Stationary Mixing Chamber Patents (Class 366/341)
  • Patent number: 10375979
    Abstract: An apparatus for treating a flowable food product includes a container constructed from a first plastic material; an injection chamber arranged within the container, and including an inlet and an outlet in fluid communication with the injection chamber; at least one nozzle constructed from a second plastic material, the at least one nozzle including a first end in fluid communication with a source of cryogen and a second end in fluid communication with the chamber for providing the cryogen to the chamber. A related system and method are also provided.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: August 13, 2019
    Assignee: Linde Aktiengesellschaft
    Inventors: Louis Lilakos, Scott Thomas Madsen, Monica Ortiz-Cordova
  • Patent number: 10233482
    Abstract: A sample of produce wash water containing an antimicrobial sanitizer fluid, and a reference pathogen fluid are both injected into a pathogen inactivation region of a micro-fluidic mixer. The produce wash water (i.e. sanitizer fluid/pathogen fluid mix) is directed through mixer elements in the pathogen inactivation region of the micro-fluidic mixer. In the sanitizer deactivation region, a sanitizer deactivation solution is added to the sanitizer fluid/pathogen fluid mix to produce a deactivated solution. The deactivated solution is evaluated for the presence of the pathogen and the characteristics of the sanitizer. In the preferred embodiment, the sanitizer comprises chlorine and the pathogen comprises E. coli bacteria.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: March 19, 2019
    Assignees: The United States of America, as represented by The Secretary of Agriculture, University of Maryland
    Inventors: Yaguang Luo, Boce Zhang, Patricia D. Millner
  • Patent number: 9968933
    Abstract: The present invention provides microfabricated substrates and methods of conducting reactions within these substrates. The reactions occur in plugs transported in the flow of a carrier-fluid.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: May 15, 2018
    Assignee: The University of Chicago
    Inventors: Rustem F. Ismagilov, Joshua David Tice, Helen Song Baca, Lewis Spencer Roach
  • Patent number: 9804091
    Abstract: The present invention relates to the use of surfaces that exhibit different surface energies wherein the difference in surface energies is configured to disrupt capillary laminar flow of a fluid travelling between the two surfaces. The invention further relates to the use of such surfaces in assay methods including a device utilising same.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: October 31, 2017
    Assignee: L3 Technology Limited
    Inventors: Anthony Nicholls, Laura Garcia, Mark Hudson, Gareth Jones, David Clarke
  • Patent number: 9370280
    Abstract: A blender includes a container having a plurality of ribs projecting into a processing zone of the container. The plurality of spaced ribs each include a width and a depth that taper from a top end section adjacent a teardrop shaped opening of the container to a more narrow bottom end section adjacent a bottom wall of the container. A side wall of the container continuously tapers from the teardrop shaped opening to a substantially square shaped bottom end portion including first, second, third and fourth side wall sections connected to one another at respective rounded corners. A blade assembly is coupled to the container and includes a plurality of blades angled at different planes with respect to a horizontal plane. The blender container further includes a handle adapted to receive a handle of a similar blender container, such that like blender containers can be nested for storage.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: June 21, 2016
    Assignee: Whirlpool Corporation
    Inventor: Michael P. Conti
  • Patent number: 9181015
    Abstract: A liquid receptacle has an inner vessel for holding a liquid, an insulated outer shell spaced from the Miler vessel, and a chamber defined between the inner vessel and the outer shell. A phase change material is disposed in the chamber for absorbing thermal energy from the liquid and then releasing the thermal energy back to the liquid to maintain the temperature of the liquid.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 10, 2015
    Inventor: Raymond Booska
  • Patent number: 9180418
    Abstract: Provided is a method of mixing fluids including introducing at least two kinds of fluids to a chamber of a substrate including a microchannel structure; and alternately rotating the substrate clockwise and counter-clockwise until the at least two kinds of fluids are mixed, wherein the rotation is changed from one direction to the opposite direction before a vortex created in the mixing chamber by the one direction rotation disappears.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: November 10, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yoon-kyoung Cho, Jeong-gun Lee, Beom-seok Lee, Jong-myeon Park
  • Patent number: 9108218
    Abstract: A layer multiplication device may include a housing and at least one layer multiplication insert positioned inside the housing. The housing may have an inlet configured to receive a flow stream, an outlet configured to discharge the flow stream, and a flow cavity extending between the inlet and the outlet. In operation, the layer multiplication insert may divide an incoming flow stream so as to multiply the flow stream into at least a first flow stream and a second flow stream. In some examples, the inlet provides an inlet flow volume equal to a cross-sectional area of the housing at the inlet multiplied by a length of the flow cavity, the flow cavity defines a cavity flow volume, and the cavity flow volume is equal to or greater than the inlet flow volume.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: August 18, 2015
    Assignee: Nordson Corporation
    Inventors: Gary D. Oliver, Dale P. Pitsch, Michael K. Truscott
  • Publication number: 20150130091
    Abstract: A foaming mechanism configured to receive a plurality of streams of gas and generate a foamed liquid, having an aerodynamic component and an aerodynamic housing disposed around at least a portion of the aerodynamic component. The aerodynamic housing includes a plurality of first channels and a plurality of second channels connected to the plurality of first channels at regular intervals on a distributed plane. The distributed plane is about perpendicular to the plurality of first channels, wherein the plurality of first channels and the plurality of second channels are configured to transform an axial stream of the gaseous working agent into a plurality of radial high-speed streams of the gaseous working agent by channeling the gaseous working agent through the plurality of first channels and into the plurality of second channels on the distributed plane.
    Type: Application
    Filed: October 16, 2014
    Publication date: May 14, 2015
    Inventors: David Livshits, Lester Teichner
  • Patent number: 8998483
    Abstract: A method of manipulating particles suspended within a fluid droplet using a microfluidic system including a piezo-electric substrate (1) and a wave generation means (3) for generating a wave within the piezoelectric substrate (1), and a working surface (2) through which the wave can be distributed and upon which fluid droplets (9) can be located, the method including locating one or more droplets of fluid on the working surface (2), varying the power applied to the wave generation means (3) or varying the distribution of the wave across the working surface (2), such that particles (1 1) suspended within the fluid droplet (9) are either dispersed within the droplet or concentrated in an area within the droplet in dependence on the power or wave distribution applied by the wave generation means (3) to the piezoelectric substrate (1), or to facilitate rotation of the fluid within said fluid droplets (9) located jn the path of the wave.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: April 7, 2015
    Assignee: Royal Melbourne Institute Technology
    Inventors: James Robert Friend, Leslie Yu-Ming Yeo
  • Patent number: 8986546
    Abstract: To promote mixture of fluids on a plurality of stages, flow channels include a plurality of merging portions which penetrate from a top surface to a back surface of a substrate. An end of each of the sub channels is disposed so as to overlap the main channel at each of positions separated along the direction in which the main channel extends, and each of the merging portions communicates the main channels and the ends of the sub channels with each other, thereby changing a flow direction of the second fluid flowing through the sub channels to the thickness direction of the substrate, and merges the second fluid with the first fluid flowing through the main channels.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: March 24, 2015
    Assignee: Kobe Steel, Ltd.
    Inventors: Koji Noishiki, Makoto Nishimura, Takeshi Yamashita, Daisuke Nishikawa
  • Publication number: 20150056611
    Abstract: A method of mixing magnetic particles (3) in a reaction chamber (2) that is part of a microfluidic device and that contains the said particles in suspension, comprises the steps: (a) providing an electromagnetic means (1,1?,6,7) to generate magnetic field sequences having polarity and intensity that vary in time and a magnetic field gradient that covers the whole space of the said reaction chamber (2); (b) applying a first magnetic field sequence to separate or confine the particles (3) so the particles occupy a sub-volume in the volume of the reaction chamber (2); (c) injecting a defined volume of the said reagent in the reaction chamber; and (d) applying a second magnetic field sequence to leads the particles (3) to be homogenously distributed and dynamically moving over a substantial portion of the whole reaction chamber volume.
    Type: Application
    Filed: November 10, 2014
    Publication date: February 26, 2015
    Inventor: Amar Rida
  • Patent number: 8960578
    Abstract: A high impact pressure processor comprises of a piston. The piston comprises of a piston seal, a piston cap, a piston shaft, and a plurality of vent holes. The piston seal, located at an end of the piston shaft, seals out air from a container of a food processor or blender. This enables high impact pressure to be placed on the ingredient(s) in the container, thus creating smoother and thicker mixtures of ingredient(s). The plurality of vent holes allows air into container when needed, but are easily sealed off with the piston cap.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: February 24, 2015
    Inventor: Warren Shawn Byrne
  • Patent number: 8950932
    Abstract: A method for recovering hydrocarbons from an aqueous hydrocarbonaceous slurry comprises pumping a mixture of the slurry and an oxidizing agent through a conduit, wherein the conduit comprises a plurality of stationary interior projections defining a non-linear path through the conduit, and thereby agitating the mixture to release the hydrocarbons from the slurry; and separating the hydrocarbons from the slurry.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: February 10, 2015
    Assignee: Zeta Global, Ltd.
    Inventors: Steig Breloff, Lawrence Conaway
  • Patent number: 8936392
    Abstract: An advanced hydrodynamic cavitation device formed from a cylindrical tube having a flow through chamber. The chamber has a series of stages with each stage formed from at least three plates spaced annularly and extending radially inward at an oblique angle with respect to the longitudinal axis of the flow through chamber. Each plate has shear inducing side edges and a plurality of orifices with shear inducing edges. The orifices are arranged perpendicular to the plates and shaped to control the velocity of the fluid. An unrestricted passageway exists along the central axis of the flow through chamber to provide a constant flow for continuous flushing of suspended solids to prevent clogging. Additionally, the passageway will facilitate the insertion of a pressure cleaning tube without requiring that the device be disassembled.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: January 20, 2015
    Assignee: Ecosphere Technologies, Inc.
    Inventors: Dennis McGuire, Dennis McGuire, Jr.
  • Patent number: 8894966
    Abstract: A micro-mixer and use thereof for synthesis of barium sulfate particles is disclosed. The micro-mixer includes feeding tubes, reservoirs, a mixing channel, a buffer reservoir and a sampling tube. The mixing channel is made of hydrophobic materials and processed into a spiral structure, in which baffles are set in interval arrangement at both sides of the channel wall. The types of the baffles include leaning-forward baffles, vertical baffles and leaning-backward baffles. Setting the baffles helps produce local secondary flow in the mixer, which enhances fluids mixing process. The micro-mixer is suitable to rapid reactions or precipitation processes, whose reaction time is much less than mixing time, and has broad application prospects in many fields involving mixing reaction such as pharmaceutical and chemistry industry.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: November 25, 2014
    Assignees: Institute of Process Engineering, Chinese Academy of Sciences, Nanjing Ziuzhang Chemical Technology Co., Ltd
    Inventors: Chao Yang, Xi Wang, Yumei Yong, Guangji Zhang, Jingcai Cheng, Xin Feng, Xiangyang Li, Weipeng Zhang, Yuanyuan Li, Zaisha Mao
  • Patent number: 8870446
    Abstract: A device for manipulating and mixing magnetic particles (3) in a surrounding liquid medium, comprises at least one couple of magnetic poles (1,1?) facing each other across a gap, the facing poles diverging from a narrow end of the gap to a large end of the gap, the poles (1,1?) forming part of an electromagnetic circuit and being arranged to provide a magnetic field gradient in the gap region; and a reaction chamber (2) that is a part of a fluidic network for containing the said magnetic particles in suspension and placed in the gap of the said electromagnets poles (1,1?). The reaction chamber (2) preferably has at least one part which has a diverging cavity, arranged co-divergently in the diverging gap between the poles.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: October 28, 2014
    Assignee: Spinomix S.A.
    Inventor: Amar Rida
  • Patent number: 8870563
    Abstract: Plasticizing system for plasticizing solidified-resin particle, plasticizing system, comprising: housing assembly providing: (i) melt channel configured to receive solidified-resin particle, and (ii) opposite-facing surfaces spaced apart from each other, and defining, at least in part, convergene channel configured to receive the solidified-resin particle. Opposite-facing surfaces and the convergence channel form part of melt channel. Plunger assembly is movable, at least in part, relative to opposite-facing surfaces. Plunger assembly configured to move, at least in part, solidified-resin particle relative to opposite-facing surfaces along, at least in part, convergence channel. In response to relative movement between solidified-resin particle and opposite-facing surfaces, solidified-resin particle receives, in use, plasticization-inducing effect from opposite-facing surfaces.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: October 28, 2014
    Assignee: Husky Injection Molding Systems Ltd.
    Inventor: Manon Danielle Belzile
  • Publication number: 20140275338
    Abstract: A method for continuous production of radiation curable ink suitable for ink-based digital printing includes feeding ingredients suitable for forming a pigment concentrate to an extruder; blending the ingredients in the extruder to form a pigment concentrate paste; feeding additional ingredients to the extruder for blending with the ink concentrate to form an ink product configured for ink-based digital printing, wherein a pigment particle size is less than about 1 micron.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: XEROX CORPORATION
    Inventors: Frank Ping-Hay LEE, Aurelian Valeriu MAGDALINIS, Marcel BRETON
  • Patent number: 8828210
    Abstract: This invention relates to microfluidic systems and more particularly to methods and apparatus for accessing the contents of micro droplets (114) in an emulsion stream. A method of accessing the contents of a droplet (114) of an emulsion in a microfluidic system, the method comprising: flowing the emulsion alongside a continuous, non-emulsive stream of second fluid (118) to provide an interface (120) between said emulsion and said stream of second fluid (118); and in embodiments applying one or both of an electric (112a, 112b) and magnetic field across said interface (120) to alter a trajectory of a said droplet (114) of said emulsion to cause said droplet to coalesce with said stream of second fluid (118); and accessing said contents of said droplet (114) in said second stream (118).
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: September 9, 2014
    Assignee: Cambridge Enterprise Limited
    Inventors: Chris Abell, Wilhelm T. S. Huck, Daniel Bratton, Graeme Whyte, Luis M. Fidalgo
  • Patent number: 8821006
    Abstract: Plural types of fluids that are incompatible with each other are merged. A disturbance is induced at an interface between the fluids by causing the fluids to flow through a merged flow passage having a cross-sectional area that changes. One type of the fluids is turned into microscopic liquid droplets.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: September 2, 2014
    Assignee: Ricoh Company, Ltd.
    Inventors: Yoshihiro Norikane, Shinji Tezuka, Masaru Ohgaki, Masahiro Masuzawa, Hideyuki Miyazawa
  • Patent number: 8789766
    Abstract: This invention relates to a mixing device for an aircraft air conditioning system with a supply conduit for fresh air from the air conditioning system, with a second supply conduit for recirculated air from a pressurized region of the aircraft, and with a discharge conduit for supplying mixed air into the pressurized region of the aircraft, wherein a non-return valve is integrated in the mixer.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: July 29, 2014
    Assignee: Liebherr-Aerospace Lindenberg GmbH
    Inventor: Georg Baldauf
  • Patent number: 8764279
    Abstract: Static mixers and fluid systems incorporating one or more of the static mixers. The static mixers include a mixing structure formed within a body, wherein fluid flowing through the mixing structure defines a downstream direction through the mixing structure. The mixing structure includes a series of Y-shaped channels that cross to provide flowpaths that result in efficient mixing.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: July 1, 2014
    Assignee: 3M Innovation Properties Company
    Inventors: Gustavo H. Castro, Christopher R. Kokaisel
  • Patent number: 8715585
    Abstract: A mixing unit and various applications of the mixing unit are described herein. The mixing unit includes: a stacked member in which three or more mixing elements are stacked; and a first plate and a second plate between which the stacked member is sandwiched and which are arranged opposite each other. In the mixing unit, the mixing elements have a plurality of first through holes, the second plate has an opening portion communicating with at least one of the first through holes in the mixing elements and the mixing elements are arranged such that part or all of the first through holes in one of the mixing elements communicate with other first through holes in the adjacent mixing element to allow fluid to be passed in a direction in which the mixing elements extend.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: May 6, 2014
    Assignee: Isel Co., Ltd.
    Inventor: Noboru Mochizuki
  • Patent number: 8672532
    Abstract: This invention provides microfluidic devices that comprise a fluidics layer having microfluidic channels and one or more regulating layers that regulate the movement of fluid in the channels. The microfluidic devices can be used to mix one or more fluids. At least a portion of the fluidics layer can be isolated from the regulating layer, for example in the form of a shelf. Such isolated portions can be used as areas in which the temperature of liquids is controlled. Also provided are instruments including thermal control devices into which the microfluidic device is engaged so that the thermal control device controls temperature in the isolated portion, and a movable magnetic assembly including magnets with shields so that a focused magnetic field can be applied to or withdrawn from the isolated portion or any other portion of the microfluidic device. Also provided are methods of mixing fluids.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: March 18, 2014
    Assignee: IntegenX Inc.
    Inventors: Stevan B. Jovanovich, William D. Nielsen, Michael Van Nguyen
  • Patent number: 8668399
    Abstract: A device for applying a coating includes a multi-component cartridge, a static mixing nozzle in fluid communication with the cartridge, and at least one paint applicator selected from the group including a roller, a brush, and an angled spray tip, in fluid communication with the nozzle. A method includes applying a coating to a surface with the above-described device. Another method includes applying a non-skid coating to a surface with the above-described device.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: March 11, 2014
    Assignee: Sulzer Mixpac AG
    Inventors: Richard Parks, Heather Parks
  • Patent number: 8628802
    Abstract: The invention concerns a process for the continuous treatment of an emulsion and/or a micro-emulsion assisted by an “expanded liquid” for the production of micro- and/or nano-particles or micro- and/or nano-spheres containing one or more active ingredients. In particular, a liquid solvent expanded by compressed or supercritical CO2 is contacted with an O/W emulsion, or alternatively a W/O emulsion or multiple emulsions, formed by an external phase that is itself a liquid expanded by compressed CO2. The expanded liquid forms a solution with the dispersed phase of the emulsion and extracts it inducing the formation of the desired particles of the dissolved compounds. The process is carried out in a counter-current packed column wherein the expanded emulsion is fed from the top, while the expanded liquid is fed from the bottom. Thanks to the presence of the expanded liquid, any deposition of the solid particles produced on the packing elements is avoided, thus preventing any column blockage.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: January 14, 2014
    Assignee: Universita' Degli Studi di Salerno
    Inventors: Ernesto Reverchon, Giovanna Della Porta
  • Patent number: 8622606
    Abstract: A fluid micro-mixer and micro-reactor array is provided having at least two bonded layers of micro-channels. The micro-mixer can include at least one input port and one output port, and a mixing and/or reaction port. At least one inlet stream separator layer can isolate the inlet ports from one another.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: January 7, 2014
    Assignee: State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon State University
    Inventor: Richard T. Miller
  • Patent number: 8551417
    Abstract: In order to provide, when a plurality of fluids each containing a different kind of substance are mixed and reacted, a reactor having a mixing channel capable of forming a multi-layered flow in a radial direction in the cylindrically-shaped mixing channel; improving mixing performance by synergizing swirling effects of mixture of turbulent flows and a swirling flow; and producing a reaction product with a high yield as well as high efficiency, a mixing channel 1 which mixes fluids 4 and 5 each containing the different kind of substance is cylindrically shaped, and inlet passages 2 and 3 which introduce the fluids 4 and 5, respectively, are plurally arranged in a manner offset from a central axis of the mixing channel 1.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: October 8, 2013
    Assignee: Hitachi Plant Technologies, Ltd.
    Inventors: Tomofumi Shiraishi, Tsutomu Kawamura, Takeyuki Kondo
  • Publication number: 20130240457
    Abstract: In a feed dilution system and method for a thickener or settling tank, a feed pipe nozzle has an outlet opening or orifice configured to generate an initial stream of slurry from the feed pipe into an upstream end of a mixing conduit wherein the stream is extended from a first side of the mixing conduit to a substantially opposite second side in a first direction transverse to the mixing conduit so as to enhance entrainment of dilution fluid flow into the slurry stream and concomitantly produce a substantially uniform solids concentration across a stream flowing from the mixing conduit into the feedwell. The outlet opening is generally shaped asymmetrically towards a third side of the mixing conduit in a second direction transverse to the mixing conduit so as to bias the initial stream of slurry towards the one side, where the second direction is substantially perpendicular to the first direction.
    Type: Application
    Filed: November 18, 2011
    Publication date: September 19, 2013
    Applicant: FLSMIDTH A/S
    Inventor: Timothy J. Laros
  • Patent number: 8534909
    Abstract: A microfluidic device comprises at least one reactant passage defined by walls and comprising at least one parallel multiple flow path configuration comprising a group of elementary design patterns being able to provide mixing and/or residence time which are arranged in series with fluid communication so as to constitute flow paths, and in parallel so as to constitute a multiple flow path elementary design pattern, wherein the parallel multiple flow path configuration comprises at least two communicating zones between elementary design patterns of two adjacent parallel flow paths, said communicating zones being in the same plane as that defined by said elementary design patterns between which said communicating zone is placed and allowing passage of fluid in order to minimize mass flow rate difference between adjacent parallel flow paths which have the same flow direction.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: September 17, 2013
    Assignee: Corning Incorporated
    Inventors: Roland Guidat, Elena Daniela Lavric, Olivier Lobet, Pierre Woehl
  • Publication number: 20130215709
    Abstract: The invention generally relates to a mixing device. In certain embodiments, devices of the invention include a fluidic inlet, a fluidic outlet, and a chamber, the chamber being configured to produce a plurality of fluidic vortexes within the chamber.
    Type: Application
    Filed: February 19, 2013
    Publication date: August 22, 2013
    Inventor: Bengt Olle Hinderson
  • Publication number: 20130215705
    Abstract: In order to dissolve cleaning tablets in a constant stream of media, a rinsing out chamber is suggested, in which the tablet is dissolved in an upward rotary stream of the medium, that keeps it afloat against a filter mesh.
    Type: Application
    Filed: June 10, 2011
    Publication date: August 22, 2013
    Applicant: DENTAL CARE INNOVATION GmbH
    Inventor: Daniel Mueller
  • Patent number: 8459862
    Abstract: A microbe testing device includes a measurement cell for holding a sample liquid, and a rotor that is rotated, by magnetic force imparted from outside the measurement cell, along a bottom face in the sample liquid held in the measurement cell. The sample liquid is stirred by rotating the rotor so that only its end portions are in contact with the bottom face of the measurement cell.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: June 11, 2013
    Assignee: Panasonic Corporation
    Inventor: Kazufumi Oouchi
  • Mug
    Patent number: 8444047
    Abstract: The present invention relates to a mug, especially a disposable mug, which mug defines an internal space for receiving liquid. It is significant for the mug according to the present invention that the mug contains a flap (10; 110) provided on the inside of the mug, that the flap (10; 110) extends along the inside of the mug in a non-active state, and that the flap (10; 110) reaches out from the inside of the mug in an active state of the flap (10; 110).
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: May 21, 2013
    Assignee: SkyltAnders AB
    Inventor: Anders Edvardsson
  • Patent number: 8440052
    Abstract: An apparatus for feeding one or more chemicals into a process stream of a pulp process is disclosed, as well as a method of utilizing the apparatus for feeding one or more chemicals into a pulp process is disclosed.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: May 14, 2013
    Assignee: Nalco Company
    Inventors: Prasad Duggirala, Michael Murcia, Tommy Jacobson, Mika Salonen, Martti O. Latva
  • Patent number: 8438971
    Abstract: A stand mixer and heating means combination apparatus includes a stand mixer that has a base. A top side of the base includes a container mating member. An outer container includes a mixer mating member that is engageable with the container mating member. The outer container includes a bottom wall. A heating assembly is mounted on the base and is in thermal communication with the outer container. An inner container has a lower wall. The inner container has a size to be positioned in the outer container. A first mating member is attached to an outer surface of the inner container and is engageable with a second mating member attached to an inner surface of the outer container such that the lower and bottom walls are retained in a spaced relationship with each other.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: May 14, 2013
    Inventor: Sally Thurley
  • Patent number: 8434932
    Abstract: In one embodiment of the disclosure, a fluid mixing device comprises a flow duct, with a wall having an inner surface defining a fluid flow path for a primary flow, and at least one deployable and retractable projection. The projection is adapted to controllably generate at least one secondary flow adjacent the inner surface. In other embodiments, methods are provided of controllably mixing at least one fluid within a fluid mixing device.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: May 7, 2013
    Assignee: The Boeing Company
    Inventors: Chad M. Winkler, Matthew J. Wright, Mori Mani
  • Patent number: 8434933
    Abstract: A static continuous flow mixer, with or without reaction, is provided with basic cells, which are individually provided with an individualized chamber (1). The basic cells are also provided with at least two connecting channels (2), at least two of them being oblique relatively to the resulting direction (x) of the flow in the mixer, and with at least two additional apertures (0) for connection with the exterior. The cells interconnect successively in the space, forming a network. The mixer promotes convective processes. The dimensions (Dj, li, di, ?), the geometry of the chambers (spherical or cylindrical) and of the channels (cylindrical or prismatic) may vary, as well as their quantity.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: May 7, 2013
    Inventors: José Carlos Brito Lopes, Paulo Eduardo Miranda dos Santos da Costa Laranjeira, Madalena Maria Gomes Queiroz Dias, António Augusto Areosa Martins
  • Patent number: 8430558
    Abstract: A micromixing apparatus includes a mixing microchannel formed in a top surface of a substrate having a channel length and a variable channel width defined by a first sidewall surface and an opposing second sidewall surface. The channel width varies from a minimum channel width h to a maximum channel width H in a ratio of H:h?1.1:1.0. A first inlet is for injecting a first fluid into the mixing microchannel and a second inlet for injecting a second fluid into the mixing microchannel. The first and second fluid flow in a flow direction in the mixing microchannel along the channel length. The first sidewall surface includes first curved surface portions and the second sidewall surface includes a second curved surface portions. The plurality of first curved surface portions and plurality of second curved surface portions are non-overlapping to provide the variable channel width.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: April 30, 2013
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Ehsan Yakhshi Tafti, Hyoung Jin Cho, Ranganathan Kumar
  • Patent number: 8414182
    Abstract: A micromixer device has at least one fluid inlet channel and at least one fluid outlet channel. A plurality of pathways extend between the fluid inlet channel and the fluid outlet channel. The width of at least some of the plurality of pathways varies in a substantially parabolic manner along at least one dimension of the micromixer device.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: April 9, 2013
    Assignee: State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon State University
    Inventors: Brian Kevin Paul, Anna Evelyn Garrison
  • Publication number: 20130077433
    Abstract: A blender includes a container having a plurality of substantially triangular shaped ribs projecting into a processing zone of the container. The plurality of spaced ribs each include a width and a depth that taper from a top end section adjacent a teardrop shaped opening of the container to a more narrow bottom end section adjacent a bottom wall of the container. A side wall of the container continuously tapers from the teardrop shaped opening to a substantially square shaped bottom end portion including first, second, third and fourth side wall sections connected to one another at respective rounded corners. A blade assembly is coupled to the container and includes a plurality of blades angled at different planes with respect to a horizontal plane. Each of the blades includes a beveled leading edge, resulting in a downward suction force that draws ingredients down into the blade for processing.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: WHIRLPOOL CORPORATION
    Inventor: MICHAEL P. CONTI
  • Publication number: 20130077434
    Abstract: Embodiments of the subject invention are directed to methods and apparatus for inducing mixing in a fluid using one or more plasma actuators. In an embodiment, a pair of electrodes is positioned near a fluid and a voltage potential is applied across the pair of electrodes such that a plasma discharge is produced in the fluid. In an embodiment, the plasma discharge creates turbulence in the fluid thereby mixing the fluid. In an embodiment, flow structures, such as vortices are generated in the fluid. In an embodiment, the fluid is mixed in three dimensions. In an embodiment, a plurality of fluids are mixed. In an embodiment, solids are dispersed in at least one fluid. In an embodiment, heat or other properties are dispersed within at least one fluid. In an embodiment, at least one of the pair of electrodes has a serpentine shape.
    Type: Application
    Filed: June 7, 2011
    Publication date: March 28, 2013
    Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventor: Subrata Roy
  • Patent number: 8404189
    Abstract: A gas mixer is disclosed which includes a vessel (10) (e.g., pipe) containing a stream (12) of a first hydrocarbon-containing gas. The mixer includes a hollow pipe (14) located internal to the vessel containing a stream of a second gas, e.g., an oxygen-containing gas stream such as a stream of pure oxygen gas or air enriched with oxygen. The internal pipe further includes a mixer tip (30) at the peripheral end thereof. The mixer tip includes a body having an internal passage for conducting the second gas out of the pipe and an opening introducing the second gas stream into the first gas stream in a radial plane at an acute angle relative to the longitudinal axis of the pipe. The pipe further includes a deflector (20) on its external surface in longitudinal alignment with the opening of the mixer tip. The deflector serves to deflect any entrained particles within the first gas stream away from the mixing zone where the two streams mix, minimizing the risk of ignition of the hydrocarbon-containing gas.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: March 26, 2013
    Assignee: Dow Technology Investments LLC
    Inventors: Harvey E. Andresen, Christopher P. Christenson, Charles W. Lipp, John R. Mayer, Thomas J. Kling, Victor R. Fey, Laurence G. Britton, Michael J. Rangitsch, Michael L. Hutchison
  • Publication number: 20130033959
    Abstract: A blender includes a container having a plurality of substantially triangular shaped ribs projecting into a processing zone of the container. The plurality of spaced ribs each include a width and a depth that taper from a top end section adjacent a teardrop shaped opening of the container to a more narrow bottom end section adjacent a bottom wall of the container. A side wall of the container continuously tapers from the teardrop shaped opening to a substantially square shaped bottom end portion including first, second, third and fourth side wall sections connected to one another at respective rounded corners. A blade assembly is coupled to the container and includes a plurality of blades angled at different planes with respect to a horizontal plane. Each of the blades includes a beveled leading edge, resulting in a downward suction force that draws ingredients down into the blade for processing.
    Type: Application
    Filed: September 20, 2012
    Publication date: February 7, 2013
    Applicant: WHIRLPOOL CORPORATION
    Inventor: Whirlpool Corporation
  • Patent number: 8362388
    Abstract: A multi-gas mixer for supplying a gas mixture that can uniformly mix a plurality of gases according to the proportional percentages determined by the mass flow rate of each gas is disclosed. The multi-gas mixer comprises a mixer chamber, a plurality of gas inlets, a gas mixture outlet, and at least one gas rotating and mixing unit. The present invention also provides a method for controlling the percentage of each gas to be mixed by use of a plurality of mass flow rate controllers to control the gas flow to produce a gas mixture according to a predetermined proportionality. When the multi-gas mixer delivers a gas mixture to a high-speed plasma torch, the torch can be stably operated under a high voltage (>85V) and a medium current (<650 A) so that a long-arc, high-temperature and high-speed plasma flame can be generated.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: January 29, 2013
    Assignee: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: Chang-Sing Hwang, Chun-Huang Tsai, Nian-Tzu Suen, Jen-Feng Yu
  • Patent number: 8323591
    Abstract: One exemplary embodiment can be a method of fabricating a mixing chamber in a hydroprocessing reactor. The method can include providing a first section forming an opening and coupling a second section including a sidewall to the first section. The second section forms a flange for coupling the mixing chamber and facilitating the mixing of one or more fluids.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: December 4, 2012
    Assignee: UOP LLC
    Inventors: Sailesh B. Kumar, Robert L. Bunting
  • Patent number: 8308340
    Abstract: Devices and methods for mixing a clotting agent with other inputs such as blood, blood derived product, bone marrow, and/or bone marrow derived product to form a congealed mixture.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: November 13, 2012
    Assignee: Smith & Nephew, Inc.
    Inventors: Joseph M. Ferrante, Si Janna, Thomas Mayr, Jeremy Odegard, Wayne Phillips, David Schuelke
  • Patent number: 8292492
    Abstract: An array of airfoil-shaped micro-mixers that enhances fluid mixing within permeable membrane channels, such as used in reverse-osmosis filtration units, while minimizing additional pressure drop. The enhanced mixing reduces fouling of the membrane surfaces. The airfoil-shaped micro-mixer can also be coated with or comprised of biofouling-resistant (biocidal/germicidal) ingredients.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: October 23, 2012
    Assignee: Sandia Corporation
    Inventors: Clifford K. Ho, Susan J. Altman, Paul G. Clem, Michael Hibbs, Adam W. Cook
  • Patent number: 8281809
    Abstract: A flow modulator to control the flow of an aerosol to an aerosol detection and/or monitoring system and other aerosol flow systems includes a chamber having an inlet and an outlet, a diverging section of the chamber beneath the inlet that has a flow divider at the center to divide the aerosol into fractions, a recirculation section in which the divided aerosol fractions are recombined, and a converging section that channels the recombined aerosol fractions to the outlet of the chamber.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: October 9, 2012
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventors: Daniel G. Wise, Lawrence J. Hyttinen