Plural Direction Propagation Patents (Class 365/23)
  • Patent number: 8455966
    Abstract: Provided are transistor devices such as logic gates that are capable of associating a computational state and or performing logic operations with detectable electronic spin state and or magnetic state. Methods of operating transistor devices employing magnetic states are provided. Devices comprise input and output structures and magnetic films capable of being converted between magnetic states.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: June 4, 2013
    Assignee: Intel Corporation
    Inventors: C Michael Garner, Dmitri E. Nikonov
  • Patent number: 8363505
    Abstract: A two transistor word line driver is disclosed. An example disclosed word line driver is simplified with common signals on the gates of the p-type and the n-type transistors. An example disclosed word line driver consumes less power by applying a negative voltage to a word line driver selected from multiple word line drivers.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: January 29, 2013
    Assignee: Macronix International Co., Ltd.
    Inventors: Chin-Hung Chang, Wen-Chiao Ho, Chun-Hsiung Hung
  • Patent number: 8165621
    Abstract: A cellular telephone using a memory array that is directly addressed and non-volatile is disclosed. The memory array can be used to replace and emulate multiple memory types such as DRAM, SRAM, non-volatile RAM, FLASH memory, and a non-volatile memory card, for example. The memory array may be randomly accessed. Data stored in the memory array is retained in the absence of electrical power. One or more memory arrays may be used in the cellular telephone. At least one of the memory arrays may be in the form of a removable memory card.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: April 24, 2012
    Inventor: Robert Norman
  • Patent number: 7760529
    Abstract: Systems and methods are provided for digital transport of paramagnetic particles. The systems and methods may include providing a magnetic garnet film having a plurality of magnetic domain walls, disposing a liquid solution on a surface of the magnetic garnet film, wherein the liquid solution includes a plurality of paramagnetic particles, and applying an external field to transport at least a portion of the paramagnetic particles from a first magnetic domain wall to a second magnetic domain wall of the plurality of magnetic domain walls.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: July 20, 2010
    Assignee: Florida State University Research Foundation
    Inventors: Thomas Fischer, Pietro Tierno, Lars Egil Helseth
  • Publication number: 20010043482
    Abstract: A semiconductor memory device according to the present invention includes a burst counter for sequentially automatically generating an address of a predetermined bit number in synchronism with a clock on the basis of a predetermined sequence in the subsequent operation cycle in accordance with the inputted initial address, and a plurality of memory cell sub-arrays which is formed by dividing a memory cell array. The semiconductor memory device further comprises a plurality of block decoder selection-time adjusting circuits for sequentially outputting a first block selecting signal, which is the base of a signal for selecting each of the memory cell sub-arrays, as a second block selecting signal at a timing corresponding to a read latency and for outputting the first block selecting signal as a third block selecting signal which has a length corresponding to the read latency.
    Type: Application
    Filed: March 20, 2001
    Publication date: November 22, 2001
    Inventors: Yoshikazu Takeyama, Takayuki Harima
  • Patent number: 5754465
    Abstract: A non-physical movement component recording and reproducing device produces a pair of special waves with special waveforms that form a special stationary waveform. An electrically-conducting media contains three overlaid layers, a first layer contains the special stationary waveform, a middle layer allows signals to be recorded or be reproduced therein, and a third layer allows the signals to be connected. Two diodes are connected in reverse polarity to the third layer wherein one diode is used for recording and reproducing signals, while the other diode is used for erasing unused signals during the recording process. The bias voltage of the diodes is bigger than the peak value of the special waveform, but less than the maximum peak value of the special stationary waveform. The control unit changes at least one of the intermittence length and the phase of the special waves.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: May 19, 1998
    Inventor: Xing Liang Shen
  • Patent number: 4843468
    Abstract: Conventionally, transmission of television images is performed by Raster scanning. To avoid the problems associated with flyback, and the limiting of Raster scanning to image scanning standards it is proposed to transmit images by scanning along a locus defined by a fractal curve. A Peano curve is particularly suitable. Image resolution may be varied by varying the order of curve used to scan the image. Smoothing of a curve of a given order results in a graceful degradation to a curve of lower order so that the image created by a given order is still recognizable when displayed by a lower or higher order.
    Type: Grant
    Filed: July 14, 1987
    Date of Patent: June 27, 1989
    Assignee: British Broadcasting Corporation
    Inventor: John O. Drewery
  • Patent number: 4357682
    Abstract: A conductorless transfer is provided for a large-gap tolerant Permalloy pattern for moving magnetic bubbles. The transfer capitalizes on the symmetry of the elements for enabling a field reversal to achieve transfer.
    Type: Grant
    Filed: November 24, 1980
    Date of Patent: November 2, 1982
    Assignee: Bell Telephone Laboratories, Incorporated
    Inventor: Herbert M. Shapiro
  • Patent number: 4316263
    Abstract: A magnetic bubble replication and transfer arrangement is disclosed which provides for replicating magnetic bubbles in thin planar layers of magnetic material without the need for electrical current carrying conductor elements. The arrangement includes a replicating half-disc permalloy element disposed in a particular way between first and second tracks formed from half-disc elements which are deposited on a surface of the magnetic layer. When a rotating magnetic field in the plane of the material is rotated in a predetermined direction with respect to the above arrangement, replication of a bubble in the first track occurs at a replication region where a portion of the replicating element is adjacent the first track. The original bubble continues movement within the first track while the newly formed bubble moves along the replicating element into the second track in response to rotation of the in-plane magnetic field.
    Type: Grant
    Filed: September 10, 1979
    Date of Patent: February 16, 1982
    Assignee: Sperry Corporation
    Inventor: William D. Doyle
  • Patent number: 4164028
    Abstract: A current access bubble memory system includes a method and device for propagating and switching isolated bubbles within a plurality of orthogonal propagation channels. The device includes two orthogonal arrays of parallel current conductors oriented at 45.degree. angles to the two orthogonal bubble translation axes. The conductors in each array are regularly spaced a distance S apart from center to center. The first array of conductors are connected in parallel to a first current source and the second array of conductors are connected in parallel to a second current source. The propagation channels are defined by confining means to have a width d where d is the bubble diameter. The centerline of the channels are spaced a distance of about .sqroot.2 S/8 from the center of adjacent conductor intersections. Bubble translation occurs through sequential activation of the two bipolar current sources.
    Type: Grant
    Filed: June 9, 1977
    Date of Patent: August 7, 1979
    Assignee: International Business Machines Corporation
    Inventor: Otto Voegeli
  • Patent number: 4151601
    Abstract: A magnetic domain memory in which domains are driven along a structure of discrete elements which includes at least two domain detection elements formed by interconnected chevrons. The detection signal is based upon the magnetoresistive effect of the series of chevrons. The domain detection elements are pair-wise connected to inputs of a difference determining unit. The detection elements of a pair are disposed 180.degree. relative to each other in the plane of the plate, but are otherwise substantially identical. The detection elements are generally asymmetrical in the sense that a majority of pairs of successive chevron elements are interconnected in positions situated between their center and a corresponding end. Thus, upon passage of a domain within a period of the rotary magnetic field, a comparatively large and a comparatively small domain signal can periodically be generated.
    Type: Grant
    Filed: August 26, 1977
    Date of Patent: April 24, 1979
    Assignee: U.S. Philips Corporation
    Inventor: Antonius G. H. Verhulst
  • Patent number: 4059828
    Abstract: In an improved bubble lattice file (BLF) structure, two adjacent layers of magnetic bubble domain material are utilized to provide separate media for supporting carrier bubbles or coded bubbles. The coded bubbles, in one layer, represent data stored in the bubble lattice file. The carrier bubbles, in another layer, are magnetically coupled to the coded bubbles and are used in manipulation thereof. The magnetic bubble domain layers may be separated by an appropriate interface layer or surface. The lattice file area, or storage area, is biased by a single layer of bias material while adjacent areas, such as an input/output region, include a pair of biasing layers disposed on opposite sides of the adjacent layer structure. This composite permits an improved bubble lattice file structure which utilizes the storage capabilities of bubble lattice file memories as well as the operating capabilities of so-called conventional magnetic bubble domain device techniques.
    Type: Grant
    Filed: August 20, 1976
    Date of Patent: November 22, 1977
    Assignee: Rockwell International Corporation
    Inventors: Tsutomu Kobayashi, John L. Archer, Michael T. Elliott