Having Voltage Protection Patents (Class 363/56.05)
  • Patent number: 10263612
    Abstract: A switching device 1 includes a SiC semiconductor chip 11 which has a gate pad 14, a source pad 13 and a drain pad 12 and in which on-off control is performed between the source and the drain by applying a drive voltage between the gate and the source in a state where a potential difference is applied between the source and the drain, a sense source terminal 4 electrically connected to the source pad 13 for applying the drive voltage, and an external resistance (source wire 16) that is interposed in a current path between the sense source terminal 4 and the source pad 13, is separated from sense source terminal 4, and has a predetermined size.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: April 16, 2019
    Assignee: ROHM CO., LTD.
    Inventors: Masashi Hayashiguchi, Kazuhide Ino
  • Patent number: 10254375
    Abstract: Systems and methods provide a portable, verified voltage source that allows safe testing of separate non-contact voltage measurement systems. A proving unit of the present disclosure provides a known or specified alternating current (AC) voltage output across an insulated wire, which AC voltage may be fixed or may be user-selectable through a suitable user interface. The proving unit may include a visual indicator and/or an audible indicator that provides the user with an indication confirming that the proving unit is supplying an output voltage with the specifications of the proving unit, so the user will know that the proving unit is operating normally and is ready for testing a non-contact voltage measurement system. If the proving unit cannot provide the specified voltage output, the indicator(s) provides a signal to the user that the proving unit is currently non-functional. The proving unit may additionally verify contact voltage measurement systems (e.g., DMMs).
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: April 9, 2019
    Assignee: Fluke Corporation
    Inventors: David L. Epperson, Ricardo Rodriguez
  • Patent number: 9948290
    Abstract: An apparatus includes a switch module, a sense circuit coupled to the switch module and configured to indicate an operating conduction mode of the switch module, and a drive circuit operatively coupled to the switch module to enable and disable forward conducting mode of the switch module. Once the switch module is in forward conducting mode, the drive circuit is configured to maintain enablement of the forward conducting mode even if the sense circuit indicates reverse conduction mode.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: April 17, 2018
    Assignee: General Electric Company
    Inventors: Alvaro Jorge Mari Curbelo, Thomas Zoels
  • Patent number: 9196574
    Abstract: A snubber circuit includes: a capacitor including a first terminal and a second terminal, where the first terminal of the capacitor is electrically connected to a first terminal of the snubber circuit; and a Bipolar Junction Transistor (BJT), where one of the emitter and the collector of the BJT is electrically connected to the second terminal of the capacitor, and the other one of the emitter and the collector of the BJT is electrically connected to a second terminal of the snubber circuit. The snubber circuit can be electrically connected in parallel to an active component or a load to protect the circuitry connected to the load, and more particularly to absorb spike or noise generated during high-frequency switching of the active component to recycle energy, in order to achieve the goal of reducing spike voltages and enhancing efficiency.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: November 24, 2015
    Inventor: Kuo-Fan Lin
  • Patent number: 9136757
    Abstract: A power converter includes step-up means for varying a voltage applied by a power supply to a predetermined voltage, commutating means for performing a commutation operation for allowing a current flowing through the step-up means to flow through a second path, smoothing means for smoothing a voltage related to outputs of the step-up means and the commutating means to produce power and supplying the power to a load side, and control means for performing control related to voltage varying, such as stepping up, by the step-up means and controlling the commutation operation of the commutating means on the basis of at least one of a voltage and a current related to the step-up means.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: September 15, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Koichi Arisawa, Takuya Shimomugi, Yosuke Shinomoto, Masato Handa, Mitsuo Kashima, Shigeo Umehara, Katsuhiko Saito, Norikazu Ito, Hitoshi Tanifuji, Makoto Tanikawa, Tomomi Higashikawa
  • Patent number: 9128128
    Abstract: There is provided a voltage or current sensing device. An exemplary voltage or current sensing device includes a drive circuitry configured to deliver a drive current to a magnetic core operably coupled with a conductor, for driving the core to cyclical magnetic saturation. The device also includes sense circuitry configured to receive a voltage signal corresponding to an application current in the conductor. The device also includes signal processing circuitry configured to sample the voltage signal, wherein a first sample is in phase with the drive current and a second sample is out of phase with the drive current. The device also includes a feedback loop configured to deliver a compensation current to the magnetic core, wherein the compensation current is configured to balance the magnetic core and wherein the compensation current is based at least in part on the first sample in phase with the drive current.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: September 8, 2015
    Assignee: General Electric Company
    Inventors: Jeffrey Michael Fries, Jeffery Armstrong, Robert N. Bettis, Bradley Dale Brown, Shawn T. Clark, Gregory K. Hann, Mark Kraeling, Steve R. Murphy, Daniel G. Penny, III, Eric Vorndran
  • Patent number: 9088214
    Abstract: A reactor, a diode, and a switching element connected to a path constitute a booster circuit, and another reactor, another diode, and another switching element connected to another path constitute another booster circuit. The booster circuits also function as a power factor correction circuit for correcting a power factor of the input side. Swing chokes are adopted as the reactors.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: July 21, 2015
    Inventors: Norio Sakae, Toshio Yabuki, Kazuhiro Ohshita
  • Patent number: 9025350
    Abstract: The present application relates to a cascaded H-Bridge medium voltage drive, a power cell, and a bypass module thereof, wherein the bypass module is configured for bypassing a major circuit module of the power cell, while the major circuit module comprises a fuse, a rectifier, a bus capacitor and an H-Bridge inverter, two points led from the H-Bridge inverter being configured as a first output end and a second output end; a bypass circuit comprises a first bridge arm and a second bridge arm; a point led from the first bridge arm is configured as a first input end of the bypass circuit, a point led from the second bridge arm is configured as a second input end of the bypass circuit, and the first input end is electrically connected with the first output end, the second input end is electrically connected with the second output end.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: May 5, 2015
    Assignee: Delta Electronics (Shanghai) Co., Ltd.
    Inventors: Hongjian Gan, Qinglong Zhong
  • Publication number: 20150098251
    Abstract: An apparatus and system for arc fault protection during power conversion. In one embodiment, the apparatus comprises a power converter comprising a first and a second pair of DC input terminals, coupled in series, for coupling to a first and a second DC source, respectively; an input bridge; an inductor; a first and a second arc fault protection capacitor, wherein (i) the series combination of the first and the second pair of DC input terminals is coupled across the input bridge, (ii) a first terminal of the inductor is coupled between the first and the second pair of DC input terminals, (iii) a second terminal of the inductor is coupled between switches on one leg of the input bridge, and (iv) the first and the second arc fault protection capacitors are coupled across the first and the second pair of DC input terminals, respectively.
    Type: Application
    Filed: October 3, 2014
    Publication date: April 9, 2015
    Inventor: Michael J. Harrison
  • Patent number: 8976560
    Abstract: An inverter control device includes a voltage detector, a target value calculation section, an inverter control section, an abnormality detector and a voltage clamp unit. The target value calculation section calculates a target value of an alternating current output from the inverter based on a detection voltage. The inverter control section controls a switching element of the inverter based on the detection voltage and the target value. The abnormality detector detects an abnormality in the voltage detector. The voltage clamp unit holds the detection voltage, for calculating the target value, at a first assured voltage determined based on a lower limit area of an assured voltage range that assures an operation of the inverter: and holds the detection voltage, for generating the control signal, at a second (higher) assured voltage, upon detecting the abnormality in the voltage detector.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: March 10, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Toshiyuki Nakamura, Hiromichi Kawamura
  • Patent number: 8964414
    Abstract: A DC power supply including a resonant circuit on a secondary side of a transformer suppresses a surge voltage during power recovery of diodes constituting a rectifier circuit, correctly estimates a load current from a secondary current of the transformer, and adjusts supplied power when a load is light. The DC power supply includes a DC voltage source, a converter, a transformer, a rectifier circuit, a resonant circuit composed of a resonant switch and a resonant capacitor, a filter reactor, a filter capacitor, a snubber diode, a snubber capacitor, a load, first and second voltage sensors, a current sensor, and a controller for controlling gate pulses of semiconductor devices constituting a converter and the resonant switch and a signal for adjusting operation timings of A/D converters converting the signals of these sensors.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: February 24, 2015
    Assignees: Hitachi, Ltd., Hitachi Mito Engineering Co., Ltd.
    Inventors: Tetsuo Kojima, Yuichiro Nozaki, Masafumi Makino, Takeshi Shinomiya, Tetsu Sugiura
  • Publication number: 20140286061
    Abstract: An electronic circuit includes a failure detection circuit that detects an abnormality of the gate potential of a transistor of a bridge circuit. The failure detection circuit monitors an output voltage of a drive circuit that is to be the gate potential of the transistor of the bridge circuit and, when detecting an abnormality, stops the drive circuit.
    Type: Application
    Filed: March 18, 2014
    Publication date: September 25, 2014
    Inventors: Katsumi INOUE, Atsushi YAMADA
  • Patent number: 8810176
    Abstract: A boost control section for controlling a converter includes a PI control section and a resonance suppression section. The PI control section calculates a basic command value based on a deviation between a drive voltage generated by the converter and a target voltage to equalize the drive voltage and the target voltage. The resonance suppression section calculates, based on the state of variation of the drive voltage, a correction value for correcting the basic command value to suppress the variation. The basic command value is corrected by adding the correction value. First and second drive pulses corresponding to the corrected command value are outputted to the converter.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: August 19, 2014
    Assignee: Denso Corporation
    Inventors: Eiichiro Kawakami, Takeshi Itoh
  • Patent number: 8787044
    Abstract: An energy recovery snubber circuit for use in switching power converters. The power converters may include a switch network coupled to a primary winding of an isolation transformer, and rectification circuitry coupled to a secondary winding of the isolation transformer. The energy recovery snubber circuit may include clamping circuitry that is operative to clamp voltage spikes and/or ringing at the rectification circuitry. The clamped voltages may be captured by an energy capture module, such as a capacitor. Further, the energy recovery snubber circuitry may include control circuitry operative to return the energy captured by the energy capture module to the input of the power converter. To maintain electrical isolation between a primary side and a secondary side of the isolation transformer, a second isolation transformer may be provided to return the captured energy back to the input of the power converter.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: July 22, 2014
    Assignee: Flextronics AP, LLC
    Inventors: Zaohong Yang, Paul Garrity
  • Publication number: 20140112038
    Abstract: A method in a controller for protection of a voltage source converter including one or more phases, each phase including one or more series-connected converter cells. Each converter cell has a by-pass switch for enabling by-pass thereof. The method includes the steps of detecting an over-voltage condition, and controlling simultaneously the by-pass switches of each converter cell, so as to bypass the converter cells upon detection of such over-voltage condition. The invention also encompasses a controller, computer programs and computer program products.
    Type: Application
    Filed: December 27, 2013
    Publication date: April 24, 2014
    Inventors: Jean-Philippe Hasler, Mauro Monge, Marcio De Oliveira
  • Publication number: 20140092655
    Abstract: A power converter includes an inverter unit that includes a plurality of semiconductor switching elements constituting upper and lower arms and converts DC power into AC power; a gate driving unit that outputs, to the inverter unit, a gate signal used to drive gates of the plurality of semiconductor switching elements; a driving control unit that supplies the gate driving unit with a switching control signal used for the gate driving unit to output the gate signal; a first abnormality detection unit that performs over voltage detection of the DC power and over current detection of the AC power and temperature detection of the upper and lower arms; and a second abnormality detection unit that detects abnormality of the plurality of semiconductor switching elements of the upper arm and lower arms, wherein the driving control unit includes a first protection circuit and a second protection circuit.
    Type: Application
    Filed: December 7, 2010
    Publication date: April 3, 2014
    Applicant: Hitachi Automotive Systems, Ltd.
    Inventors: Hiroaki Igarashi, Satoru Shigeta, Takashi Ogura
  • Patent number: 8665619
    Abstract: This invention relates to a T-type three-level inverter circuit. The circuit includes an absorption unit.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: March 4, 2014
    Assignee: Liebert Corporation
    Inventor: Bin Cui
  • Patent number: 8659920
    Abstract: A switching device includes a flowing restriction element, a conductor and a snubber resistor. The flowing restriction element has an opening and closing function to open and close a flowing path of an electric current. The conductor is connected to the flowing restriction element. The snubber resistor is connected to the flowing restriction element and constitutes a snubber circuit. The snubber resistor is disposed along the conductor.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: February 25, 2014
    Inventors: Nobuhisa Yamaguchi, Yasuyuki Sakai
  • Patent number: 8634209
    Abstract: A current-fed full-bridge DC-DC converter includes a current source circuit including a direct-current voltage source circuit and a reactor connected to the direct-current voltage source circuit in series, an inverter circuit including switching elements, input terminals and output terminals, wherein outputs of the current source circuit are connected to the input terminals, a transformer having a primary coil that is connected to the output terminals and a secondary coil and a rectifier circuit which is connected to the secondary coil and through which the current-fed full-bridge DC-DC converter generates direct-current output. The current-fed full-bridge DC-DC converter further includes a capacitor connected to the output terminal and the primary coil in series and a controller controlling on/off operations of the switching elements so that a current can flow from the current source circuit through the primary coil and the capacitor in stopping of the current-fed full-bridge DC-DC converter.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: January 21, 2014
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventor: Sergey Moiseev
  • Patent number: 8614566
    Abstract: Provided is a DC-DC converter capable of reducing not only a turn-off loss but also a turn-on loss. A snubber capacitor has one end connected to an anode of a step-up diode, a current input end of a step-up switching element and a main reactor. A first snubber diode has a cathode connected to other end of the snubber capacitor, and an anode connected to a cathode of the step-up diode. A second snubber diode has an anode connected to the cathode of the first snubber diode and other end of the snubber capacitor. A snubber reactor has one end connected to the anode of the first snubber diode, and other end connected to a cathode of the second snubber diode.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: December 24, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shinji Hatae, Khalid Hassan Hussein
  • Patent number: 8614905
    Abstract: A voltage converting apparatus includes a series connection of at least four switching elements each including at least one semiconductor device of turn-off type and a free-wheeling diode connected in anti-parallel therewith. The apparatus has a device configured to measure a parameter representative of the voltage across each free-wheeling diode when turned off and an arrangement configured to control the amount of charge stored in each diode at the moment the diode is turned-off by stopping to conduct depending upon the results of the measurement carried out by the device for controlling the voltage across the diode after turn-off thereof.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: December 24, 2013
    Assignee: ABB Technology AG
    Inventor: Ulrich Schlapbach
  • Patent number: 8605471
    Abstract: A power conversion device includes: an inverter that converts a DC current supplied from a DC power source to an AC current by engaging a plurality of switching elements, which constitute an upper arm, and a plurality of switching elements, which constitute a lower arm, in switching operation; a control unit that includes a signal generation unit that generates a switching signal carrying a command for execution of the switching operation in correspondence to each of the plurality of switching elements constituting the upper arm and the plurality of switching elements constituting the lower arm, and outputs the switching signal thus generated as a control signal; and a drive unit that individually drives each of the switching elements based upon the corresponding control signals.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: December 10, 2013
    Assignee: Hitachi Automotive System, Ltd.
    Inventors: Takashi Ogura, Satoru Shigeta, Hiroaki Igarashi, Koichi Ono, Yasuo Noto
  • Patent number: 8570780
    Abstract: A semiconductor device includes: a parallel connection structure 1 between a first node and a second node; a first snubber device and a second snubber device having a clamp level that is the same as or higher than the output voltage of a power source section. One terminal of the first snubber device is connected through the first node to one end of the parallel connection structure, the opposite terminal of the first snubber device is connected through a third node to one terminal of the second snubber device, and the opposite terminal of the second snubber device is connected through the second node to the opposite end of the parallel connection structure. Electric power is fed back to the power source section through the second and third nodes.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: October 29, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shinsuke Godo, Atsunobu Kawamoto
  • Patent number: 8547715
    Abstract: A converter system comprises a DC to AC converter, a maximum power point tracking device, and an array-side control. The DC link converts DC from a photovoltaic array to AC for a grid. The maximum power point tracking device is coupled to the array. The array-side control, which is coupled to the DC to AC converter and the device, prevents overvoltage in the DC bus of the DC to AC converter using array voltage and current data from the device and DC bus voltage data from the DC to AC converter during a grid transient by adjusting a maximum power point of the array to increase array voltage.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: October 1, 2013
    Assignee: General Electric Company
    Inventors: Xiaoming Yuan, Zhuohui Tan, Haiqing Weng
  • Patent number: 8508957
    Abstract: A power conversion device includes an inverter for converting DC power to AC power to supply the AC power to a load, a converter for converting AC power from an AC power supply to DC power to supply the DC power to the inverter, a DC voltage converter for converting a voltage value of power stored in a storage battery to supply DC power from the storage battery to the inverter when power supply by the AC power supply is abnormal, and a filter which includes a reactor and a capacitor and removes harmonics generated by the inverter. The inverter includes a three-level circuit constituted of an arm and an AC switch.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: August 13, 2013
    Assignee: Toshiba Mitsubishi-Electric Industrial Systems Corporation
    Inventors: Kazuhide Eduardo Sato, Masahiro Kinoshita, Yushin Yamamoto, Tatsuaki Amboh
  • Patent number: 8502485
    Abstract: A motor drive circuit includes a positive and a negative supply rail for connection to a battery (104), a motor drive circuit including a plurality of motor drive subcircuits which each selectively permit current to flow into or out of a respective phase of a multi-phase motor (101) in response to control signals from a motor control circuit, and a switching means including at least one switch which is in series with a respective phase of the motor which is normally closed to permit the flow of current to and from the subcircuit to the respective motor phase. A fault signal detecting means (160) detects at least one fault condition and, in the event of a fault condition being detected, causes the at least one switch to open. A snubber circuit (150) is associated with the motor and is arranged so that following the opening of the switch, energy stored in the motor windings is diverted away from the switching means through the snubber circuit to the battery.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: August 6, 2013
    Assignee: TRW Automotive US LLC
    Inventors: Maciej Kudanowski, Andrew McLean
  • Patent number: 8488337
    Abstract: An offline AC-DC converter circuits including an overvoltage detection module, a current limiting module, a PWM module and a switch control module coupled to the above modules. The overvoltage detection module, the current limiting module and the PWM module share a common input terminal. The sampled current signal and the sampled voltage signal are provided at the common input terminal by way of time-division multiplexing. With the time-multiplexed terminal, overvoltage detection for the output voltage is performed during the period when the power transistor is cut off and a current through the power transistor is detected during the period when the power transistor conducts. The two signals are input by way of time-division multiplexing, which are not affected by each other. Accordingly, overvoltage in the output voltage can be precisely detected without additional terminals, and thus the overvoltage can be controlled.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: July 16, 2013
    Assignee: Hangzhou Silan Microelectronics Co., Ltd.
    Inventor: Hua Zhan
  • Patent number: 8477518
    Abstract: Disclosed is a device for driving an inverter having a semiconductor switching element. A gate voltage calculating unit (20) calculates a surge voltage from the temperature, current, and DC-side voltage of each of IGBTs of the inverter and compares the surge voltage with the breakdown voltage of the element. The gate voltage calculating unit (20) commands a gate voltage control unit (22) to set a gate voltage higher than the normal value (reference value) in the case of judging that the difference between the element breakdown voltage and the surge voltage exceeds a predetermined threshold voltage and that a margin exists in the surge voltage. The voltage control unit (22) performs switching control of gates of the IGBTs according to the gate voltage command higher than the reference voltage to thereby reduce stationary losses of the IGBTs.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: July 2, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Naoyoshi Takamatsu, Satoshi Hirose
  • Patent number: 8446744
    Abstract: A method and a control device control a switching device for providing a resonant circuit with a switching voltage for generating a resonant current in order to provide a required output power at an output of a resonant power converter.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: May 21, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Thomas Scheel, Christian Hattrup, Peter Luerkens
  • Patent number: 8427846
    Abstract: A three-phase inverter circuit includes an inverter incorporating a plurality of controllable power switches, and an electronic control device adapted to control the power switches. The control device in the event of a measured voltage drop on one phase is adapted to supply a reactive current on the phase with voltage drop and to supply and/or draw an active current on at least one phase without voltage drop.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: April 23, 2013
    Assignee: FeCon GmbH
    Inventor: Stephan Rexilius
  • Patent number: 8350518
    Abstract: A control apparatus for a series-connected multi-level matrix converter includes each voltage commanding device provided for each of single-phase matrix converters to generate a voltage reference to each of the single-phase matrix converters. The series-connected multi-level matrix converter includes the single-phase matrix converters. Each of the single-phase matrix converters includes a snubber circuit and a DC voltage detecting section configured to detect a DC voltage of the snubber circuit to output a DC voltage detection value. ADC over-voltage detector is configured to output a DC over-voltage signal when the DC voltage detection value exceeds a set voltage value. A voltage modifying device is, when the DC over-voltage signal is outputted, configured to decrease the voltage reference to a corresponding single-phase matrix converter among the single-phase matrix converters based on a deviation between the DC voltage detection value and the set voltage value.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: January 8, 2013
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Yozo Ueda, Kenichi Imanishi, Ryuji Suenaga
  • Patent number: 8335091
    Abstract: Disclosed are full-bridge power converters providing DC output power at increased conversion efficiencies, and methods of operating full-bridge power converters providing DC output power at increased conversion efficiencies. In disclosed embodiments, the switches of the full-bridge are operated to reduce conduction losses and to provide for zero-voltage switching.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: December 18, 2012
    Assignee: Intersil Corporation
    Inventor: Fred Greenfeld
  • Patent number: 8320140
    Abstract: In one embodiment, a power converter system includes an input terminal for receiving a DC input voltage. The power converter system delivers AC power to a load at an output terminal. A transformer is coupled between the input terminal and the output terminal. The transformer has a first winding, a second winding, and a third winding. The output terminal is coupled to the second winding. A half-bridge circuit, coupled between the input terminal and the first winding of the transformer, includes a first switch and a second switch coupled at a common node. The first and second switches are operable to be turned on and off for causing current to flow in the transformer during operation of the power converter system. Circuitry is close coupled to the first winding of the transformer.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: November 27, 2012
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Stephen Li
  • Patent number: 8319471
    Abstract: A system and method for digital management and control of power conversion from battery cells. The system utilizes a power management and conversion module that uses a CPU to maintain a high power conversion efficiency over a wide range of loads and to manage charge and discharge operation of the battery cells. The power management and conversion module includes the CPU, a current sense unit, a charge/discharge unit, a DC-to-DC conversion unit, a battery protection unit, a fuel gauge and an internal DC regulation unit. Through intelligent power conversion and charge/discharge operations, a given battery type is given the ability to emulate other battery types by conversion of the output voltage of the battery and adaptation of the charging scheme to suit the battery.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: November 27, 2012
    Assignee: Solaredge, Ltd.
    Inventors: Meir Adest, Lior Handelsman, Yoav Galin, Amir Fishelov, Guy Sella
  • Patent number: 8315072
    Abstract: A switching power supply has an inductor that includes a coil. A chopper circuit chops the primary current drawn through the coil, for the inductor to output an induced current. A multifunction junction of the power supply has a multifunction voltage that is a function of a primary voltage that drives the coil. A first circuit suspends the chopping in response to a first sensed voltage crossing a first threshold, the first sensed voltage being a function of the multifunction voltage. A second circuit suspends the chopping in response to a second sensed voltage crossing a second threshold, the second threshold being a function of the multifunction voltage.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: November 20, 2012
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Huanyu Lu, En Li
  • Patent number: 8264859
    Abstract: A transistor is brought into conduction when, for example, a voltage between both ends of a second clamp capacitor exceeds a predetermined reference voltage. A resistance value of a discharge resistor is smaller than a value obtained by dividing the reference voltage by the maximum value of a current flowing through the discharge resistor. When the transistor is brought into conduction as a result of a voltage between both ends of the second clamp capacitor exceeding the predetermined reference voltage, a voltage applied to the discharge resistor, which results from a regenerative current, is larger one of the voltage between both ends of the second clamp capacitor and a voltage drop of the discharge resistor due to the regenerative current. The voltage drop and the voltage between both ends are smaller than a voltage between DC power supply lines, whereby it is possible to reduce an electrostatic capacitance of the discharge resistor.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: September 11, 2012
    Assignee: Daikin Industries, Ltd.
    Inventor: Kenichi Sakakibara
  • Patent number: 8243474
    Abstract: The control circuit for power supplying includes a driving module and a control module, wherein the driving module includes a first switch, a second switch, a third switch, and a fourth switch. In a first power supply mode, the first switch and the second switch are turned on, and the third switch and the fourth switch are turned off. The load current flows to the ground terminal via the first switch, the inductive load, and the second switch. When the control module sends a switching signal to the driving module, the first switch and the second switch are turned off and the third switch and the fourth switch are turned on, and the load current flows to the high potential terminal via the fourth switch, the inductive load, and the third switch due to the current inertia.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: August 14, 2012
    Assignee: Feeling Technology Corp.
    Inventors: Hsuan-Chuan Chen, Teng-Tsai Lin
  • Patent number: 8207713
    Abstract: A switching power supply circuit that obtains a predetermined DC voltage output from an input AC power supply includes a full-wave rectifier and a boost circuit connected to the rectifier. The boost circuit generates a DC output having a predetermined voltage value from the rectifier output. A power factor improving circuit controls an ON-period of an output transistor of the boost circuit, based on feedback of the DC voltage output, and a dynamic over-voltage-protection circuit controls the ON-period of the output transistor as it performs a switching operation. The switching power supply circuit facilitates an over-voltage-protection function that prevents inductor buzzing with an integrated circuit having a small number of pins.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: June 26, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Takato Sugawara
  • Patent number: 8203312
    Abstract: A battery pack includes at least one secondary battery, a fuse, and a control section. The fuse is configured to cut off charge or discharge current of the secondary battery upon detection of an abnormality of the secondary battery. The control section is configured to detect the abnormality of the secondary battery, and to perform a fusion-cutting process of fusion-cutting the fuse in accordance with the result of the detection. Upon detection of the abnormality, the control section measures a first potential being the potential of a subsequent stage of the fuse and a second potential being the potential of the secondary battery. If it is found from the result of the measurement that the first potential and the second potential are equal, the control section determines that the fuse has not been fusion-cut by the fusion-cutting process, and stops the fusion-cutting process.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: June 19, 2012
    Assignee: Sony Corporation
    Inventor: Yasuo Yoshikawa
  • Patent number: 8138736
    Abstract: A power system is configured to provide a regulated voltage to an electrical load connected to a power source through at least one power line. The power system includes a first voltage control loop based on a remote sense signal indicative of voltage level at the load. The power system further includes a second voltage control loop based on a local sense signal indicative of a level of output voltage at the power source. The voltage level of the local sense signal is generally at a higher voltage level relative to the voltage level of the remote sense signal. Circuitry is configured to pass just the signal with the higher voltage level to ensure that the local sense control loop is a dominant control loop with respect to the remote sense control loop. This avoids effects on the power source from one or more failure modes that can occur in interconnections of the system.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: March 20, 2012
    Assignee: Securaplane Technologies, Inc.
    Inventor: Mark Naden
  • Patent number: 8120306
    Abstract: Methods and apparatus are provided for operation of a voltage source inverter. A method of operating a voltage source inverter having an output with multiple voltage phases having a DC voltage level, the method comprising sensing a low output frequency condition; determining a DC voltage offset responsive to the low output frequency condition; and applying the DC voltage offset when operating the voltage source inverter resulting in a change to the DC voltage level of the multiple voltage phases.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: February 21, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Sibaprasad Chakrabarti, Rajkumar Copparapu
  • Patent number: 8102129
    Abstract: Embodiments of the present technology provide short-circuit detection and protection suitable for a discharge lamp system. In several embodiments, the transformer's primary current is sensed and used to provide short-circuit protection of the secondary winding side or high voltage side.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: January 24, 2012
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Kaiwei Yao, James C. Moyer, Wei Chen
  • Patent number: 8068352
    Abstract: A control system for a power inverter is disclosed. The power inverter may be configured to supply power to a grid. The control system may include a plurality of output voltage sensors and a plurality of output current sensors configured to measure output line voltages and output line currents of the power inverter. The control system may further include a controller coupled to the power inverter. The controller may be configured to provide a control signal associated with a disturbance frequency to the power inverter. The controller may be further configured to determine an output power of the power inverter based on the output line voltages and output line currents, and determine an amplitude of oscillation in the output power caused by the disturbance frequency. The controller may also be configured to detect an islanding condition, if the amplitude of oscillation is below a threshold.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: November 29, 2011
    Assignee: Caterpillar Inc.
    Inventors: Dachuan Yu, Mahesh Sitaram Illindala, Osama Mohammad Alkhouli
  • Patent number: 8050064
    Abstract: A surge voltage target setting unit obtains a main circuit power supply voltage of a semiconductor power conversion device based on an inter-terminal voltage of a semiconductor switching element detected by a voltage detection unit, and sets a control target of a surge voltage in accordance with the obtained main circuit power supply voltage. An active gate control unit, when the semiconductor switching element is turned off, sets a quantity of voltage modification so as to modify a gate voltage in a direction raising the gate voltage, that is, in a direction lowering a turn-off speed, based on feedback of the inter-terminal voltage, when the inter-terminal voltage exceeds the control target.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: November 1, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Nippon Soken, Inc.
    Inventors: Hiromichi Kuno, Satoshi Hirose, Naoyoshi Takamatsu, Hiroya Tsuji, Hiroyuki Sakakibara, Kazuki Fukatsu
  • Patent number: 8035995
    Abstract: This invention relates to an ACDC converter (1) comprising a converter input (3) and a converter output (5), a pre-regulation stage (7) and a DC transformer stage (9) comprising a transformer input stage (11) and a transformer output stage (13). The transformer input stage comprises a double ended converter and there is further provided a controller (17) for providing a control signal to the double ended converter. The controller (17) operates the ACDC converter using burst mode control and by sending control signals comprising pulse sets that are designed to provide substantially zero net magnetising current in the double ended converter. The pre-regulation stage preferably comprises a buck converter which in turn also provides power factor correction to the input of the ACDC converter.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: October 11, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: George Young, Garry Tomlins, Andrew Bernard Keogh
  • Patent number: 8004867
    Abstract: A witching power supply unit, which suppresses switching loss in switching elements and surge voltage onto an output rectifier device and reduces the number of components, is provided. The switching power supply unit include: a switching circuit of full bridge type disposed on the input side; a rectifier circuit disposed on the output side; a transformer disposed between the switching circuit and the rectifier circuit and including a first winding on the input side, a second winding on the output side, a third winding; a surge voltage suppressing circuit connected in parallel with the switching circuit; and a driving circuit. The third winding is connected to the full bridge circuit to form a H-bridge configuration. Magnetic coupling between the first and second windings and magnetic coupling between the first and third windings are both looser than that between the second and third windings.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: August 23, 2011
    Assignee: TDK Corporation
    Inventor: Wataru Nakahori
  • Patent number: 7940535
    Abstract: A transformer 6 and a photocoupler 5 are provided to ensure insulation between a primary side circuit section 10 connected to an alternating current power supply 2, and a secondary side circuit section 20 for applying a voltage to a lamp 4. A detection circuit section 22E, provided in the secondary side circuit section 20, detects an output voltage and an output current of the lamp 4 to detect a deviation from a predetermined power. A signal corresponding to the deviation, which has been detected by the detection circuit section 22E, is transmitted to the primary side circuit section 10 via the photocoupler 5 provided between the primary side circuit section 10 and the secondary side circuit section 20. A switching control section 13, provided in the primary side circuit section 10, carries out switching control for constant power lighting based on the signal transmitted from the photocoupler 5.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: May 10, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hiroshi Itoh, Sakae Saitoh, Mitsuyoshi Seo, Akinobu Takeda
  • Patent number: 7929322
    Abstract: A voltage sag generator device for use in an electrical generator machine such as a wind turbine, connected to an electrical network including one to three parallel transformers connected on one side to the wind turbine via a coupling switch and circuit breakers, and earthed on the other side via circuit breakers and a control switch. The device includes mechanisms for causing short-circuits when the coupling switch and the control switch are actuated in such a way that a voltage sag having the required duration and type is generated, and mechanisms for protecting the transformers during voltage sag generation.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: April 19, 2011
    Assignee: Gamesa Innovation & Technology, S.L.
    Inventors: Jose Ignacio Llorente Gonzalez, Miguel Linares Fano
  • Patent number: 7924582
    Abstract: The subject matter of the invention is an inverter (3), more specifically for use in a photovoltaic plant (1) with a direct voltage input (connection terminals 4; 5) for connection to a generator (2) and an alternating voltage output (connection terminals 7; 8) for feeding into an energy supply network (6) as well as with a DC-AC converter (12) with semiconductor switch elements (15) and an intermediate circuit (11), at least one short-circuit switch element (18) being connected in parallel to the generator (2), so that the voltage will not exceed a maximum voltage value neither at the connection terminals (4; 5) of the generator (2) nor between the connection terminals (9; 10) of the inverter.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: April 12, 2011
    Assignee: SMA Solar Technology AG
    Inventors: Burkhard Müller, Frank Greizer
  • Patent number: 7843711
    Abstract: Of a pair of switching transistors connected in series between a high voltage power source and the ground, when the switching transistor on the high potential side is controlled by an RS flip-flop in response to an input signal, in order to prevent a malfunction caused by the influence of dv/dt transient phenomena of an output terminal for driving a load, a latch circuit is reset using an input signal from a low side input terminal LIN in a period during which the voltage of the output terminal for driving the load abruptly decreases.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: November 30, 2010
    Assignee: Panasonic Corporation
    Inventor: Shinichiro Kataoka