Stationary Deflecting Element In Flow-through Mixing Chamber Patents (Class 366/181.5)
  • Patent number: 9878294
    Abstract: This application includes mixing devices, methods, and systems in which a second fluid can be introduced through a second flow channel to a dispersion member for extrusion through a perforated portion of a dispersion member into a first flow channel for mixing with a first fluid. In some of the present mixing devices, methods, and systems, the second flow channel is substantially perpendicular to the first flow channel, and/or the perforated portion is disposed on a downstream portion of the dispersion member.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: January 30, 2018
    Assignee: PROSEP, INC
    Inventors: Yi Liu, Carl Nilsson, Vincent P. Buchanan
  • Patent number: 9561482
    Abstract: A static mixer is described in which rows of mixing plates are used in a combination with nozzles that are located with respect to the mixing plates in a manner that is designed to produce a high level of mixing without significantly impeding the flow of flue gas passing through the rows of mixer plates. In various embodiments, the static mixer includes rows of tilted plates, and the injection lance nozzles are positioned to align with row boundaries corresponding to the boundaries between consecutive rows of mixing plates. In some embodiments, there are N rows of mixing plates and N-1 rows of nozzles. In some embodiments the nozzles are positioned to coincide with the boundaries between rows. The mixer assembly including injection nozzles and/or lances can be implemented in a relatively compact manner allowing for it to be placed in a shorter length of flue than many other mixer assemblies.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: February 7, 2017
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS AMERICAS, INC.
    Inventors: Paul Harris, Robert Mudry, Peikang Jin
  • Patent number: 9440201
    Abstract: The invention relates to a device for dispersing gas into a liquid. The devise has a number n of successive zones Z1, Z2, . . . , Zn having static mixing elements, wherein each zone Zi has a length Li and an effective diameter Di. The mechanical energy input Et, which is standardized to the particular ratio Li/Di and acts on the gas/liquid mixture, increases from zone to zone in the flow direction. In this connection n is a whole number greater than or equal to 3 and i is an index which runs through the whole numbers from 1 to the number n of zones. The invention further relates to a method for dispersing gas into a liquid using the device according to the invention.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: September 13, 2016
    Inventors: Jens Hepperle, Jörg Kirchhoff, Klemens Kohlgrueber
  • Patent number: 9186315
    Abstract: Methods for disguising dermatological blemishes are provided. The method includes providing a package containing at least a viscous silicone material and a catalyst. The silicone material or the catalyst is preferably tinted with a cosmetic pigment. The package may also include one or more dispensers, such as double-barrel syringes. The syringes hold the viscous silicone material and the catalyst, separately. The package may also have mixing tips through which the silicone material and the catalyst may be dispensed, whereupon the silicone material and the catalyst are mixed and applied to a user's skin for curing. The method includes applying the silicone mixture on a dermatological area of interest, applying one of the at least one skin texturing pad to the silicone mixture before the silicone mixture cures to create texture to the silicone material, and allowing the silicone material to cure on a skin surface of the human user.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: November 17, 2015
    Assignee: Silicone Arts Laboratories, Inc.
    Inventor: Matthew Singer
  • Publication number: 20150138911
    Abstract: A system includes a solids combining system with a solids mixing section having a mixing chamber and a plurality of solids inlets configured to supply one or more solids into the mixing chamber. The system also includes a solids breakup section having a plurality of fluid inlets configured to supply one or more fluids into the mixing chamber and a solids flow control section having a converging-diverging passage downstream of the mixing chamber.
    Type: Application
    Filed: November 15, 2013
    Publication date: May 21, 2015
    Applicant: General Electric Company
    Inventor: Edward Pan
  • Patent number: 9028132
    Abstract: A mixing silo for free-flowing finely divided solid materials, in particular for powdered, fibrous and/or granular mixed material, especially polymer granules, specifically suited for mixing polymer granules, having an excellent mixing quality and at the same time a simplified and improved suitability for washing out in order to avoid cross contamination. The mixing silo may be used for homogenizing possibly inhomogeneous polymer granule batches in the form of a stream of product from a process producing polymer granules.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: May 12, 2015
    Assignee: Bayer MaterialScience AG
    Inventors: Herbert Ungerechts, Hans-Jörg Frank, Christoph Schwemler, Reiner Horl, Hans-Jürgen Thiem, Markus Hagedorn
  • Patent number: 8986546
    Abstract: To promote mixture of fluids on a plurality of stages, flow channels include a plurality of merging portions which penetrate from a top surface to a back surface of a substrate. An end of each of the sub channels is disposed so as to overlap the main channel at each of positions separated along the direction in which the main channel extends, and each of the merging portions communicates the main channels and the ends of the sub channels with each other, thereby changing a flow direction of the second fluid flowing through the sub channels to the thickness direction of the substrate, and merges the second fluid with the first fluid flowing through the main channels.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: March 24, 2015
    Assignee: Kobe Steel, Ltd.
    Inventors: Koji Noishiki, Makoto Nishimura, Takeshi Yamashita, Daisuke Nishikawa
  • Patent number: 8967849
    Abstract: Apparatus (20) for injection of fluid into extrusion system components such as a preconditioner (24) or extruder (100) is provided, preferably as a composite assembly including a fluid injection valve (52) and an interconnected static mixer section (54). Alternately, use may be made of the fluid injection valve (52) or static mixer section (54) alone. The invention greatly simplifies the fluid injection apparatus used in extrusion systems, while giving more efficient absorption of thermal energy with a minimum of environmental contamination, and the ability to inject multiple streams into the extrusion systems.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: March 3, 2015
    Assignee: Wenger Manufacturing, Inc.
    Inventors: Scott Eugene VanDalsem, Brian D. Streit
  • Publication number: 20150048004
    Abstract: This application includes mixing devices, methods, and systems in which a second fluid can be introduced through a second flow channel to a dispersion member for extrusion through a perforated portion of a dispersion member into a first flow channel for mixing with a first fluid. In some of the present mixing devices, methods, and systems, the second flow channel is substantially perpendicular to the first flow channel, and/or the perforated portion is disposed on a downstream portion of the dispersion member.
    Type: Application
    Filed: June 13, 2014
    Publication date: February 19, 2015
    Inventors: Yi Liu, Carl NILSSON, Vincent P. BUCHANAN
  • Patent number: 8920020
    Abstract: A flow passage structure having a plurality of flow passageways therein includes a first junction portion for joining a first fluid introduced into a first inlet path and a second fluid introduced into a second inlet path, a first joined fluid flow passage through which a fluid made by joining both the fluids flows, a branch portion for dividing the fluid flowing in the first joined fluid flow passage into two fluids, a first branch path through which one of the two divided fluids flows, and a second branch path through which the other flows, wherein a corresponding diameter of the first branch path and a corresponding diameter of the second branch path in each of the passageways are smaller than a corresponding diameter of the first joined fluid flow passage in the passageway.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: December 30, 2014
    Assignee: Kobe Steel, Ltd.
    Inventors: Koji Noishiki, Makoto Nishimura, Takeshi Yamashita, Tatsuo Yoshida
  • Patent number: 8894270
    Abstract: In a mixing system for two-component cartridges having a neck section structure with an inner discharge channel and an outer tubular discharge channel for discharging first and second material components from first and second chambers of the cartridge, the inner discharge channel is provided with pockets extending into the outer discharge channel for dividing the second material flow into second material flow strands and a baffle plate is arranged centrally in front of the inner discharge channel for directing the inner material flow outwardly through the pockets in strands of the inner material component between strands of the outer material component, so that a pre-mixing of the material components occurs already directly at the openings of the discharge channels.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: November 25, 2014
    Inventor: Frank Ritter
  • Patent number: 8894273
    Abstract: A device and method are provided for manipulating petroleum, non-conventional oil and other viscous complex fluids made of hydrocarbons that comprise enforcement of fluid in a multi-stage flow-through hydrodynamic cavitational reactor, subjecting said fluids to a controlled cavitation and continuing the application of such cavitation for a period of time sufficient for obtaining desired changes in physical properties and/or chemical composition and generating the upgraded products. The method includes alteration of chemical bonds, induction of interactions of components, changes in composition, heterogeneity and rheological characteristics in order to facilitate handling, improve yields of distillate fuels and optimize other properties.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: November 25, 2014
    Inventors: Roman Gordon, Igor Gorodnitsky, Maxim Promtov, Varvara Grichko
  • Patent number: 8876365
    Abstract: The invention provides a mixing system comprising the following: A) at least one extensional flow mixer comprising: a generally open and hollow body having a contoured outer surface and having: a single entrance port and a single exit port; a design for compressing a bulk stream, and a design for broadening the bulk stream and the at least one injected additive stream; B) a flow conductor; and C) a primary additive stream injector, as described herein; and wherein the extensional flow mixer is followed by D) a first helical static mixing element that is at least one half “flow conductor diameter (D1)” downstream of the exit port of the extensional flow mixer; and wherein the mixing system comprises at least four helical static mixing elements, placed such that the leading edge of the first helical static mixing element is located perpendicular to the main axis (major axis) of the exit port of the extensional flow mixer.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: November 4, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Maria Pollard, Steven R. Strand, David A. Eversdyk, Matthias Schaefer
  • Patent number: 8858067
    Abstract: A flow channel structure that includes a first inlet path for a first fluid, a second inlet path for a second fluid, a merging portion that merges, in the thickness direction of a substrate, the first fluid and the second fluid, a first merged fluid channel in which both fluids merged in the merging portion flow along a top surface of the substrate, a flow direction altering portion that causes the flow direction of the fluid flowing through the first merged fluid channel to change from the top surface side of the substrate towards the back surface side thereof, and a second merged fluid channel for changing the flow direction of this fluid to flow to the downstream side so that the fluid flowing from the first merged fluid channel through the flow direction altering portion flows along the back surface of the substrate.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: October 14, 2014
    Assignee: Kobe Steel, Ltd.
    Inventors: Koji Noishiki, Makoto Nishimura, Takeshi Yamashita, Daisuke Nishikawa
  • Patent number: 8851742
    Abstract: The present invention relates generally to methods and systems for mixing at least two different solid materials (e.g., adsorbents) and loading the mixture into a vessel, such as an adsorption vessel or reactor.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: October 7, 2014
    Assignee: Praxair Technology, Inc.
    Inventors: Cem E. Celik, Mark William Ackley, Jeffert John Nowobilski, Salil Uday Rege
  • Patent number: 8807822
    Abstract: Methods and apparatus are presented for mixing fluid flowing through a wellbore extending through a subterranean formation. A static mixer assembly is positioned in a tubing string, the mixer having a plurality of vanes extending radially into an interior fluid flow passageway. Downhole tools are movable through a tool passageway defined in the static mixer assembly. The tools can pass unobstructed by the fixed vanes. Alternately, the tool can flex the elastic vanes as it passes through, the vanes returning to position after passage of the tool. The vanes are preferably circumferentially spaced and longitudinally spaced. The vanes can extend from an interior wall surface of the assembly or from a sleeve inserted into the mixer assembly.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: August 19, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michael Linley Fripp, Ed Patton
  • Patent number: 8746965
    Abstract: Methods are provided for achieving dynamic mixing of two or more fluid streams using a mixing device. The methods include providing at least two integrated concentric contours that are configured to simultaneously direct fluid flow and transform the kinetic energy level of the first and second fluid streams, and directing fluid flow through the at least two integrated concentric contours such that, in two adjacent contours, the first and second fluid streams are input in opposite directions. As a result, the physical effects acting on each stream of each contour are combined, increasing the kinetic energy of the mix and transforming the mix from a first kinetic energy level to a second kinetic energy level, where the second kinetic energy level is greater than the first kinetic energy level.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: June 10, 2014
    Assignee: Turbulent Energy, LLC
    Inventors: David Livshits, Lester Teichner
  • Patent number: 8702299
    Abstract: An apparatus for blending two or more fluid streams, wherein a first fluid has a higher density than the other fluids, includes a first fluid director and at least a second fluid director providing fluid communication of a first and second fluid stream, respectively, to a primary mixing chamber. The first fluid director includes one or more baffles to disturb the first fluid stream and to direct it toward a rearward portion of the first inlet to the primary mixing chamber. A secondary blending chamber is in fluid communication with the primary chamber outlet and includes at least one, and preferably two static mixers. When two static mixers are serially retained in the secondary blending chamber, they may be skewed rotationally relative to each other such that the orifice profiles of each static mixer are not in alignment.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: April 22, 2014
    Assignee: M-I L.L.C.
    Inventors: Mukesh Kapila, Perry Lomond
  • Patent number: 8672532
    Abstract: This invention provides microfluidic devices that comprise a fluidics layer having microfluidic channels and one or more regulating layers that regulate the movement of fluid in the channels. The microfluidic devices can be used to mix one or more fluids. At least a portion of the fluidics layer can be isolated from the regulating layer, for example in the form of a shelf. Such isolated portions can be used as areas in which the temperature of liquids is controlled. Also provided are instruments including thermal control devices into which the microfluidic device is engaged so that the thermal control device controls temperature in the isolated portion, and a movable magnetic assembly including magnets with shields so that a focused magnetic field can be applied to or withdrawn from the isolated portion or any other portion of the microfluidic device. Also provided are methods of mixing fluids.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: March 18, 2014
    Assignee: IntegenX Inc.
    Inventors: Stevan B. Jovanovich, William D. Nielsen, Michael Van Nguyen
  • Publication number: 20140071786
    Abstract: A fluid micro-mixer apparatus includes a plurality of first microchannels for receiving a first fluid and a plurality of second microchannels for receiving a second fluid. A mixing chamber flow path is disposed to receive the first and second fluids after the first and second fluids exit their respective output ports. The mixing chamber flow path can include a first mixing chamber in the vicinity of the respective output ports, and the mixing chamber flow path can separate into at least two different flow paths downstream from the first mixing chamber.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 13, 2014
    Applicants: State University
    Inventor: State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon State University
  • Patent number: 8668377
    Abstract: A gas diluter which comprises: dilution chambers in which a first gas is mixed with a second gas to reduce the concentration of the first gas; connecting passages with which the dilution chambers are connected serially; branched passages through which the first gas is distributed to the dilution chambers, an introduction passage through which the second gas is introduced into the dilution chamber, which is located at one end of the serially connected dilution chambers; and a discharge opening through which the gas obtained by mixing the first gas with the second gas is discharged from the dilution chamber, which is located at the other end of the serially connected dilution chambers.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: March 11, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Nobuyuki Kitamura
  • Patent number: 8585278
    Abstract: A micro fluidic device is provided, the micro fluidic device including: at least one first introduction pipe into which first fluid is introduced; at least one second introduction pipe into which second fluid is introduced, the second introduction pipe being disposed adjacent to the first introduction pipe; a common channel connected to the first introduction pipe and the second introduction pipe, wherein in the common channel the first fluid and the second fluid are mixed; and a first group of rectification parts, the rectification parts of the first group being provided individually for the first introduction pipe or the second introduction pipe and generating a helical flow in the first fluid and the second fluid, wherein the helical flow in the first fluid and the helical flow in the second fluid have a same circumferential direction.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: November 19, 2013
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Mutsuya Takahashi, Masaki Hirota, Takayuki Yamada
  • Patent number: 8568019
    Abstract: A mixing apparatus is disclosed. The mixing apparatus comprises a mixing device having a constant flow area. The mixing device is configured to create a shearing environment. Several types of mixing apparatus are disclosed. Methods for producing aqueous fuel emulsions with consistently uniform dispersed phase particle sizes using a mixing apparatus are also disclosed.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: October 29, 2013
    Assignee: Talisman Capital Talon Fund, Ltd.
    Inventors: Jack L. Waldron, Patrick Grimes
  • Patent number: 8551417
    Abstract: In order to provide, when a plurality of fluids each containing a different kind of substance are mixed and reacted, a reactor having a mixing channel capable of forming a multi-layered flow in a radial direction in the cylindrically-shaped mixing channel; improving mixing performance by synergizing swirling effects of mixture of turbulent flows and a swirling flow; and producing a reaction product with a high yield as well as high efficiency, a mixing channel 1 which mixes fluids 4 and 5 each containing the different kind of substance is cylindrically shaped, and inlet passages 2 and 3 which introduce the fluids 4 and 5, respectively, are plurally arranged in a manner offset from a central axis of the mixing channel 1.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: October 8, 2013
    Assignee: Hitachi Plant Technologies, Ltd.
    Inventors: Tomofumi Shiraishi, Tsutomu Kawamura, Takeyuki Kondo
  • Publication number: 20130188440
    Abstract: A gas mixing arrangement for mixing a process gas (MF) of a process plant, which arrangement comprises a gas duct (10a) for flow of said process gas, a mixing plate section (24) arranged in the gas duct (10a) and comprising at least one mixing plate (42, 44) arranged at an angle with respect to a main flow direction (C) of said process gas flowing through the gas duct (10a). The arrangement further comprises a guide vane section (22) arranged upstream of said mixing plate section (24) to cooperate therewith in mixing the process gas (MF) flowing through the gas duct (10a), the guide vane section (22) comprises a first group of guide vanes (26) arranged to direct a first gas flow portion (GP1) in a direction towards a first side wall (34) of the gas duct (10a), and a second group of guide vanes (28) arranged to direct a second gas flow portion (GP2) in a direction towards a second side wall (36) of the gas duct (10a), said second side wall (36) being opposite said first side wall (34).
    Type: Application
    Filed: January 24, 2013
    Publication date: July 25, 2013
    Applicant: ALSTOM TECHNOLOGY LTD
    Inventor: ALSTOM TECHNOLOGY LTD
  • Publication number: 20130176814
    Abstract: Embodiments of the present invention relate to a mixing apparatus. Particularly, embodiments of the present invention provide a mixing apparatus for mixing fluid components such as phosgene and amine during a highly reactive chemical reaction. One embodiment provides a mixing conduit (100) comprising a cylindrical sidewall (101) defining an inner volume, wherein one or more jets are formed through the cylindrical sidewalls and connect to the inner volume and one or more flow obstructions (103) disposed in the inner volume, wherein each flow obstruction is positioned upstream from an associated aperture (102).
    Type: Application
    Filed: September 28, 2011
    Publication date: July 11, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Paul A. Gillis, Joydeep Mukherjee, John B. Cooper, Arthur C. Flores, Daniel J. Reed
  • Patent number: 8393782
    Abstract: A high efficiency mixing device for mixing first and second fluids within a conduit. A biscuit element is positioned at the upstream end of the conduit having a longitudinal axis that coincides with the longitudinal axis of the conduit. The biscuit element is provided with a plurality of openings including a central opening positioned along the longitudinal axis and a plurality of additional openings spaced proximate to the central opening. The openings are provided with primary mixing elements which induce a rotational angular velocity to a first fluid passing therethrough of the same rotational sign. Second fluid feed ports are positioned within each of the openings for introducing a second fluid to the first fluid as the first fluid passes through the openings and into the conduit. Secondary and tertiary mixing elements are optionally located downstream of the biscuit element to enhance the mixing of the first and second fluids.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: March 12, 2013
    Inventor: Robert S. Smith
  • Patent number: 8308340
    Abstract: Devices and methods for mixing a clotting agent with other inputs such as blood, blood derived product, bone marrow, and/or bone marrow derived product to form a congealed mixture.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: November 13, 2012
    Assignee: Smith & Nephew, Inc.
    Inventors: Joseph M. Ferrante, Si Janna, Thomas Mayr, Jeremy Odegard, Wayne Phillips, David Schuelke
  • Patent number: 8303163
    Abstract: An in-line mixing apparatus is especially useful for iodine extraction from brine. Three fluids (brine, an oxidant such as sodium hypochlorite, and an acid such as HCl) are mixed in the apparatus. The apparatus includes an inner tube and an outer tube. Openings are present in the sidewall of the inner tube to connect the interior volume of the inner tube with the annular volume between the inner tube and the outer tube. Fluid is passed into the inner tube and flows through the openings into the annular volume, causing immediate and vigorous mixing and chemical reaction to obtain elemental iodine.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: November 6, 2012
    Inventor: Charles A. Schneider
  • Patent number: 8277112
    Abstract: The invention provides devices and methods for increasing the degree of mixing of fluids, including under conditions of laminar flow and turbulent flow. In one embodiment, mixing of fluids using the invention's devices and methods is increased by splitting the flow of at least one of the fluids into two or more inlet channels. This is optionally followed by further splitting and merging (e.g., using one or more split and merge (SAM) mixer) the fluids.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: October 2, 2012
    Assignee: The Research Foundation of State University of New York
    Inventors: Siddharth Bhopte, Bruce Murray, Bahgat Sammakia
  • Patent number: 8277113
    Abstract: A dispenser apparatus for dispensing an adhesive containing at least two components includes a mixing device and a header. The mixing device comprises a conveying plate having first and second grooved surfaces each overlaid by a respective cover plate. The conveying plate and opposed cover plates cooperate to define a plurality of separated channels extending through the mixing device. The discharge ends of the channels are interdigitated. First and a second distribution manifolds are defined within the mixing device. A supply port adapted to receive one adhesive component extends through a respective cover plate into fluid communication with one of the distribution manifolds.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: October 2, 2012
    Assignee: Actamax Surgical Materials, LLC
    Inventors: James William Ashmead, William Gerald Dimaio, Jr.
  • Patent number: 8246241
    Abstract: A mixing device for mixing adhesives containing at least two components comprises a conveying plate having first and second grooved surfaces each overlaid by a respective cover plate. The conveying plate and the opposed cover plates cooperate to define a plurality of separated channels extending through the mixing device. The discharge ends of the channels are interdigitated. First and a second distribution manifolds are defined within the mixing device. A supply port adapted to receive one adhesive component extends through a respective cover plate into fluid communication with one of the distribution manifolds.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: August 21, 2012
    Assignee: Actamax Surgical Materials, LLC
    Inventors: James William Ashmead, William Gerald Dimaio, Jr.
  • Patent number: 8240135
    Abstract: A mixing device comprises a circular disc of fin sections positioned so as to create openings in the inner and outer regions of the mixing device that generate oppositely rotating flows of exhaust gas. Each fin section may be identical, and may be created by a stamping process. The smooth surface of each fin section reduces creases, and thus, is less prone to urea buildup.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: August 14, 2012
    Assignee: Ford Global Technologies, LLC
    Inventor: Xiaogang Zhang
  • Patent number: 8147121
    Abstract: A pre-mixing apparatus for a turbine engine includes a main body having an inlet portion, an outlet portion and an exterior wall that collectively establish at least one fluid delivery plenum, and a plurality of fluid delivery tubes extending through at least a portion of the at least one fluid delivery plenum. Each of the plurality of fluid delivery tubes includes at least one fluid delivery opening fluidly connected to the at least one fluid delivery plenum. With this arrangement, a first fluid is selectively delivered to the at least one fluid delivery plenum, passed through the at least one fluid delivery opening and mixed with a second fluid flowing through the plurality of fluid delivery tubes prior to being combusted in a combustion chamber of a turbine engine.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: April 3, 2012
    Assignee: General Electric Company
    Inventors: Benjamin Paul Lacy, Balachandar Varatharajan, Willy Steve Ziminsky, Gilbert Otto Kraemer, Ertan Yilmaz, Patrick Benedict Melton, Baifang Zuo, Christian Xavier Stevenson, David Kenton Felling, Jong Ho Uhm
  • Patent number: 8096701
    Abstract: A method and apparatus for mixing at least one gaseous fluid stream with a large gas stream flowing in a gas duct, especially for introducing a reducing agent into a flue gas containing nitrogen oxides. The gas stream is directed against at least one disk-shaped mixer element on an inlet side that is inclined at an angle counter to the direction of flow of the gas stream, wherein eddy-type whirls form at the mixer element. The gaseous fluid stream is guided essentially to the center of an impact surface associated with the discharge side of the mixer element and is admixed with a gas stream downstream of the mixer element and is guided essentially perpendicularly onto the center of the impact surface on the discharge side such that the gaseous fluid is distributed over the entire discharge side from the center thereof and is incorporated across the entire whirl system formed at the peripheral edge of the mixer element.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: January 17, 2012
    Assignee: FISIA Babcock Environment GmbH
    Inventors: Gerd Beckmann, Wolfram Engelking, Ulrich Priesmeier
  • Patent number: 8079751
    Abstract: A blending apparatus for blending a first fluid stream having a first density and a second fluid stream having a second fluid density, the first density being greater than said second density, is discussed. The apparatus includes a first fluid director including a plurality of baffles affixed therein to create turbulence and shear in the first fluid, a cylindrical second fluid director, a primary mixing chamber receiving the first sheared fluid from the first fluid director and receiving the second fluid from the second fluid director, wherein the first fluid and second fluid are mixed in the primary mixing chamber to form a mixed primary fluid stream, and a secondary blending chamber comprising at least one static mixer and coaxially aligned with and receiving the mixed primary fluid stream from the primary mixing chamber.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: December 20, 2011
    Assignee: M-I L.L.C.
    Inventors: Mukesh Kapila, Perry Lomond
  • Patent number: 8079324
    Abstract: A device for spreading a two-component coating material, including at least two components, on a flat web-shaped carrier includes a slotted nozzle provided with an output slot whose length defines the width of the coating material application to the carrier, wherein the slotted nozzle is provided with two end areas and a nozzle chamber which is arranged inside the slotted nozzle and extends in a parallel to the output slot from the first to the second end area. A first mixer is arranged in the region of the first end area. A second mixer is positioned in the region of the second end area. At least one first reservoir for the first component and at least one second reservoir for the second component are provided. A transport mechanism is used for individually transporting the first component from the first reservoir to the first and second mixers and for transporting the second component from the second reservoir to the first and second mixers.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: December 20, 2011
    Assignee: Robatech AG
    Inventor: Thomas Meyer
  • Patent number: 8033714
    Abstract: A cylinder-shaped flow passage in which a first fluid flows includes an internal cylinder which is smaller in diameter than the flow passage. A swirl-generating stator having four vanes is radially fixed in the internal cylinder. A header space for supplying a second fluid is provided to the outer circumference of a wall surface of the internal cylinder in contact with flow separation areas which are formed along downstream surfaces of the swirl-generating stator as the first fluid runs into the swirl-generating stator. The wall surface of the internal cylinder is formed with openings through which the flow separation areas communicate with the header space. The second fluid supplied into the header space flows through the openings into the flow separation areas, and is diffused along the vanes of the swirl-generating stator to be swirled and mixed into the first fluid applied with swirling force by the swirl-generating stator.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: October 11, 2011
    Assignees: Hitachi High-Technologies Corporation, Babcock-Hitachi K.K.
    Inventors: Akira Nishioka, Kiyoshi Amou, Yoshihiro Sukegawa, Takehiko Kowatari, Yasunaga Hamada, Ikuhisa Hamada, Toshifumi Mukai, Yoshinori Taguchi, Hiroshi Yokota
  • Patent number: 8033429
    Abstract: The dispensing device for single use includes a multicomponent cartridge with a closure and a mixer. The cartridge and the mixer form an interconnected unit and the closure, arranged between the outlets of the cartridge and the inlets of the mixer, is configured as a valve arrangement in order to establish a connection between the cartridge outlets and the mixing elements of the mixer after performing a relative movement between the mixer and the cartridge or syringe. In certain embodiments of the invention the connection is effected by rotation of the mixing unit relative to the cartridge, and in other embodiments of the invention by axial displacement of the mixing unit relative to the cartridge. This results in a disposable dispensing unit that can be economically produced and is particularly easy to use.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: October 11, 2011
    Assignee: Sulzer Mixpac AG
    Inventor: Wilhelm A. Keller
  • Patent number: 7997450
    Abstract: The multicomponent cartridge has a container with chambers for the reception of different fluid components, a mixer element fixed on the container for the mixing of the components and a dispensing tube placed onto the mixer element and connected to the container for the dispensing of the mixed components. The mixer element is configured as a guide element for the axial displacement of the dispensing tube between an open position for dispensing of the mixed components and a closed position.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: August 16, 2011
    Assignee: Sulzer Mixpac AG
    Inventors: Rolf Heusser, Andreas Staub
  • Publication number: 20110188338
    Abstract: An apparatus and method for mixing gas streams of different temperatures and/or compositions contemplates that at least one of the streams contains particle. The apparatus includes a main duct for the first gas stream and a plurality of duct assemblies extending in the main duct generally transversely to the first gas stream. Each assembly has plural inlets and outlets for receiving and discharging separate parts of the second gas stream, moving initially generally transverse to the first stream. The assemblies each have plural secondary ducts of mutually different lengths from inlet to outlet, the outlets being spaced from each other across the main duct for distributing the parts of the second gas stream into the first gas stream. A gas flow deflector is connected to each duct assembly for temporarily deflecting the first gas stream before it is combined with the parts of the second gas stream.
    Type: Application
    Filed: February 3, 2010
    Publication date: August 4, 2011
    Inventor: Melvin J. Albrecht
  • Patent number: 7896541
    Abstract: A mixer for mixing liquid additive with polymer dope constituted by cellulose ester as polymer and solvent is provided. There is a mixing conduit for flow of the polymer dope. A supply conduit ejects liquid additive into the polymer dope in the mixing conduit. A rotor hub is positioned downstream from the supply conduit, contained in the mixing conduit rotatably about an axis directed in a flow direction of the polymer dope, and has a diameter decreasing end on an upstream side. A driving device with electromagnets rotates the rotor hub by electromagnetic induction through a chamber inside the mixing conduit. Furthermore, a support is disposed within the mixing conduit to extend transversely to the flow direction, for supporting the rotor hub rotatably. Flow openings are formed in the support, for passing the polymer dope in the flow direction about the rotor hub.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: March 1, 2011
    Assignee: Fujifilm Corporation
    Inventor: Daisaku Abiru
  • Patent number: 7891861
    Abstract: A mixer in a solution casting system mixes liquid additive with polymer dope fed through a flow line and constituted by cellulose ester as polymer and solvent. A mixer housing is in the flow line for passing the polymer dope through to be mixed. A supply conduit causes flow of the liquid additive for addition to the polymer dope. A distribution channel is formed with the supply conduit, positioned in the flow line, for spreading the liquid additive in a transverse direction of a flow passage in the flow line, to eject the liquid additive. A rotor hub is shaped with a decreasing diameter, contained in the mixer housing, opposed to the distribution channel, and directs the polymer dope in a ring shape after addition of the liquid additive. The flow line collects the polymer dope in a position downstream from the rotor hub.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: February 22, 2011
    Assignee: Fujifilm Corporation
    Inventor: Daisaku Abiru
  • Publication number: 20110032788
    Abstract: An apparatus and method for mixing and dispensing liquids without contamination of starting liquids during the dispensing operation, the apparatus comprising a first container, resiliently deformable, containing a first liquid, a second container containing a second liquid, and a mixing chamber.
    Type: Application
    Filed: July 30, 2010
    Publication date: February 10, 2011
    Inventor: Paulus Antonius Augustinus Hofte
  • Patent number: 7837379
    Abstract: The invention generally relates to combining a plurality of flow streams. In various embodiments, a first channel transports a first laminar fluid flow, a second channel transports a second laminar fluid flow, and the first and second channels enter a merging region at an acute angle to one another along separate substantially parallel planes.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: November 23, 2010
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Jason O. Fiering, Mathew Varghese
  • Patent number: 7771110
    Abstract: A device for mixing two paste components, such as a dental impression substance and a catalyst, comprising a tubular housing, two inlet openings for the two paste components to be mixed, and an outlet opening for delivering the mixed paste, is presented. The housing consists of a premixing chamber at the front end and a tubular mixing chamber at the rear end. The two paste components are mixed first in the premixing chamber by a dynamic rotor and then mixed in the tubular mixing chamber by a twisted static shaft, resulting in a well mixed, bubble-free paste at the outlet opening of the housing.
    Type: Grant
    Filed: September 8, 2007
    Date of Patent: August 10, 2010
    Assignee: Pac-dent International Inc.
    Inventor: Daniel Wang
  • Patent number: 7766539
    Abstract: A liner material supply apparatus by which the weight ratio between a first feedstock liquid and a second feedstock liquid to be fed to static mixers (40, 42) is maintained sufficiently precisely. A heater for bring the temperature of the first feedstock liquid, which is fed from a first accommodation tank (26) to the static mixers through a first feeding pump (22), and the temperature of the second feedstock liquid, which is fed from a second accommodation tank (28) to the static mixers through a second feeding pump (24), to predetermined temperatures are annexed, at least, to the first feeding pump and the second feeding pump. Liner material acceptance unit (10) is disposed which is selectively located at an operating position where the liner material acceptance unit accepts a liner material discharged from discharge unit (18), and a non-operating position where the liner material acceptance unit does not interfere with the liner material discharged from the discharge unit.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: August 3, 2010
    Assignee: Japan Crown Cork Co., Ltd.
    Inventors: Naoki Aoyama, Junichi Miyo, Takuya Oyamada, Susumu Hisanaga, Katsuhiro Muramoto
  • Publication number: 20100142312
    Abstract: An inline mixer structure that is compact and has a high mixing efficiency is provided. In an inline mixer structure that forms a fluid mixture by evenly mixing and diffusing different types of fluid, a cylindrical mixer body (10) that is provided with a space portion (11) that passes therethrough in an axial direction, and a plug-shaped member (20) that is integrated by being inserted from the upstream side of the space portion (11) are provided. A chemical fluid and pure water are mixed and diffused after merging inside the space portion, where the chemical fluid is radially discharged toward a space portion (11) because the downstream end portion of a chemical fluid flow path (21) that is formed in an axial direction of the plug-shaped member (20) is closed, and pure water flows in from an eccentric fluid flow path formed so as to pass through the outer peripheral surface of the mixer body (10) at a position offset from the axial center of the space portion cross-section.
    Type: Application
    Filed: May 15, 2008
    Publication date: June 10, 2010
    Inventor: Hiroshi Imai
  • Patent number: 7658536
    Abstract: Disclosed is an apparatus and method for the mixing of two microfluidic channels wherein several wells are oriented diagonally across the width of a mixing channel. The device effectively mixes the confluent streams with electrokinetic flow, and to a lesser degree, with pressure driven flow. The device and method may be further adapted to split a pair of confluent streams into two or more streams of equal or non-equal concentrations of reactants. Further, under electrokinetic flow, the surfaces of said wells may be specially coated so that the differing electroosmotic mobility between the surfaces of the wells and the surfaces of the channel may increase the mixing efficiency. The device and method are applicable to the steady state mixing as well as the dynamic application of mixing a plug of reagent with a confluent stream.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: February 9, 2010
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Timothy J. Johnson, David J. Ross, Laurie E. Locascio
  • Publication number: 20100003391
    Abstract: A method and apparatus are provided for producing a reconstituted food product. The apparatus includes a co-extruder 11 in which a gelling agent 70 and a setting agent 80 are co-extruded into a process stream of comminuted food pieces in a flow passage, with the gelling agent and setting agent being separated by the process stream. The apparatus includes a static mixer 10 of part cylindrical wall elements 22 with inwardly protruding mixer elements 24 in which the process stream, including the gelling agent and setting agent are mixed and the grain and texture of the food pieces altered to produce a reconstituted food product that resembles whole food. The apparatus includes a tenderiser 200 for pre-treating the comminuted food pieces by compressing them between a stationary plate 202 and a vibrating plate 206 in a tapering cavity.
    Type: Application
    Filed: September 17, 2007
    Publication date: January 7, 2010
    Inventor: Peter Michaelo Melnyczuk