a memory device and its heat sink, the memory device includes a memory, a heat sink mounted onto the memory and a clamping element, and the heat sink includes an isothermal vapor chamber plate and a heat dissipating body, and the isothermal vapor chamber plate is attached onto an external side of the memory and includes an insert portion, and the heat dissipating body includes a base plate, a plurality of heat dissipating fins extended from the base plate, and a pawl arm extended from the base plate and in an opposite direction of the fins, and the heat dissipating body is coupled to the insert portion in a replaceable manner by the pawl arm, and the clamping element is provided for clamping the base plate and the isothermal vapor chamber plate, such that the heat dissipating body can be replaced on the isothermal vapor chamber plate easily.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: November 15, 2011
    Assignee: Celsia Technologies Taiwan, Inc.
    Inventors: George Anthony Meyer, IV, Chien-Hung Sun, Chieh-Ping Chen, Hsien-Tsang Liu
  • Patent number: 8059405
    Abstract: Condenser structures and cooling apparatuses are provided which facilitate vapor condensation heat transfer of a coolant employed in cooling an electronic device. The condenser structure includes a thermally conductive condenser block with multiple exposed cavities therein extending from a first main surface towards a second main surface. The condenser block is a monolithic structure, and the first main surface is a coolant vapor condensate formation surface when the condenser structure is operationally facilitating cooling of an electronic device. The exposed cavities extend from the first main surface into the condenser block to increase a condensation surface area of the condenser block, thereby facilitating coolant vapor condensate formation on the condenser block, and thus cooling of the electronic device using a two-phase coolant. The condenser structure also includes coolant-carrying channels for facilitating cooling of the condenser block, and thus vapor condensate formation on the condenser block.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: November 15, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Publication number: 20110267768
    Abstract: A liquid submersion cooled computer that includes a seamless, extruded main body used to form a liquid-tight case holding a cooling liquid that submerges components of the computer. By forming the main body as a seamless extrusion, the number of possible leakage paths from the resulting liquid-tight case is reduced. No seams are provided on the main body, and there are no openings through the walls of the main body, so liquid cannot leakage through the main body. Any leakage paths are limited to joints between the main body and end walls which are sealingly attached to the main body to form the liquid-tight case.
    Type: Application
    Filed: July 14, 2011
    Publication date: November 3, 2011
    Applicant: HARDCORE COMPUTER, INC.
    Inventor: Chad Daniel ATTLESEY
  • Patent number: 8050036
    Abstract: A heat receiver includes a casing defining a flow passage on a thermal conductive plate. The thermal conductive plate is received on an electronic component. An outflow nozzle has an inflow opening at the downstream end of the flow passage at a position outside the thermal conductive plate. Since the thermal conductive plate is received on the electronic component, the outflow nozzle is connected to the flow passage at a position outside the electronic component. This results in avoidance of increase in the thickness of the casing as compared with the case where the outflow nozzle directly extends into the flow passage on the thermal conductive plate.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: November 1, 2011
    Assignee: Fujitsu Limited
    Inventors: Masumi Suzuki, Michimasa Aoki, Yosuke Tsunoda, Masuo Ohnishi, Masahiko Hattori
  • Patent number: 8050034
    Abstract: An electronic apparatus comprises a case configured to house an electronic circuit unit and includes an air intake, through which external air is taken into the case, and an exhausting opening, from which the air is ejected, an circulator provided in the case and configured to take the external air into the case through the air intake and supply the air to the electronic circuit unit, an evaporation unit provided in the case and configured to cool the air by thermal exchange between the air and a working medium and guide the air to the exhausting opening, the working medium being vaporized as a result of the thermal exchange, and a condenser provided out of the case and configured to liquidize the working medium and supply the working medium to the evaporation unit.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: November 1, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshiharu Ootani
  • Patent number: 8031468
    Abstract: A cooling unit, which is configured to contain and cool air between two rows of equipment racks defining a hot aisle, includes a housing configured to be secured mounted on the two rows of equipment racks such that the housing spans the hot aisle, a heat exchanger supported by the housing and coupled to and in fluid communication with a coolant supply and a coolant return, and an air movement assembly supported by the housing and configured to move air over the heat exchanger. Other embodiments of the cooling unit and methods of cooling are further disclosed.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: October 4, 2011
    Assignee: American Power Conversion Corporation
    Inventors: John H. Bean, Jr., Zhihai Gordon Dong
  • Patent number: 8027162
    Abstract: Liquid-cooled electronics apparatuses and methods are provided. The cooled electronics apparatuses include a liquid-cooled cold rail and an electronics subassembly. The liquid-cooled cold rail has a thermally conductive structure and a coolant-carrying channel extending within and cooling the thermally conductive structure. The electronics subassembly includes an electronics card(s) and one or more thermal transfer plates. The electronics card(s) includes electronic devices to be cooled, and the one or more thermal transfer plates are each rigidly affixed to one or more electronic devices of the electronics card(s). Each thermal transfer plate is thermally conductive and couples the electronics subassembly to the liquid-cooled cold rail to thermally interface the one or more electronic devices to the liquid-cooled cold rail to facilitate cooling of the electronic devices. In one embodiment, the electronics subassembly includes multiple interleaved electronics cards and thermal transfer plates.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: September 27, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Michael R. Rizzolo, Robert E. Simons
  • Patent number: 8018720
    Abstract: Vapor condensers and cooling apparatuses are provided which facilitate vapor condensation cooling of a coolant employed in cooling an electronic device. The vapor condenser includes a thermally conductive base structure with a plurality of condenser fins extending from the base structure. The condenser fins have a proximal end coupled to the base structure and a remote end remote from the base structure. At least one exposed cavity is provided within each condenser fin extending from the remote end towards the proximal end. The exposed cavities are sized to provide greater condenser fin surface area for facilitating vapor condensate formation, and thereby facilitate cooling of an electronic device using a two-phase coolant.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: September 13, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 8018718
    Abstract: Disclosed herein is computer system having a first and second multiple chip modules (MCM) and a cooling module. The cooling module includes a first cooling loop associated with said first MCM and a first evaporator. The cooling module further includes a second cooling loop associated with said second MCM and a second evaporator. Each cooling loop is coupled to a common condenser that receives thermal energy from each cooling loop. A controller is coupled to the first and second cooling loop and adapts the operation of the first and second cooling loop in response to variances in operating conditions to provide cooling of the first and second MCM.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: September 13, 2011
    Assignee: International Business Machines Corporation
    Inventors: Gary F. Goth, Daniel J. Kearney, Paul M. Lucas, Donald W. Porter
  • Patent number: 8018719
    Abstract: One embodiment provides a vapor chamber having an outwardly protruding boss. A frame surrounds a perimeter of the vapor chamber. A plurality of heat sink fins extend from the frame. A cross-member spans the frame across the vapor chamber wall and defines an opening through which the boss protrudes at least slightly beyond the cross-member. The heat sink may be secured to a socket on a circuit board, with the boss engaging a processor positioned in the socket. In response to securing the heat sink, the boss compresses flush with the cross-member and the cross-member engages the processor to seat the processor in the socket. The opening in the cross-member reinforces the boss against outward deformation.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: September 13, 2011
    Assignee: International Business Machines Corporation
    Inventor: Diane S. Busch
  • Patent number: 8014150
    Abstract: Cooled electronic modules and methods of fabrication are provided with pump-enhanced, dielectric fluid immersion-cooling of the electronic device. The cooled electronic module includes a substrate supporting an electronic device to be cooled. A cooling apparatus couples to the substrate, and includes a housing configured to at least partially surround and form a sealed compartment about the electronic device. Additionally, the cooling apparatus includes dielectric fluid and one or more pumps disposed within the sealed compartment. The dielectric fluid is in direct contact with the electronic device, and the pump is an impingement-cooling, immersed pump disposed to actively pump dielectric fluid within the sealed compartment towards the electronic device. Multiple condenser fins extend from the housing into the sealed compartment in an upper portion of the sealed compartment, and a liquid-cooled cold plate or an air-cooled heat sink is coupled to the top of the housing for cooling the condenser fins.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: September 6, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 8009427
    Abstract: An image display apparatus of the present invention includes: a display device for displaying an image; a heat-receiving tube that is disposed so as to be in thermal communication with the display device and is filled with a cooling liquid; a heat-radiating tube that is provided to be continuous with the heat-receiving tube and is filled with the cooling liquid; and a transporting pump allowing the cooling liquid to circulate through the heat-receiving tube and the heat-radiating tube. When viewed from a display surface side of the display device, at least a part of the heat-radiating tube is located outside a peripheral edge of the display device and is disposed along the peripheral edge.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: August 30, 2011
    Assignee: Panasonic Corporation
    Inventors: Yukihiro Iwata, Shinya Ogasawara, Takayuki Furukawa
  • Patent number: 8009419
    Abstract: A portable, self-contained liquid submersion cooling system that is suitable for cooling a number of electronic devices, including cooling heat-generating components in computer systems and other systems that use electronic, heat-generating components. The electronic device includes a housing having an interior space, a dielectric cooling liquid in the interior space, a heat-generating electronic component disposed within the space and submerged in the dielectric cooling liquid, and a pump for pumping the liquid into and out of the space, to and from a heat exchanger that is fixed to the housing outside the interior space. The heat exchanger includes a cooling liquid inlet, a cooling liquid outlet, and a flow path for cooling liquid therethrough from the cooling liquid inlet to the cooling liquid outlet. An air-moving device such as a fan can be used to blow air across the heat exchanger to increase heat transfer.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: August 30, 2011
    Assignee: Hardcore Computer, Inc.
    Inventors: Chad Daniel Attlesey, R. Daren Klum, Allen James Berning
  • Patent number: 8004831
    Abstract: A facility is described that includes one or more enclosures defining an interior space, a plurality of power taps, a plurality of coolant supply taps, and a plurality of coolant return taps. A flow capacity of the supply taps and a flow capacity of the return taps can be approximately equal over a local area of the interior space. The plurality of power taps, the plurality of supply taps, and the plurality of return taps can be divided into a plurality of zones, with taps of each zone are configured to be controllably coupled to a power source or a coolant source independently of the taps of other zones. The taps can be positioned along paths, and paths of the power taps can be spaced from associated proximate paths of supply and return taps by a substantially uniform distance along a substantial length of the first path.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: August 23, 2011
    Assignee: Exaflop LLC
    Inventors: Andrew B. Carlson, William Hamburgen, Jimmy Clidaras, Wolf-Dietrich Weber, Xiaobo Fan
  • Patent number: 8004841
    Abstract: A cooling or heat transfer apparatus and method is disclosed for cooling an electronic device. The apparatus includes a heat producing electronic device which may include an electronic circuit card with many heat sources. A heat transfer device is connected to the heat producing electronic device which is thermally communicating with the heat producing device for transferring heat from the heat producing device to the heat transfer device. A heat conduit is connected to the heat transfer device and thermally communicating with the heat transfer device for transferring heat to the heat conduit from the heat transfer device. A cooling housing is connected to the heat conduit and the cooling housing thermally communicating with the heat conduit for transferring heat to the cooling housing from the heat conduit. The apparatus enables the replacement of circuit cards in the field because it eliminates the need to apply thermal-interface materials.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: August 23, 2011
    Assignee: International Business Machines Corporation
    Inventors: Thomas M. Cipolla, Shurong Tian, Evan George Colgan, Paul W. Coteus, Shawn Anthony Hall
  • Patent number: 8004832
    Abstract: Disclosed herein is a data center having a plurality of liquid cooled computer systems. The computer systems each include a processor coupled with a cold plate that allows direct liquid cooling of the processor. The cold plate is further arranged to provide adapted flow of coolant to different portions of the processor whereby higher temperature regions receive a larger flow rate of coolant. The flow is variably adjusted to reflect different levels of activity. By maximizing the coolant temperature exiting the computer systems, the system may utilize the free cooling temperature of the ambient air and eliminate the need for a chiller. A data center is further provided that is coupled with a district heating system and heat is extracted from the computer systems is used to offset carbon emissions and reduce the total cost of ownership of the data center.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: August 23, 2011
    Assignee: International Business Machines Corporation
    Inventors: Thomas J. Brunschwiler, Ryan J. Linderman, Bruno Michel, Erich M. Ruetsche
  • Patent number: 8004839
    Abstract: To cool a blade type server disposed in an air-conditioned room, the following arrangements are made. The first is at least one shell having a ventilation passage disposed in the air-conditioned room. The second is, the following are disposed in a ventilation passage: racks, in which blade type servers each composed of a case with slim boards housed therein are stacked; cooling coils each having a coolant passage and a cooling fin and cooling a passing air; and at least one fan unit having axial-flow fans placed therein and producing air currents in one direction. The third is the fan unit forces a cooling air to flow in one direction in the ventilation passage thereby to cool the servers in the racks. The cooling coils and racks are disposed alternately so that warmed cooling air after passing through the rack is cooled by the cooling coil and then cools the next rack.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: August 23, 2011
    Assignees: Fujitsu Limited, Fuji Furukawa Engineering & Construction Co., Ltd.
    Inventors: Yoichi Sato, Kenji Tosaka, Mitsuo Hayashi, Akihiro Yasuo, Hideki Kimura, Kengo Ueda, Katsuhiko Nakata, Yoshihisa Iwakiri, Hitoshi Nori, Tomoaki Haneda, Mika Tokumitsu, Naoki Shinjo, Kouji Kuroda, Yoshihiro Kusano
  • Patent number: 8000101
    Abstract: A system for attaching liquid cooling apparatus includes a fan, a chassis and a grill. The chassis is configured to house electronic components in an interior volume and has an air flow opening large enough to receive the fan. The grill is configured to be fastened to the fan and to the chassis such that, when the grill is so fastened, the fan is disposed at least partially in the interior volume and the grill substantially covers the air flow opening. At least one recess is formed either in the chassis or the grill such that a coolant conduit may be inserted into the recess when the grill is not fastened to the chassis and the coolant conduit is confined within the recess when the grill is fastened to the chassis.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: August 16, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Tom J Searby
  • Patent number: 8000103
    Abstract: Various embodiments disclose a system and method to provide cooling to electronic components, such as electronic modules or the like. The system includes one or more cold plates that are configured to be thermally coupled to one or more of the electronic components. Internally, each of the cold plates has a cooling fluid flowing inside of at least one passageway. The cooling fluid thus removes heat from the electronic components primarily by conductive heat transfer. An input and an output header are attached to opposite ends of the passageway to allow entry and exit of the cooling fluid. The input and output headers are attached to an external system to circulate the cooling fluid.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: August 16, 2011
    Assignee: Clustered Systems Company
    Inventors: Robert J. Lipp, Phillip P. Hughes
  • Patent number: 7995343
    Abstract: A cooling unit includes: a heat-radiating section in which a coolant flows and which radiates heat caught by the coolant; and a path where the coolant flows through the heat-radiating section; a pump on the path to cause the coolant to flow; and heat absorbing sections disposed on the path to touch heat-producing elements having different heating values, in which the coolant runs to absorb heat produced by the heat-producing elements. One of the heat-absorbing sections is a maximum-heat-absorbing section that touches a maximum-heat-producing element and is disposed downstream from the pump and upstream from the heat-radiating section in a flow of the coolant on the path. Another one of the heat absorbing sections is a low-heat absorbing section that touches the heat-producing element except the maximum-heat-producing element and is disposed upstream from the pump and downstream from the heat-radiating section in the flow of the coolant on the path.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: August 9, 2011
    Assignee: Fujitsu Limited
    Inventors: Kenji Suzuki, Tadanori Tachikawa
  • Publication number: 20110188198
    Abstract: An aircraft signal computer system (10) comprises a plurality of modular signal computer units (12) and a liquid cooling device for cooling the modular signal computer units (12), the liquid cooling device comprising a coolant line (16), which is connectable to a central liquid cooling system of an aircraft in order to supply a liquid coolant medium at a desired low temperature to the liquid cooling device, and the coolant line (16) of the liquid cooling device being in thermal surface contact with the modular signal computer units (12) in order to dissipate heat from the modular signal computer units (12).
    Type: Application
    Filed: August 13, 2009
    Publication date: August 4, 2011
    Applicant: AIRBUS OPERATIONS GMBH
    Inventor: Sebastian Roering
  • Patent number: 7990709
    Abstract: Apparatus and method are provided for facilitating cooling of air passing through an electronics rack. The apparatus includes a heat exchange assembly hingedly mounted above and external to the rack, such that air passing above the rack from an air outlet side to an air inlet side thereof passes through the heat exchange assembly, and is cooled. The heat exchange assembly includes a support structure to support hinged mounting of the assembly above the rack, and an air-to-liquid heat exchanger coupled to the support structure. The heat exchanger has an inlet plenum and an outlet plenum in fluid communication with respective connect couplings which facilitate connection of the plenums to coolant supply and return lines, respectively. The heat exchanger also includes heat exchange tube sections, each of which has a coolant channel with an inlet and an outlet coupled to the inlet and outlet plenums, respectively.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: August 2, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 7983042
    Abstract: According to an embodiment of the present invention, a thermal management system for electronic components includes a plurality of spacers disposed between a first flexible substrate and a second flexible substrate to form a plurality of heat transfer regions each having a plurality of capillary pumping regions, a two-phase fluid disposed between at least one pair of adjacent spacers, and a plurality of electronic components coupled to a mounting surface of the first flexible substrate.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: July 19, 2011
    Assignee: Raytheon Company
    Inventor: James S. Wilson
  • Patent number: 7978470
    Abstract: A body flow path in a first housing having an MPU element communicates with an inner flow path and outer flow path formed in an inner heat-dissipating board and an outer heat-dissipating board, respectively, and a pump drives a cooling liquid to circulate in these flow paths. A beam is arranged between a pivot provided in a second housing and a pivot provided in the inner heat-dissipating board, a beam is arranged between the pivot of the inner heat-dissipating board and a pivot provided in the outer heat-dissipating board, and the inner heat-dissipating board and the outer heat-dissipating board are movable to the second housing. According to the operation of opening the second housing, a distance between the second housing and the inner heat-dissipating board, and a distance between the inner flow path and the outer flow path are increased.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: July 12, 2011
    Assignee: Fujitsu Limited
    Inventors: Hiroki Uchida, Jun Taniguchi, Hideshi Tokuhira, Minoru Ishinabe, Masanobu Ishiduka, Hiroaki Date
  • Patent number: 7978472
    Abstract: Liquid-cooled electronics racks and methods of fabrication are provided wherein a liquid-based cooling apparatus facilitates cooling of electronic subsystems when docked within the electronics rack. The cooling apparatus includes a liquid-cooled cooling structure mounted to a front of the rack, and a plurality of heat transfer elements. The cooling structure is a thermally conductive material which has a coolant-carrying channel for facilitating coolant flow through the structure. Each heat transfer element couples to one or more heat-generating components of a respective electronic subsystem, physically contacts the cooling structure when that electronic subsystem is docked within the rack, and provides a thermal transport path from the heat-generating components of the electronic subsystem to the liquid-cooled cooling structure. Advantageously, electronic subsystems may be docked within or undocked from the electronics rack without affecting flow of coolant through the liquid-cooled cooling structure.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: July 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 7978473
    Abstract: A cooling apparatus and method of fabrication are provided for facilitating removal of heat from a heat-generating electronic device. The method of fabrication includes: obtaining a solder material; disposing the solder material on a surface to be cooled; and reflowing and shaping the solder material disposed on the surface to be cooled to configure the solder material as a base with a plurality of fins extending therefrom. In addition to being in situ-configured on the surface to be cooled, the base is simultaneously metallurgically bonded to the surface to be cooled. The solder material, configured as the base with a plurality of fins extending therefrom, is a single, monolithic structure thermally attached to the surface to be cooled via the metallurgical bonding thereof to the surface to be cooled.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: July 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Bruce K. Furman, Madhusudan K. Iyengar, Paul A. Lauro, Roger R. Schmidt, Da-Yuan Shih, Robert E. Simons
  • Patent number: 7969727
    Abstract: According to one embodiment, an equipment enclosure includes a plurality of equipment elements, each element having one or more heat generating sources. A heat exchanger is mounted towards the top of the equipment enclosure. The heat exchanger is thermally coupled to at least some of the heat generating sources. The enclosure includes an exhaust vent through which air heated by the heat exchanger may be evacuated, and an inlet vent through which air from outside the equipment enclosure may be drawn into the equipment enclosure to cool the heat exchanger by stack effect ventilation.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: June 28, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Robert Tozer, Cullen Bash, Chandrakant Patel
  • Patent number: 7965510
    Abstract: A power conversion apparatus includes a power module, four corners of which are fastened to a cooling jacket from its front surface by a front surface side fastening apparatus that includes nuts which are screwed with bolts projecting from the rear face of the cooling jacket to fasten the power module. An AC terminal of the power module, a DC positive electrode terminal connection portion, and a DC negative electrode terminal are arranged on the top surface of the cooling jacket facing the bolts.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: June 21, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Hideyo Suzuki, Keisuke Horiuchi, Fusanori Nishikimi, Atsushi Yukita
  • Patent number: 7965511
    Abstract: The present disclosure relates to heat transfer thermal management device utilizing varied methods of heat transfer to cool a heat generating component from a circuit assembly or any other embodiment where a heat generating component can be functionally and operatively coupled. In an embodiment, the vapor configuration is modified to include fins that define a cross-flow heat exchanger where the vapor from the vapor chamber serves as the fluid in the vertical cross-flow in the heat exchanger and natural or forced cooling air serves as the horizontal cross-flow for the heat exchanger.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: June 21, 2011
    Assignee: ATI Technologies ULC
    Inventor: Gamal Refai-Ahmed
  • Publication number: 20110134604
    Abstract: A liquid submersion cooling system that is suitable for cooling a number of electronic devices in parallel using a plurality of cases connected to a rack system. The system cools heat-generating components in server computers and other devices that use electronic, heat-generating components and are connected in parallel systems. The system includes a housing having an interior space, a dielectric cooling liquid in the interior space, a heat-generating electronic component disposed within the space and submerged in the dielectric cooling liquid. The rack system contains a manifold system to engage and allow liquid transfer for multiple cases and IO connectors to engage electrically with multiple cases/electronic devices. The rack system can be connected to a pump system for pumping the liquid into and out of the rack, to and from external heat exchangers, heat pumps, or other thermal dissipation/recovery devices.
    Type: Application
    Filed: February 15, 2011
    Publication date: June 9, 2011
    Applicant: HARDCORE COMPUTER, INC.
    Inventor: Chad Daniel Attlesey
  • Patent number: 7957144
    Abstract: A heat exchange system for blade server systems is disclosed, wherein said blade server system contains a plurality of server blades arranged in a blade center, wherein the heat exchange system comprises first heat sink associated to each of said plurality of server blades, and whereby the first heat sink are adapted to collect heat emitted from heat emitting devices on said associated server blade; means for transferring heat from the heat emitting devices to the first heat sink; and a liquid cooled second heat sink associated to said blade center, whereby said first heat sink are connected to said second heat sink by thermal coupling.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: June 7, 2011
    Assignee: International Business Machines Corporation
    Inventors: Carsten Goettert, Harald Huels, Hans-Guenter Kraemer, Manfred Ries, Rolf Schaefer
  • Patent number: 7944694
    Abstract: Apparatus and method are provided for facilitating liquid cooling of a plurality of blades of an electronic system chassis. The apparatus includes a chassis-level manifold assembly with a first coolant path and a plurality of second coolant paths. The first coolant path is isolated from the plurality of second coolant paths by a heat exchanger. The heat exchanger facilitates transfer of heat from coolant within the second coolant paths to coolant within the first coolant path. Each second coolant path is isolated from the other second coolant paths, and coolant passing therethrough facilitates cooling of a respective blade. When operational, each second coolant path forms a portion of a respective closed loop coolant path extending between the manifold assembly and the electronic system chassis, and in one embodiment, each blade is an immersion-blade, with multiple components thereof immersion-cooled by coolant flowing through the respective second coolant path.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: May 17, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 7940526
    Abstract: The invention relates to a module with a number of electrical or electronic components or switching circuits provided on a common cooler structure flowed through by a cooling medium. The entire cooler structure is made up of at least two plate-shaped coolers, which are arranged parallel to one another in an interspaced manner and which are flowed through by the cooling medium.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: May 10, 2011
    Assignee: Curamik Electronics GmbH
    Inventors: Jurgen Schulz-Harder, Andreas Meyer
  • Patent number: 7940527
    Abstract: Cooling systems (1) suitable for cooling an electronic unit (2) or assembly. The cooling system is provided with a cooling channel (6). An electronic unit (2) rests over a heat-conducting cooler wall (7). A coolant guide apparatus (11) is provided in the cooling channel (6) and has insert conduit elements (13) for guiding the coolant onto the cooler wall indentations (12). The end of each insert conduit (13) opening to the cooling channel (6) may be provided with an inclined entry surface (19) and an inlet opening (20) towards the inner longitudinal channel (14). A plurality of such coolant guides (11) may be arranged in series so that, for example, the same cooling medium flows through a plurality of semiconductor modules in succession.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: May 10, 2011
    Assignee: BRUSA Elektronik AG
    Inventor: Axel Krause
  • Publication number: 20110103009
    Abstract: This cooling device (28) of a computer rack (12) equipped with a back panel (16) comprising an evacuation zone (18), toward the exterior of the rack, of air having circulated over electric power components (201, . . . , 20i, . . . , 20n) arranged within this computer rack (12), comprises a rear door (32) in the thickness of which air cooling means (38, 40) is arranged. It further comprises a supporting frame (30) on which the rear door (32) is mounted, molded to surround the air evacuation zone (18) of the computer rack (12), and removable positioning means (36) of the supporting frame (30) against the back panel (16) of the computer rack (12).
    Type: Application
    Filed: May 28, 2009
    Publication date: May 5, 2011
    Inventors: Audrey Julien-Roux, Thierry Fromont, Lionel Coutancier
  • Patent number: 7936560
    Abstract: A blade server including a cooling structure to be loaded with a CPU of high performance is provided. In order to enhance draining performance of a condensed working fluid which stays between fins, a vapor condensing pipe is used, in which grooves are formed in a direction substantially parallel direction with a pipe axis direction on the above described pipe inner surface, a section of a row of the above described fins is exposed on a side surface of the above described groove, the above described groove is disposed at a lower side in the vertical direction from the center line in the pipe axis direction of the vapor condensing pipe when the above described groove is installed in the above described vapor condensing pipe, and a wick with a wire space smaller than the fin space of the above described fin row is filled inside the above described groove.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: May 3, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Hiroyuki Toyoda, Akio Idei, Shigeyasu Tsubaki, Tadakatsu Nakajima, Yoshihiro Kondo, Tomoo Hayashi
  • Patent number: 7936563
    Abstract: The present invention relates to an integrated-circuit device and to a method for fabricating an integrated-circuit device with an integrated fluidic-cooling channel. The method comprises forming recesses in a dielectric layer sequence at desired lateral positions of electrical interconnect segments and at desired lateral positions of fluidic-cooling channel segments. A metal filling is deposited in the recesses of the dielectric layer sequence so as to form the electrical interconnect segments and to form a sacrificial filling in the fluidic-cooling channel segments. Afterwards, the sacrificial metal filling is selectively removed from the fluidic-cooling channel segments.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: May 3, 2011
    Assignee: NXP B.V.
    Inventors: Laurent Gosset, Vincent Arnal
  • Publication number: 20110075353
    Abstract: A portable, self-contained liquid submersion cooling system that is suitable for cooling a number of electronic devices, including cooling; heat-generating components in computer systems and other systems that use electronic, heat-generating components. The electronic device includes a housing having an interior space, a dielectric cooling liquid in the interior space, a heat-generating electronic component disposed within the space and submerged in the dielectric cooling liquid, and a pump for pumping the liquid into and out of the space, to and from a heat exchanger that is fixed to the housing outside the interior space. The heat exchanger includes a cooling liquid inlet, a cooling liquid outlet, and a flow path for cooling liquid therethrough from the cooling liquid inlet to the cooling liquid outlet. An air-moving device, such as a fan can be used to blow air across the heat exchanger to increase heat transfer.
    Type: Application
    Filed: October 12, 2010
    Publication date: March 31, 2011
    Applicant: HARDCORE COMPUTER, INC.
    Inventors: Chad Daniel Attlesey, R. Daren Klum, Allen James Berning