Diode Patents (Class 363/126)
  • Patent number: 10784678
    Abstract: An electromagnetic interference (EMI) suppression circuit is interposed between an AC source and a DC power conversion system. The EMI suppression circuit includes a pi-type filter network having first and second filter input terminals and having first and second filter output terminals. The pi-type filter network includes a common mode choke and a differential mode choke between the input terminals and the output terminals. The pi-type filter network includes a first X-type capacitor across the first and second filter input terminals and includes a second X-type capacitor across the first and second filter output terminals. A first Y-type emission reduction capacitor is connected between the first filter input terminal and earth ground. At least a second Y-type emission reduction capacitor and a damping resistor are connected in series to form a series resistor-capacitor combination between the first filter output terminal and earth ground.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: September 22, 2020
    Assignee: Universal Lighting Technologies, Inc.
    Inventors: Wei Xiong, Danny Pugh
  • Patent number: 10734886
    Abstract: The switching power supply device includes an AC voltage input unit, a filter, a first inductor, a switching unit, a first rectification unit that includes first and second rectifier elements, in which the first and second rectifier elements are connected in series, in which a second output terminal of the AV voltage input unit is electrically connected to a transmission line, which connects the first and second rectifier elements, via the filter, and that is connected in parallel to the switching unit, a first capacitor, an inverter, a second rectification unit that includes an input terminal which is connected to a secondary coil, a smoothing unit that is connected between the output terminals of the second rectification unit, a control unit, a second capacitor that is connected between a transmission line, which connects the first and second rectifier element, and the smoothing unit, and a twentieth capacitor.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: August 4, 2020
    Assignee: TDK CORPORATION
    Inventor: Ken Matsuura
  • Patent number: 10720854
    Abstract: A novel 72-pulse AC-DC converter based on a 36-pulse converter is designed and implemented in this invention. Combining the outputs of two parallel 18-pulse diode bridges, consisting of nine legs of diode rectifiers, results in a 36-pulse topology. A zero sequence blocking transformer (ZSBT) is designed and applied to the proposed scheme guarantying the independent operation of the two bridges. To achieve a 72-pulse output, a pulse doubling circuit is applied which is inherently a tapped inter-phase transformer. A polygon-connected autotransformer platform is designed and added to the converter, making the proposed scheme suitable for retrofit applications. The proposed solution is a tradeoff among the pulse number, the transformer platform, the complexity of the scheme and the cost. The proposed scheme has an optimized configuration in this regard. The simulation results show that the proposed scheme improves the power quality indices.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: July 21, 2020
    Inventor: Rohollah Abdollahi
  • Patent number: 10720829
    Abstract: A totem-pole bridgeless PFC conversion device includes a conversion unit, a control unit, a current detecting unit and a phase detecting unit. When the control unit determines that a peak value of an input current is within a predetermined interval between a positive current value and a negative current value based on a current signal of the current detecting unit and a phase signal of the phase detecting unit, the control unit controls the conversion unit to operate in a discontinuous conduction mode (DCM). When the control unit determines that the peak value of the input current is not within the predetermined interval, the control unit controls the conversion unit to operate in a critical conduction mode (CRM).
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: July 21, 2020
    Assignee: CHICONY POWER TECHNOLOGY CO., LTD.
    Inventors: Wen-Nan Huang, Ching-Guo Chen
  • Patent number: 10707699
    Abstract: A wireless power transfer circuit can include an interphase transformer operatively coupled to a receiver coil, a rectifier, and a load. The receiver coil can be configured to have an alternating current induced therein by a transmitter coil. The interphase transformer can be configured to deliver a current to the load that is twice the current induced in the receiver coil, and the rectifier can be configured to rectify the current delivered to the load. The interphase transformer may be constructed with a center tapped winding structure or a bifilar winding structure, and may be constructed as a planar transformer. The rectifier may be made up of diodes (which may be Schottky diodes) or may be a synchronous rectifier comprised of switching devices such as MOSFETs.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: July 7, 2020
    Assignee: Apple Inc.
    Inventors: InHwan Oh, Bharat Patel
  • Patent number: 10707780
    Abstract: A converter having a negative DC terminal and a positive DC terminal; at least three AC terminals, each AC terminal being arranged for an associated AC current to flow through the terminal, a converter bridge with at least three bridge legs, each bridge leg being associated with one of the at least three AC terminals and being able to connect the associated AC terminal to the negative DC terminal or the positive DC terminal; and a current measurement circuit having a current measurement element, the current measurement circuit being configured to guide either none or one or more of the AC currents flowing through one of the at least three AC terminals through the current measurement element.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: July 7, 2020
    Assignee: CELEROTON AG
    Inventor: Georg Oberholzer
  • Patent number: 10630178
    Abstract: A first controller controls the DC-DC converter to perform a step-up operation when a voltage on the DC bus is lower than a first reference voltage and controls the DC-DC converter to suspend the step-up operation when the voltage is equal to or higher than the first reference voltage. A second controller controls the inverter to maintain the voltage on the DC bus constant when the voltage on the DC bus is lower than a second reference voltage and controls the inverter to maximize an output power of the inverter when the voltage is equal to or higher than the second reference voltage.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: April 21, 2020
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Yusuke Iwamatsu, Naoaki Fujii
  • Patent number: 10581333
    Abstract: The disclosure relates to power electronics technology and aims to provide a control method of constant-voltage-gain isolation type bidirectional full-bridge DC/DC converter, which is based on a single-phase-shifting modulation method. By enabling the difference between the M times of the input voltage and primary-referred value of the output voltage to be constantly zero, to realize the control goal that the ratio value between the primary-referred value of the output voltage and the input voltage is constantly M; the ratio value between the primary-referred value of the output voltage and the input voltage is defined as the voltage gain M, wherein an adjusting range is 0.5˜2; through introducing a feedforward compensator involving the input and output voltages and the input and output currents, a linear controller of the system is implemented.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: March 3, 2020
    Assignee: Zhejiang University
    Inventors: Yonggang Peng, Xiaoming Wang, Wei Wei
  • Patent number: 10536999
    Abstract: An apparatus can include: a linear drive circuit configured to control a drive current flowing through an LED load; a control circuit configured to acquire a conduction angle signal of a silicon-controlled rectifier dimmer and control the linear drive circuit; and the control circuit being configured to control the drive current to be decreased to reduce a current ripple and to maintain the silicon-controlled rectifier dimmer in a turn-on state when the conduction angle signal is less than a predetermined value.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: January 14, 2020
    Assignee: Silergy Semiconductor Technology (Hangzhou) LTD
    Inventors: Huiqiang Chen, Jianxin Wang
  • Patent number: 10491103
    Abstract: A step-up converter includes a first inductance electrically connecting a first DC voltage input of the step-up converter to a first junction point, a step-up converter switch connecting the first junction point to a second DC voltage input and a second DC voltage output of the step-up converter, a first diode connecting the first junction point to a first DC voltage output of the step-up converter, and a snubber circuit comprising a charging path and a discharging path. The discharging path runs as a series connection of a capacitor and a second diode from the first junction point to the first DC voltage output, and the charging path is connected at its one end to a junction point between the capacitor and the second diode and is arranged such that the capacitor is charged when the step-up converter switch is switched on.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: November 26, 2019
    Assignee: SMA Solar Technology AG
    Inventors: Mario Willenberg, Raphael Knoke, Andreas Falk, Robert Stala, Marek Rylko, Jerzy Maslon, Andrzej Mondzik, Slawomir Szot, Adam Penczek, Mitosz Szarek
  • Patent number: 10468972
    Abstract: A converter cell includes first and second arms, each of which includes a semiconductor switching element and a diode, and a short circuit part connected in parallel to the second arm, and when a DC fault detection unit detects occurrence of a DC fault, a control circuit outputs, to the converter cell, a fault handling command for setting the short circuit part to a conductive state, setting the semiconductor switching element to a conductive state, and setting the semiconductor switching element to a non-conductive state, to thereby set both the semiconductor switching element and the diode to conductive states in the second arm.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: November 5, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Yuki Ishii
  • Patent number: 10462417
    Abstract: Methods and apparatus for reducing electromagnetic interference resultant from data transmission over a high-speed audio/visual interface. In one embodiment, an HDMI source device is disclosed. The HDMI source device includes a wireless interface and an HDMI interface coupled with an active filter circuit topology. The active filter circuit topology includes a pair of differential signal lanes; a passive filter circuit disposed within each of the pair of differential signal lanes; a plurality of active filter circuits, with at least a first active filter circuit disposed on one side of the passive filter circuit and at least a second active filter circuit disposed on the other side of the passive filter circuit; a plurality of diodes, with each of the plurality of active filter circuits coupled with a respective diode; and switching logic coupled with the plurality of diodes. Methods of operating the HDMI source device and HDMI systems are also disclosed.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: October 29, 2019
    Assignee: Apple Inc.
    Inventors: William Cornelius, In Jae Chung, Bryan Follis, Pierre Michael, Kofi Boateng, Jongbae Park, Joseph Karaszewski
  • Patent number: 10446880
    Abstract: Disclosed is a balancing apparatus capable of performing balancing without wasting power and of rapidly transmitting power.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: October 15, 2019
    Assignee: LG CHEM., LTD.
    Inventors: Chang-Hyun Sung, Sang-Hoon Lee
  • Patent number: 10439391
    Abstract: A domestic appliance includes a mains connection at which an electrical mains voltage can be applied relative to a reference potential, a main supply unit supplying an electrical operating voltage from the mains voltage at its output, and at least one electrical consumer receiving the operating voltage. An electrical switch electrically isolates at least the output of the main supply unit from the mains connection, when the domestic appliance is in a standby mode. Provided separate from the main supply unit is a voltage supply which is coupled to the mains connection and which taps the mains voltage at the mains connection in the standby mode and supplies a supply voltage from the mains voltage for switching the electrical switch to an electrically conducting switching state to thereby switch the domestic appliance from the standby mode to an operating mode.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: October 8, 2019
    Assignee: BSH Hausgeräte GmbH
    Inventors: Daniel Anton Falcon, Claudio Carretero Chamarro, Ignacio Garde Aranda, Pablo Jesus Hernandez Blasco, Javier Herrera Rodriguez, Sergio Llorente Gil, Oscar Lucia Gil, Ignacio Millan Serrano, Daniel Palacios Tomas
  • Patent number: 10432086
    Abstract: Bridgeless PFC converters. At least some example embodiments are methods of operating a power converter, including operating the power converter during a positive half-line cycle of a frequency of an alternating current (AC) source by: charging a primary winding of a multi-winding boost inductor with a charging current having a first polarity; and then discharging the primary winding; sensing a falling edge of a voltage at a switch node by way of a secondary winding of the multi-winding boost inductor; and triggering a subsequent charging of the primary winding during the positive half-line cycle based on the falling edge. Operating the power converter during a negative half-line cycle of the line frequency by: sensing a rising edge of the voltage at the switch node by way of the secondary winding; and triggering a subsequent charging of the primary winding.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: October 1, 2019
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Nikhilesh S. Kamath
  • Patent number: 10427531
    Abstract: An inductive charging system is provided for a vehicle. A floor unit is designed to generate an electromagnetic charging field for transmitting electrical energy to the vehicle. The floor unit has a first interface which is designed to receive electrical energy in the form of a direct current at the floor unit. The floor unit further has an alternating current generator which is designed to convert the direct current into an alternating current. The floor unit also has a primary coil which is designed to generate the electromagnetic charging field on the basis of the alternating current.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: October 1, 2019
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventor: Josef Krammer
  • Patent number: 10424938
    Abstract: A power supply system having a simple structure and being easy to maintain, used to supply power for electronic devices, and including at least two first power sources connected in parallel and supplying power for the electronic devices; each first power source in the power supply system has a simple structure, and is easy to maintain, thus enabling the entire power supply system to have a simple structure and to be easy to maintain.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: September 24, 2019
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., K-TRONICS (SUZHOU) TECHNOLOGY CO., LTD.
    Inventors: Naijia Guo, Jianzi He
  • Patent number: 10411615
    Abstract: Includes: a first offset voltage computing section, which is configured to compute, when the three-phase voltage commands are determined as a maximum phase, an intermediate phase, and a minimum phase in descending order, a first offset voltage by subtracting a first DC voltage calculated by multiplying the DC voltage by a first constant from the maximum phase, and to set the first offset voltage to zero when a sign of the first offset voltage is negative; a corrected three-phase voltage command computing section, which is configured to subtract the first offset voltage from each phase of the three-phase voltage commands to output corrected three-phase voltage commands; and an inverter, which is configured to output the three-phase voltages based on the corrected three-phase voltage commands.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: September 10, 2019
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tatsuya Mori, Akira Furukawa
  • Patent number: 10351004
    Abstract: An on-board charger (OBC) for charging a traction battery of an electric vehicle includes a Power Factor Correction (PFC) stage to convert AC power from a mains supply into DC power for use in charging the traction battery, a bi-directional DC/DC converter coupled to the traction battery, a DC link capacitor between the PFC stage and the DC/DC converter, and a controller. The controller is operable to control the PFC stage and the DC/DC converter to operate in (i) a pre-charge mode in which the DC link capacitor is pre-charged using electrical power from the traction battery and (ii) a stable operation mode in which the traction battery is charged using the AC power from the mains supply.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: July 16, 2019
    Assignee: Lear Corporation
    Inventors: Adria Marcos Pastor, Oscar Lucia Gil, Hector Sarnago Andia, Alejandro Naval Pallares
  • Patent number: 10355484
    Abstract: A more efficient power supply unit and a method for supplying power using same are disclosed. The power supply unit comprises a relay for switching alternating current power supplied from a plurality of sources; a direct current power supply for converting the switched current power to direct current power; and a controller for generating a switch signal to control the relay to switch the sources on the basis of the result for monitoring the alternating current power supplied from the sources.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: July 16, 2019
    Assignee: NAVER Business Platform Corp.
    Inventors: Yong Soo Youn, Keun Ho Ryu
  • Patent number: 10347417
    Abstract: A three-phase AC reactor according to the present invention includes a peripherally enclosing external core; at least three core coils being in contact with or connected to an interior of the external core, each of the core coils including a core and a coil wound around the core, and the adjoining core coils being magnetically connected through a gap; and a barrier fitted on an end portion of the external core so as to enclose side surfaces of the coils.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: July 9, 2019
    Assignee: FANUC CORPORATION
    Inventors: Kenichi Tsukada, Masatomo Shirouzu
  • Patent number: 10340809
    Abstract: A bi-directional DC-DC resonant converter with bi-directional voltage control includes: primary converter terminals defining a primary voltage; secondary converter terminals defining a secondary voltage; a transformer device having primary transformer terminals and secondary transformer terminals; a resonant tank device having first and second primary resonant tank terminals defining a primary resonant tank voltage and first and second secondary resonant tank terminals defining a secondary resonant tank voltage, wherein the primary tank terminals are connected to the secondary transformer terminals; a primary switching circuit connected between the primary converter terminals and the primary transformer terminals; and a secondary switching circuit connected between the secondary resonant tank terminals and the secondary converter terminals.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: July 2, 2019
    Assignee: Eltek AS
    Inventor: Kjetil Boysen
  • Patent number: 10328810
    Abstract: A charging device for electric vehicles includes two power sources interacting with a primary inductive device. The charging device also includes an input circuit having a first input connectable to a first power source, a second input and at least one output connectable to a charger, a secondary inductive device capable of being coupled to the primary inductive device for energy transfer between the primary inductive device and the secondary inductive device, thereby generating an induced electric signal at the output of the secondary inductive device, and a converter from the induced electric signal to an electric signal towards the second power supply input of the input circuit, the converter being configured such that the electric signal is similar to the electric signal of the first power source.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: June 25, 2019
    Assignee: WINSLIM
    Inventor: Jean-Yves Gaspard
  • Patent number: 10298148
    Abstract: Provided are: a smoothing capacitor connected in parallel to the DC power source; a bridge circuit including switching elements for converting DC power to AC power, flywheel diodes connected in reversely parallel, and flywheel-and-separation diodes connected in series to the flywheel diodes and serving concurrently as flywheel and separation diodes; an interconnection reactor on an output side, provided on AC output lines connecting the bridge circuit and an AC power source; and a separation circuit for separating the smoothing capacitor and the interconnection reactor from each other during a flywheel period of the flywheel diodes. The separation circuit includes separation switching elements and the flywheel-and-separation diodes. The separation switching elements are respectively connected between the two AC output lines and two series connection points between the flywheel diodes and the flywheel-and-separation diodes, so as to short-circuit the AC output lines.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: May 21, 2019
    Assignee: TABUCHI ELECTRIC CO., LTD.
    Inventor: Hidehiko Sugimoto
  • Patent number: 10291134
    Abstract: The anti-windup circuit generally has a voltage clamping device in series with a current limiting device operatively connectable to the output current path of a feedback compensator; the feedback compensator being part of a switch-mode power supply (SMPS) having an input voltage source and a load and generating constrained control values required to generate control on-off actions for tight power regulation. The inclusion of the disclosed anti-windup circuit in an SMPS may lead to hardware based overvoltage protection, reduced overall size and faster response to load changes.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: May 14, 2019
    Assignee: Silanna Asia Pte Ltd
    Inventor: Aleksandar Radic
  • Patent number: 10243475
    Abstract: A power conversion device includes a low-pass filter, a second inductor, a first switch, a third switch, a second capacitor, and a controller. The low-pass filter is configured for direct coupling to an alternating current power source. The first switch is connected in series with a second switch, a first connection point. The third switch is connected in series with a fourth switch, a second connection point. The second capacitor is coupled to the first switch, the second switch, the third switch, and the fourth switch. The controller turns on and off the first, the second, the third, and the fourth switches based on a voltage of the alternating current power source directly coupled to the low-pass filter, a circuit current through the second inductor, a voltage across the second capacitor, and an average output voltage of the load circuit.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: March 26, 2019
    Assignee: TOSHIBA TEC KABUSHIKI KAISHA
    Inventor: Yutaka Usami
  • Patent number: 10243455
    Abstract: The present invention provides a bidirectional DC-DC converter. The bidirectional DC-DC converter includes a first switching tube connected in antiparallel to a first diode; a second switching tube connected in antiparallel to a second diode; a third switching tube connected in antiparallel to a third diode; a fourth switching tube connected in antiparallel to a fourth diode; and a first inductor and a second inductor, where an anode of the first diode and a cathode of the second diode are connected to form a first node, an anode of the second diode and a cathode of the third diode are connected to a neutral point, an anode of the third diode and a cathode of the fourth diode are connected to form a second node, and one end of the first inductor and one end of the second inductor are respectively connected to the first node and the second node. The bidirectional DC-DC converter in the present invention has high conversion efficiency.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: March 26, 2019
    Assignee: SANTAK ELECTRONIC (SHENZHEN) CO., LTD.
    Inventors: David Zheng, Zhongyong Xu, Zhiwei Liao, Yusong Ding, Zhiwu Wang
  • Patent number: 10193464
    Abstract: A DC-DC converter includes: an output terminal, wherein the output terminal has a first output terminal pin and a second output terminal pin; a number of rectifier elements; a voltage limiting unit having an electrical energy store, wherein the voltage limiting unit is designed to limit voltages across the rectifier elements; and a clocked energy regulator unit which is designed to regulate at a setpoint value energy which is stored in the electrical energy store.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: January 29, 2019
    Assignee: Schmidhauser AG
    Inventor: Dirk Schekulin
  • Patent number: 10193437
    Abstract: In one form, a bridgeless AC-DC converter includes a totem pole network having a first input adapted to be coupled to a second terminal of an AC voltage source, a second input adapted to be coupled to a first terminal of the AC voltage source through an inductor, an output terminal for providing an output voltage, and a return terminal, an output capacitor coupled between the output terminal and an output ground terminal, a sense element coupled between the return terminal and the output ground terminal, and a controller circuit coupled to the return terminal of the totem pole network. The controller circuit modulates an on time of an active switch in the totem pole network on a cycle-by-cycle basis by shortening the on time corresponding to an amount of time a current sense signal derived from a current through the sense element exceeds a current limit threshold.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: January 29, 2019
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Ajay Karthik Hari, Nikhilesh S. Kamath
  • Patent number: 10193581
    Abstract: A galvanic isolation circuit is formed by a differential transformer having primary and secondary windings for transmission of signals over a carrier between the primary and the secondary windings of the transformer. A galvanic isolation oxide layer is provide between the primary and secondary windings. Each winding includes include a center tap providing a low-impedance paths for dc and low frequency components of common-mode currents through the differential transformer. A pass-band stage is coupled to the secondary winding of the transformer and configured to permit propagation of signals over said carrier through the pass-band amplifier stage while providing for a rejection of common-mode noise.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: January 29, 2019
    Assignee: STMicroelectronics S.r.l.
    Inventors: Egidio Ragonese, Nunzio Spina, Alessandro Parisi, Pierpaolo Lombardo, Nunzio Greco, Giuseppe Palmisano
  • Patent number: 10193471
    Abstract: An insulated DC/DC converter includes: a transformer; a switching transistor; a rectifier circuit; a photocoupler; a feedback circuit configured to drive a light emitting element of the photocoupler such that an output voltage of the DC/DC converter approaches a target voltage; a primary side controller having a feedback terminal which is connected to a light receiving element of the photocoupler and receives a feedback signal from the photocoupler, a zero current detection terminal which receives a zero current detection signal corresponding to a voltage generated at one end of an auxiliary winding of the transformer, and a pulse modulator of a quasi-resonant mode configured to generate a pulse signal depending on the feedback signal and the zero current detection signal; and a starting control circuit which, in start-up of the DC/DC converter, electrically affects the zero current detection terminal such that an OFF time of the switching transistor lengthens.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: January 29, 2019
    Assignee: ROHM CO., LTD.
    Inventor: Hiroki Kikuchi
  • Patent number: 10186986
    Abstract: First and second semiconductor main-elements, each having a control electrode and a load path, the load paths connected in series between first and second supply nodes, are connected with each other via a first common node. Third and fourth semiconductor main-elements, each having a control electrode and a load path, the load paths connected in series and between a third supply node and the second supply node, are connected with each other via a second common node. A fifth semiconductor main-element has a control electrode and a load path operatively connected between the first common node and an output node. A sixth semiconductor main-element has a control electrode and a load path operatively connected between the second common node and the output node. At least two of the controllable semiconductor main-elements each include a plurality of identical controllable semiconductor subcomponents.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: January 22, 2019
    Assignee: Infineon Technologies AG
    Inventor: Christian Robert Mueller
  • Patent number: 10186981
    Abstract: A solid state light source driver circuit that operates in either a buck convertor or a boost convertor configuration is provided. The driver circuit includes a controller, a boost switch circuit and a buck switch circuit, each coupled to the controller, and a feedback circuit, coupled to the light source. The feedback circuit provides feedback to the controller, representing a DC output of the driver circuit. The controller controls the boost switch circuit and the buck switch circuit in response to the feedback signal, to regulate current to the light source. The controller places the driver circuit in its boost converter configuration when the DC output is less than a rectified AC voltage coupled to the driver circuit at an input node. The controller places the driver circuit in its buck converter configuration when the DC output is greater than the rectified AC voltage at the input node.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: January 22, 2019
    Assignee: OSRAM SYLVANIA Inc.
    Inventor: Fred Palmer
  • Patent number: 10186881
    Abstract: Methods and systems for regulating charging port attach and detach in an electronic device configured to receive a charging current from a charging port are provided. An example method includes automatically detecting a detach from the charging port. The method may further include automatically lowering a current limit associated with the charging current. The method may further include if during a predetermined wait time an attach to the charging port is detected, then ignoring the detach from the charging port and allowing the charging current to charge the electronic device at the lower current limit associated with the charging current. The method may further include if during the predetermined wait time the attach to the charging port is not detected, then initiating a charging port detach process.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: January 22, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Kendall C. York, Adam M. Mahood
  • Patent number: 10177678
    Abstract: Arrangements (1) for buffering energy comprise buffer capacitor circuits (10) with one or more buffer capacitors (11), first circuits (20) for guiding charging currents for charging the buffer capacitor circuits (10), and second circuits (30) with current source circuits (31-34) for defining amplitudes of de-charging currents for de-charging the buffer capacitor circuits (10), to better control the de-charging of the buffer capacitor circuits (10). The second circuits (30) may further comprise trigger circuits (51-53) for bringing the current source circuits (31-34) into activated modes, and latch circuits (61-63) for latching the current source circuits (31-34). The arrangements (1) may further comprise smoothing capacitor circuits (40) with one or more smoothing capacitors (41). The buffer capacitor circuits (10) may be coupled serially to the first circuits (20), and the first and second circuits (20, 30) may be coupled in parallel to each other.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: January 8, 2019
    Assignee: PHILIPS LIGHTING HOLDING B.V.
    Inventors: Guy Louis Paul De Bondt, Georg Sauerländer, Christian Hattrup
  • Patent number: 10152026
    Abstract: An electronic device including: a calculation unit configured to generate a signal representative of a physical magnitude, for a motor driving a display device, the motor including two terminals, one positive and one negative, via which the calculation unit controls the motor; at least one shock detection circuit connected between the calculation unit and one terminal of the motor for detection of an external shock applied to the motor. The shock detection circuit includes a comparison part comparing an induced voltage generated in the motor following a shock to a predetermined reference voltage to identify a shock, and a selection part.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: December 11, 2018
    Assignee: EM Microelectronic-Marin SA
    Inventors: Yves Godat, Nicolas Jeannet
  • Patent number: 10148193
    Abstract: A power supply unit includes a transformer including a primary winding that receives an alternating-current voltage and a secondary winding including a first end electrically connected to ground, a positive-side rectification circuit including a diode electrically connected to a second end of the secondary winding, an anode of which is electrically connected to the second end, and a cathode of which is electrically connected to a positive-side output terminal, a negative-side rectification circuit including a diode electrically connected to the second end of the secondary winding, a cathode of which is electrically connected to the second end, and an anode of which is electrically connected to a negative-side output terminal, and a capacitor provided on a path from a node between the second end of the secondary winding and the positive-side rectification circuit and the negative-side rectification circuit to the ground through the secondary winding.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: December 4, 2018
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Takashi Kurokawa
  • Patent number: 10148093
    Abstract: A number of DC-AC microinverters driven by separate photovoltaic sub-arrays are physically combined to use common components such as a common, common-mode choke. Each microinverter is controlled by a common switching controller to produce a portion of the desired output such that ripple on the combined output is minimized, and each microinverter produces a common mode signal on its associated sub-array equal in frequency to the desired AC output frequency.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: December 4, 2018
    Assignee: KOOLBRIDGE SOLAR, INC.
    Inventor: Paul Wilkinson Dent
  • Patent number: 10141741
    Abstract: A control unit for an active filter for reducing resonance in an electric system is provided. The electric system comprises a power source distributing an alternating current to an AC conductor connected to a power consuming unit for distributing the AC to the power consuming unit. The active filter comprises a DC power source and a DC conductor connecting the DC power source to the AC conductor. The control unit comprises: a voltage measurement unit adapter to create a voltage signal on the basis of a measured voltage; a computing unit adapted to compute, using a biquadratic filter, a first compensating current on the basis of the voltage signal for reducing resonance in the electric system; and a switching system placed between the DC power source and the DC conductor for creating the calculated first compensating current.
    Type: Grant
    Filed: November 22, 2012
    Date of Patent: November 27, 2018
    Assignee: COMSYS AB
    Inventor: Jonas Persson
  • Patent number: 10119076
    Abstract: A gasifier including a vertically disposed furnace body, a feeder disposed in a middle part of the furnace body and communicating with the furnace body, one or two layers of microwave plasma generators, an external heater configured to supply external thermal energy for the gasifier, and a monitoring unit. The furnace body includes an upper nozzle for spraying vapor, a lower nozzle for spraying CO2/vapor, a syngas outlet disposed at a top of the furnace body. The upper nozzle for spraying vapor is disposed in a clearance zone of the furnace body, and the lower nozzle for spraying CO2/vapor is disposed in a bed zone of the furnace body. The monitoring unit is disposed close to the syngas outlet. The one or two layers of microwave plasma generators are disposed above the upper nozzle in the clearance zone of the gasifier.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: November 6, 2018
    Assignee: WUHAN KAIDI GENERAL RESEARCH INSTITUTE OF ENGINEERING & TECHNOLOGY CO., LTD.
    Inventors: Yilong Chen, Yanfeng Zhang, Minggui Xia, Liang Zhang
  • Patent number: 10113784
    Abstract: A direct-current power supply device includes a switching unit constituted by a first switching element and a second switching element and a control unit that controls the operations of the first witching element and the second switching element. The switching unit has a first mode in which on-duty is a first value and a second mode in which the on-duty is a second value larger than the first value. When transitioning the switching unit from the first mode to the second mode, the control unit controls the switching unit such that the time until the on-duty reaches the second value is equal to or longer than a fixed time and controls, after the on-duty reaches the second value, an operation cycle of the switching unit to extend the operation cycle.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: October 30, 2018
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yosuke Shinomoto, Kazunori Hatakeyama, Shota Kamiya
  • Patent number: 10114086
    Abstract: A hybrid imaging system includes a magnetic resonance scanner and a second modality imaging system disposed in the same radio frequency isolation space. The second modality imaging system includes radiation detectors configured to detect at least one of high energy particles and high energy photons. In some embodiments a retractable radio frequency screen is selectively extendible into a gap between the magnetic resonance scanner and the second modality imaging system. In some embodiments shim coils are disposed with the magnetic resonance scanner and are configured to compensate for distortion of the static magnetic field of the magnetic resonance scanner produced by proximity of the second modality imaging system.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: October 30, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Daniel Gagnon, Michael A. Morich, Douglas M. Blakeley, Robert L. Zahn, Kevin M. Nieman
  • Patent number: 10103635
    Abstract: A high power-factor buck-boost converter having a rectified low-frequency AC line voltage input and a DC output is provided. The converter may include a magnetic element, a controlled switch having a gate terminal and a drain terminal that is coupled to the magnetic element, a rectifier diode coupled to the magnetic element, an output smoothing capacitor coupled to the rectifier diode, and a control circuit having an output coupled to the gate terminal of the controlled switch for repeatedly turning the controlled switch off for a first time duration and on for a second time duration. The second time duration may be determined as a function of the first time duration immediately preceding the second time duration.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: October 16, 2018
    Assignee: Microchip Technology Inc.
    Inventors: Simon Krugly, Alexander Mednik, Marc Tan, Rohit Tirumala
  • Patent number: 10099787
    Abstract: The present disclosure is generally directed to a harmonics correction method and apparatus. In an embodiment, the method and apparatus are carried out in a light-emitting diode (“LED”) lighting unit that includes a set or string of LED lights. According to an embodiment, the LED lighting unit is a line-replaceable unit (“LRU”).
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: October 16, 2018
    Assignee: B/E Aerospace, Inc.
    Inventors: Brendan Upton, Eric Johannessen
  • Patent number: 10103560
    Abstract: A charger with a wide range output voltage includes a voltage output side, a first constant voltage output unit, a voltage modulation unit and a load voltage detection unit. The first constant voltage output unit generates a first constant voltage. The load voltage detection unit detects a load voltage and transmits the load voltage to the voltage modulation unit. According to the load voltage and a load charging voltage requirement, the voltage modulation unit generates a modulation voltage and transmits the modulation voltage to the first constant voltage output unit. The first constant voltage output unit transmits the first constant voltage and the modulation voltage to the voltage output side. Moreover, the modulation voltage is an n times of a second constant voltage. The n is a positive number.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: October 16, 2018
    Assignee: CHICONY POWER TECHNOLOGY CO., LTD.
    Inventors: Chien-Hung Chen, Chao-Ching Hsu, Chih-Feng Shen, Chung-Shu Lee
  • Patent number: 10075059
    Abstract: A current detection apparatus is provided which detects a current flowing through a detection part in an electrical circuit. The current detection apparatus includes a first coil connected in series with the detection part, a second coil magnetically coupled with the first coil, a full-wave rectifier circuit connected to both ends of the second coil, a switching element having a first end connected to a positive electrode side output part of the full-wave rectifier circuit and a second end connected to a first resistor, and a second resistor that forms a closed circuit with the second coil regardless of an open or closed state of the switching element.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: September 11, 2018
    Assignee: DENSO CORPORATION
    Inventors: Seiji Iyasu, Yuji Hayashi, Kimikazu Nakamura, Yuichi Handa
  • Patent number: 10076006
    Abstract: Drivers (1-7) comprise respective switching circuits (1, 2) for guiding respective current signals during respective time-intervals for the sequential driving of light emitting circuits (91, 92). The respective time-intervals are defined by the fact that amplitudes of a mains signal are in respective ranges during the respective time-intervals. More specifically, there is a bypass switching circuit (5) for guiding a bypass current signal which bypasses all light emitting circuit (91, 92) during an initial time-interval. An adaptation circuit (6, 7) adapts amplitudes of the respective current signals during the respective time-intervals, to reduce a total harmonic distortion. Said adapting may comprise an adaptation in response to information derived from the amplitude of the mains signal, and may comprise shaping the amplitudes of the current signals in response to information derived from the amplitude of the mains signal.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: September 11, 2018
    Assignee: PHILIPS LIGHTING HOLDING B.V.
    Inventors: Henricus Marius Joseph Maria Kahlman, Ralph Kurt
  • Patent number: 10033295
    Abstract: A rectifier circuit being arranged for rectifying electrical power, comprising a three phase power input, a magnetic splitter circuit being arranged for receiving the three phase power input and splitting the three phase power into a first three phase system and a second three phase system, the first three phase system having signals lagging signals of the second three phase system, a twelve pulse rectifier with six input terminal to connect the first and the second three phase system, and to generate a rectified electrical power at a power output, a three phase inductance being connected in series with the three phase power input and the magnetic splitter circuit, and a plurality of power factor correction (PFC) capacitors, each comprising first and second terminals, said first terminals being connected to respective input terminals of the twelve pulse rectifier, and the second terminals being connected to at least one common electrical point.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: July 24, 2018
    Assignee: ITW GSE APS
    Inventors: Søren Risgaard Dahl, Ronni Bøgebjerg Azulay
  • Patent number: 10027217
    Abstract: In the field of high voltage direct current power transmission networks, a method of controlling a converter that includes at least one converter limb which corresponds to a respective phase of the converter, is described. The method includes obtaining a respective AC current demand phase waveform for each converter limb which the corresponding converter limb is required to track, and a DC current demand which each converter limb is also required to track. The method further determining a limb portion current for each limb portion that the limb portion must contribute to track the corresponding required AC current demand phase waveform and the required DC current demand, and providing a limb portion voltage source for each limb portion to achieve the corresponding limb portion current. The method carrying out mathematical optimization to determine one or more optimal limb portion currents and/or provide optimal limb portion voltage sources.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: July 17, 2018
    Assignee: General Electric Technology GmbH
    Inventors: Sajjad Fekriasl, Michael Marc Claude Merlin, Timothy Charles Green, Kevin Dyke, Francisco Jose Moreno Muñoz, Omar Fadhel Jasim, Masoud Bazargan
  • Patent number: 10020742
    Abstract: A controller for use in a two-stage power supply is coupled to control switching of a switching element to regulate a transfer of energy from an input to an output of a flyback converter. The controller activates a boost switching element during a first interval in each line half cycle of an input voltage to boost an output voltage at an output of a boost-bypass converter. The controller deactivates the boost switching element during a second interval in each line half cycle such that the output voltage of the boost-bypass converter drops towards the input voltage during the second interval while the output voltage of the boost-bypass converter is greater than the input voltage. The controller controls the output voltage to follow the input voltage during a third interval of each line half cycle while the boost switching element remains deactivated and the input and output voltages are substantially equal.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: July 10, 2018
    Assignee: Power Integrations, Inc.
    Inventors: Antonius Jacobus Johannes Werner, Matthew David Waterson