Capacitive Patents (Class 367/181)
  • Patent number: 10399121
    Abstract: In some examples, a capacitive micromachined ultrasonic transducer (CMUT) includes a first electrode and a second electrode. The CMUT may be connectable to a bias voltage supply for supplying a bias voltage, and a transmit and/or receive (TX/RX) circuit. In some cases, a first capacitor having a first electrode may be electrically connected to the first electrode of the CMUT, the first capacitor having a second electrode that may be electrically connected to the TX/RX circuit. Furthermore, a first resistor may include a first electrode electrically connected to the first electrode of the first capacitor and the first electrode of the CMUT. A second electrode of the first resistor may be electrically connected to at least one of: a ground or common return path, or the second electrode of the first capacitor.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: September 3, 2019
    Assignee: Kolo Medical, Ltd.
    Inventors: Xuefeng Zhuang, Danhua Zhao, Yongli Huang
  • Patent number: 10291973
    Abstract: A microphone includes a base and a microelectromechanical system (MEMS) die and an integrated circuit (IC) disposed on the base. The microphone also includes a cover mounted on the base and covering the MEMS die and the IC. The cover includes an indented region or an inwardly drawn region that define a top port through which acoustic energy can enter the microphone and be incident on the MEMS die. The microphone also includes a filtering material disposed on the top port on an outside surface of the cover and within the indented region or the inwardly drawn region. The filtering material provides resistance to ingression of solid particles or liquids into the microphone.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: May 14, 2019
    Assignee: Knowles Electronics, LLC
    Inventors: Tony K. Lim, Norman Dennis Talag
  • Patent number: 10277968
    Abstract: The present invention discloses a microphone, comprises: a silicon substrate; a diaphragm disposed over the silicon substrate; a backplate disposed over the diaphragm, the backplate having a plurality of through holes formed therein and a barrier structure, and the plurality of through holes being arranged in a through hole pattern on the backplate; the barrier structure having one or more protruding portions extending from at least one part of the through hole wall of the barrier structure, thereby the section shape of at least one through hole being an irregular shape with one or more inwardly concave portion. The microphone provided by the present invention can achieve a better dustproof effect.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: April 30, 2019
    Assignee: Goertek.Inc
    Inventors: Guanxun Qiu, Qinglin Song
  • Patent number: 10250963
    Abstract: A wearable monitoring system includes a microelectromechanical (MEMS) microphone to receive acoustic signal data through skin of a user. An integrated circuit chip is bonded to and electrically connected to the MEMS microphone. A portable power source is connected to at least the integrated circuit chip. A flexible substrate is configured to encapsulate and affix the MEMS microphone and the integrated circuit chip to the skin of the user.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: April 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Li-Wen Hung, John U. Knickerbocker
  • Patent number: 10225662
    Abstract: An audio sensing device having a resonator array and a method of acquiring frequency information using the audio sensing device are provided. The audio sensing device includes a substrate having a cavity formed therein, a membrane provided on the substrate and covering the cavity, and a plurality of resonators provided on the membrane and respectively sensing sound frequencies of different frequency bands.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: March 5, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Cheheung Kim
  • Patent number: 10212501
    Abstract: The disclosure provides a MEMS device. The MEMS device comprises a printed circuit board, a cover attached to the printed circuit board to form a housing, at least one sound hole formed in the housing, a transducer with a diaphragm inside the housing, and at least one shutter structure. Each shutter structure is mounted to the housing around a respective sound hole. Each shutter structure comprises a moveable component disposed near the inner surface of the housing, the moveable component remains at an open position under regular pressure such that an air flow path from the sound hole to the at least one ventilation hole of the substrate across the moveable component is opened, and moves to a first closed position under a high external pressure to block the at least one ventilation hole and close the air flow path.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: February 19, 2019
    Assignee: GOERTEK.INC
    Inventors: Zhe Wang, Quanbo Zou, Jifang Tao
  • Patent number: 10192805
    Abstract: A semiconductor structure includes a semiconductor wafer having at least one semiconductor device integrated in a first device layer, a thermally conductive but electrically isolating layer on a back side of the semiconductor wafer, a front side glass on a front side of the semiconductor wafer, where the thermally conductive but electrically isolating layer is configured to dissipate heat from the at least one semiconductor device integrated in the semiconductor wafer. The thermally conductive but electrically isolating layer is selected from the group consisting of aluminum nitride, beryllium oxide, and aluminum oxide. The at least one semiconductor device is selected from the group consisting of a complementary-metal-oxide-semiconductor (CMOS) switch and a bipolar complementary-metal-oxide-semiconductor (BiCMOS) switch. The semiconductor structure also includes at least one pad opening extending from the back side of the semiconductor wafer to a contact pad.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: January 29, 2019
    Assignee: Newport Fab, LLC
    Inventor: David J. Howard
  • Patent number: 10129665
    Abstract: A device, including a vibratory apparatus having an actuator configured to generate vibrations upon actuation of the actuator, including plurality of lever arms, wherein the vibratory apparatus is configured such that at least a respective portion of respective lever arms of the plurality of lever arms move about at least one of a single or a respective hinge when the vibratory apparatus is generating vibrations.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: November 13, 2018
    Assignee: Cochlear Limited
    Inventor: Scott Allen Miller
  • Patent number: 10125012
    Abstract: A MEMS device includes a first chip and a MEMS chip. The first chip has a mounting surface and includes at least an integrated circuit. The MEMS chip has a main surface on which a first set of contact pads for contacting the MEMS device and a second set of contact pads for contacting the first chip are arranged. The first chip is mechanically attached and electrically connected to the second set of contact pads via the mounting surface facing the main surface. The mounting surface of the first chip is at least 25% smaller than the main surface of the MEMS chip.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: November 13, 2018
    Assignee: Infineon Technologies AG
    Inventors: Edward Fuergut, Horst Theuss
  • Patent number: 10117028
    Abstract: A MEMS transducer (200) comprises a substrate (101) having a first surface (102) and a membrane (103) formed relative to an aperture in the substrate. The MEMS transducer (200) further comprises one or more bonding structures (107) coupled to the substrate, wherein the one or more bonding structures (107), during use, mechanically couple the MEMS transducer to an associated substrate (111). The MEMS transducer (200) comprises a sealing element (109) for providing a seal, during use, in relation to the substrate (101) and the associated substrate (111). A stress decoupling member (119) is coupled between the substrate (101) and the sealing element (109).
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: October 30, 2018
    Assignee: Cirrus Logic, Inc.
    Inventors: David Talmage Patten, Tsjerk Hans Hoekstra
  • Patent number: 10030500
    Abstract: A wellbore surveillance system obtains fluid reservoir information data, such as the position and amount of gas, oil and/or water, while draining hydrocarbons from an oil or gas field via a casing in a wellbore in a formation. The casing has a vertical part near a top of the casing and an inner face, the system comprising a first sensor for measuring a content of gas, oil and/or water in the formation, and a second sensor for measuring a content of gas, oil and/or water in the formation.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: July 24, 2018
    Assignee: WELLTEC A/S
    Inventor: Jorgen Hallundbæk
  • Patent number: 10006824
    Abstract: Microelectromechanical systems (MEMS) pressure sensors having a leakage path are described. Provided implementations can comprise a MEMS pressure sensor system associated with a back cavity and a membrane that separates the back cavity and an ambient atmosphere. A pressure of the ambient atmosphere is determined based on a parameter associated with movement of the membrane.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: June 26, 2018
    Assignee: INVENSENSE, INC.
    Inventors: Julius Ming-Lin Tsai, Aleksey S. Khenkin, Baris Cagdaser, James Christian Salvia, Fariborz Assaderaghi
  • Patent number: 10000374
    Abstract: A layer material which is particularly suitable for the realization of self-supporting structural elements having an electrode in the layer structure of a MEMS component. The self-supporting structural element is at least partially made up of a silicon carbonitride (Si1-x-yCxNy)-based layer.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: June 19, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Christoph Schelling, Benedikt Stein, Michael Stumber
  • Patent number: 9986342
    Abstract: A transducer includes at least one element including a plurality of cells. Each of the cells includes a pair of electrodes disposed with a gap therebetween and a vibrating membrane including one of the electrodes, and the vibrating membrane is vibratably supported. First and second cells of the plurality of cells in the element have the gaps that communicate with each other, and the first cell and a third cell in the element have the gaps that do not communicate with each other.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: May 29, 2018
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Kazutoshi Torashima, Ayako Kato, Takahiro Akiyama
  • Patent number: 9888325
    Abstract: Systems and methods for preventing electrical leakage in a MEMS microphone. In one embodiment, the MEMS microphone includes a semiconductor substrate, an electrode, a first insulation layer, and a doped region. The first insulation layer is formed between the electrode and the semiconductor substrate. The doped region is implanted in at least a portion of the semiconductor substrate where the semiconductor substrate is in contact with the first insulation layer. The doped region is also electrically coupled to the electrode.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: February 6, 2018
    Assignee: Robert Bosch GmbH
    Inventors: Brett Mathew Diamond, John M. Muza, John W. Zinn
  • Patent number: 9872120
    Abstract: An ultrasonic transducer module may comprise: an ultrasonic transducer comprising a substrate, a thin film separated from the substrate, a support portion for supporting the thin film, and a first electrode pad on the substrate; and/or a circuit board comprising a main body, an opening in the main body for accommodating the thin film, and a second electrode pad attached to the first electrode pad. An ultrasonic transducer may comprise: a substrate; a plurality of first electrode layers on the substrate, with spaces between the first electrode layers; an insulating layer between the substrate and the first electrode layers; a support portion on the first electrode layers; a thin film supported by the support portion, with cavities between each of the first electrode layers and the thin film; and/or a second electrode layer on the thin film.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: January 16, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seogwoo Hong, Dongsik Shim, Seokwhan Chung
  • Patent number: 9853201
    Abstract: A piezoelectric MEMS microphone comprising a multi-layer sensor that includes at least one piezoelectric layer between two electrode layers, with the sensor being dimensioned such that it provides a near maximized ratio of output energy to sensor area, as determined by an optimization parameter that accounts for input pressure, bandwidth, and characteristics of the piezoelectric and electrode materials. The sensor can be formed from single or stacked cantilevered beams separated from each other by a small gap, or can be a stress-relieved diaphragm that is formed by deposition onto a silicon substrate, with the diaphragm then being stress relieved by substantial detachment of the diaphragm from the substrate, and then followed by reattachment of the now stress relieved diaphragm.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: December 26, 2017
    Assignee: The Regents of the University of Michigan
    Inventors: Karl Grosh, Robert J. Littrell
  • Patent number: 9842241
    Abstract: An embodiment includes an ultrasonic sensor system comprising: a backend material stack including a first metal layer between a substrate and a second metal layer with each of the first and second metal layers including a dielectric material; a ultrasonic sensor including a chamber, having a negative air pressure, that is sealed by first and second electrodes coupled to each other with first and second sidewalls; an interconnect, not included in the sensor, in the second metal layer; wherein (a) a first vertical axis intersects the substrate, the chamber, and the first and second electrodes, (b) a second vertical axis intersects the interconnect and the substrate, (c) a first horizontal axis intersects the chamber, the interconnect, and the first and second sidewalls, and (d) the first and second electrodes and the first and second sidewalls each include copper and each are included in the second metal layer.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: December 12, 2017
    Assignee: Intel Corporation
    Inventors: Mondira D. Pant, Mohamed A. Abdelmoneum, Tanay Karnik
  • Patent number: 9820066
    Abstract: A micro speaker is disclosed. The micro speaker includes a diaphragm and a voice coil for driving the diaphragm, the diaphragm including a conductive dome a suspension surrounding the conductive dome; a conductive front cover located adjacent to and keeping a distance from the conductive dome; and a capacitor formed by the conductive dome and the conductive front cover for outputting electrical signals according to vibrations of the diaphragm and for detecting real-time replacement of the diaphragm.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: November 14, 2017
    Assignee: AAC TECHNOLOGIES PTE. LTD.
    Inventor: Yang Zhang
  • Patent number: 9820067
    Abstract: A micro speaker is disclosed. The micro speaker includes a diaphragm and a voice coil for driving the diaphragm, the diaphragm including a conductive dome and a suspension surrounding the conductive dome, the conductive dome including a plurality of units being isolated from each other; a conductive front cover located adjacent to and keeping a distance from the conductive dome, the conductive front cover including a plurality of units being isolated from each other; and a plurality of capacitors formed by the units of conductive front cover and the units of the conductive dome for outputting electrical signals according to vibrations of the diaphragm and for detecting real-time replacement of the diaphragm.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: November 14, 2017
    Assignee: AAC TECHNOLOGIES PTE. LTD.
    Inventor: Yang Zhang
  • Patent number: 9820068
    Abstract: A micro speaker is disclosed. The micro speaker includes a diaphragm and a voice coil for driving the diaphragm, the diaphragm including a conductive dome and a suspension surrounding the conductive dome, the conductive dome including a plurality of units being isolated from each other; a conductive front cover located adjacent to and keeping a distance from the conductive dome; and a plurality of capacitors formed by the units of conductive dome and the conductive front cover for outputting electrical signals according to vibrations of the diaphragm and for detecting real-time replacement of the diaphragm.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: November 14, 2017
    Assignee: AAC TECHNOLOGIES PTE. LTD.
    Inventor: Yang Zhang
  • Patent number: 9820069
    Abstract: A micro speaker is disclosed. The micro speaker includes a diaphragm and a voice coil for driving the diaphragm, the diaphragm including a conductive dome and a suspension surrounding the conductive dome; a conductive front cover located adjacent to and keeping a distance from the conductive dome, the conductive front cover including a plurality of units being isolated from each other; and a plurality of capacitors formed by the units of conductive front cover and the conductive dome for outputting electrical signals according to vibrations of the diaphragm and for detecting real-time replacement of the diaphragm.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: November 14, 2017
    Assignee: AAC TECHNOLOGIES PTE. LTD.
    Inventor: Yang Zhang
  • Patent number: 9745188
    Abstract: A microelectromechanical device may include: a semiconductor carrier; a microelectromechanical element disposed in a position distant to the semiconductor carrier; wherein the microelectromechanical element is configured to generate or modify an electrical signal in response to a mechanical signal and/or is configured to generate or modify a mechanical signal in response to an electrical signal; at least one contact pad, which is electrically connected to the microelectromechanical element for transferring the electrical signal between the contact pad and the microelectromechanical element; and a connection structure which extends from the semiconductor carrier to the microelectromechanical element and mechanically couples the microelectromechanical element with the semiconductor carrier.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: August 29, 2017
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Alfons Dehe, Stefan Barzen, Ulrich Krumbein, Wolfgang Friza, Wolfgang Klein
  • Patent number: 9699547
    Abstract: A non-directional microphone includes a housing, a microphone unit attached to the housing, and including a diaphragm that receives a sound wave, and a connector portion to which a cable connector including a cable that transmits an audio signal from the microphone unit is connected, and a pressure equalization opening that allows a back-side space of the diaphragm in the housing and an outer space to communicate is provided in the connector portion. In the non-directional microphone, the communication between the back-side space of the diaphragm and the outer space through the pressure equalization opening is cut off when the cable connector is connected to the connector portion, and the back-side space of the diaphragm communicates into the outer space through the pressure equalization opening when the cable connector is disconnected from the connector portion.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: July 4, 2017
    Assignee: Kabushiki Kaisha Audio-Technica
    Inventor: Hiroshi Akino
  • Patent number: 9693133
    Abstract: A surface mount package for a micro-electro-mechanical system (MEMS) microphone die is disclosed. The surface mount package features a substrate with metal pads for surface mounting the package to a device's printed circuit board and for making electrical connections between the microphone package and the device's circuit board. The surface mount microphone package has a cover, and the MEMS microphone die is substrate-mounted and acoustically coupled to an acoustic port provided in the surface mount package. The substrate and the cover are joined together to form the MEMS microphone, and the substrate and cover cooperate to form an acoustic chamber for the substrate-mounted MEMS microphone die.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: June 27, 2017
    Assignee: Knowles Electronics, LLC
    Inventor: Anthony D. Minervini
  • Patent number: 9676617
    Abstract: A method for a capacitive micromachined ultrasound transducer (cMUT) is provided. The method grows and patterns a diffusion barrier layer over a surface of a base layer. The diffusion barrier layer have different areas that allow different levels of diffusion penetration. A diffusion process is performed over the diffusion barrier layer such that a diffusion reactivated material reaches different depths into the base layer below the different areas. A anchor is formed using the diffusion reactivated material. The anchor has a lower portion below a major surface of the base layer and an upper portion above the major surface of the base layer. A cover layer is placed over the anchor and the base layer. At least one of the cover layer and the base layer includes a flexible layer, such that the cMUT electrodes are movable relative to each other to cause a change of the gap width.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: June 13, 2017
    Assignee: KOLO TECHNOLOGIES, INC.
    Inventor: Yongli Huang
  • Patent number: 9681234
    Abstract: A MEMS microphone structure, comprising a semiconductor substrate having a cavity, a first dielectric layer having a through-hole communicating with the cavity, a lower diaphragm electrode formed above the through-hole and at least partially attached to the upper surface of the first dielectric layer, and an upper electrode structure with an insulating layer. The upper electrode structure comprises an annular supporter, a back plate having multiple holes, and an upper electrode connection. At least a part of the annular supporter extends downwardly to the lower diaphragm electrode while the rest of the annular supporter extends downwardly to the substrate. The back plate is suspended above the lower diaphragm electrode by the annular supporter, forming an air gap therebetween. An upper electrode is embedded in the insulating layer at the back plate and is lead out by the upper electrode connection.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: June 13, 2017
    Assignee: SHANGHAI IC R&D CENTER CO., LTD
    Inventors: Chao Yuan, Xiaoxu Kang, Qingyun Zuo
  • Patent number: 9668056
    Abstract: A sound transducer structure includes a membrane, a counter electrode, and a plurality of elevations. The membrane includes a first main surface, made of a membrane material, in a sound transducing region and an edge region of the membrane. The counter electrode is made of counter electrode material, and includes a second main surface arranged in parallel to the first main surface of the membrane on a side of a free volume opposite the first main surface of the membrane. The plurality of elevations extend in the sound transducing region from the second main surface of the counter electrode into the free volume.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: May 30, 2017
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Alfons Dehe, Stefan Barzen, Marc Fueldner
  • Patent number: 9660170
    Abstract: Micromachined ultrasonic transducer (MUT) arrays capable of multiple resonant modes and techniques for operating them are described, for example to achieve both high frequency and low frequency operation in a same device. In embodiments, various sizes of piezoelectric membranes are fabricated for tuning resonance frequency across the membranes. The variously sized piezoelectric membranes are gradually transitioned across a length of the substrate to mitigate destructive interference between membranes oscillating in different modes and frequencies.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 23, 2017
    Assignee: FUJIFILM DIMATIX, INC.
    Inventor: Arman Hajati
  • Patent number: 9643212
    Abstract: Provided are capacitive micromachined ultrasonic transducer (CMUT) modules. A CMUT module includes a CMUT chip which includes a plurality of first electrode pads on a first surface thereof; a flexible printed circuit (FPC) which is disposed on the first surface of the CMUT chip, the FPC including a plurality of first holes which are configured to expose the plurality of first electrode pads; a plurality of second electrode pads formed on the FPC so as to correspond to the plurality of first electrode pads; and a plurality of wires which connect each respective one of the plurality of first electrode pads to the corresponding one of the plurality of second electrode pads.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: May 9, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dongsik Shim, Seogwoo Hong, Seokwhan Chung
  • Patent number: 9599648
    Abstract: Diaphragm 33 is provided on a top surface of silicon substrate 32, and plate unit 39 is fixed to the top surface of silicon substrate 32 so as to cover the movable electrode film with a gap. Plate unit 39 is made of an insulating material. Fixed electrode film 40 is formed on a bottom surface of plate unit 39, and diaphragm 33 and fixed electrode film 40 constitute a capacitor. In an area around plate unit 39, a whole outer peripheral edge of the top surface of silicon substrate 32 is exposed from plate unit 39. On the top surface of the substrate 32, insulating sheet 47 made of the insulating material is formed in a part of an area exposed from plate unit 39, and electrode pad 48 electrically connected to diaphragm 33 and electrode pad 49 electrically connected to fixed electrode film 40 are provided on a top surface of insulating sheet 47.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: March 21, 2017
    Assignee: OMRON Corporation
    Inventors: Takashi Kasai, Inoue Tadashi
  • Patent number: 9591408
    Abstract: A MEMS structure and a method for operation a MEMS structure are disclosed. In accordance with an embodiment of the present invention, a MEMS structure comprises a substrate, a backplate, and a membrane comprising a first region and a second region, wherein the first region is configured to sense a signal and the second region is configured to adjust a threshold frequency from a first value to a second value, and wherein the backplate and the membrane are mechanically connected to the substrate.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: March 7, 2017
    Assignee: Infineon Technologies AG
    Inventors: Alfons Dehe, Martin Wurzer
  • Patent number: 9462364
    Abstract: A capacitance type sensor has a substrate, a vibration electrode plate formed over the substrate, a back plate formed over the substrate so as to cover the vibration electrode plate, and a fixed electrode plate provided on the back plate so as to be opposite to the vibration electrode plate. At least one of the vibration electrode plate and the fixed electrode plate is separated into a plurality of regions, each of the plurality of regions being formed with a sensing section including the vibration electrode plate and the fixed electrode plate. A barrier electrode is provided between respective sensing sections of at least one adjacent pair of regions of the plurality of regions to prevent signal interference between the respective sensing sections.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: October 4, 2016
    Assignee: OMRON Corporation
    Inventors: Yuki Uchida, Takashi Kasai
  • Patent number: 9375850
    Abstract: Embodiments reduce capacitive cross-talk between micromachined ultrasonic transducer (MUT) arrays through grounding of the substrate over which the arrays are fabricated. In embodiments, a metal-semiconductor contact is formed to a semiconductor device layer of a substrate and coupled to a ground plane common to a first electrode of the transducer elements to suppress capacitive coupling of signal lines connected to a second electrode of the transducer elements.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: June 28, 2016
    Assignee: FUJIFILM DIMATIX, INC.
    Inventors: Arman Hajati, Dimitre Latev, Deane Gardner, Hung-Fai Stephen Law
  • Patent number: 9369808
    Abstract: An acoustic transducer with high sensitivity includes a base plate, a back plate and a vibrating membrane. The vibrating membrane is peripherally fixed to the base plate and covers an opening of the base plate. The back plate has a positioning member connected between the back plate and the vibrating membrane, so as to define at least one vibratile portion that is arranged annularly by a plurality of elastic members. Thereby, the vibratile portion has a reduced deformable width and increased rigidity, so can effectively improve its acoustically receiving sensitivity and signal-to-noise ratio.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: June 14, 2016
    Assignee: MERRY ELECTRONICS (SHENZHEN) CO., LTD.
    Inventors: Jen-Yi Chen, Chao-Sen Chang, Chun-Chieh Wang, Yong-Shiang Chang
  • Patent number: 9344806
    Abstract: Measures are provided for improving the acoustic properties of a component (10) having a micromechanical microphone structure realized in a layer construction (20) over a substrate (1), and for simplifying the production method. The microphone structure of such a component (10) includes a diaphragm (11) deflectable by acoustic pressure, spanning a cavity (13) that acts as a rear-side volume in the rear side of the component, and includes a stationary, acoustically permeable counter-element (12) situated over the diaphragm (11). According to the invention, the layer construction (20) has, between the diaphragm (11) and the substrate (1), an enclosing layer (3) in which there is fashioned an acoustically transparent aperture (4). The diaphragm (11) is connected to the rear-side volume (13) via this aperture in the enclosing layer (3). Under the enclosing layer (3), the rear-side volume (13) extends laterally beyond this aperture (4).
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: May 17, 2016
    Assignee: ROBERT BOSCH GMBH
    Inventor: Jochen Reinmuth
  • Patent number: 9319798
    Abstract: A capacitive transducer has a back plate including a fixed electrode, a diaphragm facing the back plate with an air gap interposed therebetween, the diaphragm acting as a movable electrode, at least a first stopper of a first protruding length, and a second stopper of a second protruding length. The first and second stoppers protrude from at least either the surface on the back plate near the air gap or the surface on the diaphragm near the air gap. The first stopper is provided at a position corresponding to a first position on the diaphragm. The second the stopper is provided at a position corresponding to a second position on the diaphragm. An amount of displacement of the diaphragm at the first position is greater than an amount of displacement of the diaphragm at the second position. The protruding length of the first stopper is shorter than the protruding length of the second stopper.
    Type: Grant
    Filed: February 16, 2015
    Date of Patent: April 19, 2016
    Assignee: OMRON Corporation
    Inventor: Akihiro Okugawa
  • Patent number: 9290374
    Abstract: The invention provides a micro-electro-mechanical device having differential capacitor of corresponding sizes, which includes a substrate; a top fixed electrode; a bottom fixed electrode; a mass, having a top electrode and a bottom electrode, wherein the top electrodes form a top capacitor with the top fixed electrode and the bottom electrodes form a bottom capacitor with the bottom fixed electrode; a top fixed electrode extension wall having an upper end connected to the top fixed electrode and a lower end connected to the substrate; and a bottom fixed electrode extension wall having a lower end connected to the substrate through the bottom electrode, wherein the bottom fixed electrode extension wall has no upper end connected to the top fixed electrode, and total areas of the top fixed electrode extension wall and the top fixed electrode facing the mass are substantially equal to total areas of the bottom fixed electrode extension wall and the bottom fixed electrode facing the mass.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: March 22, 2016
    Assignee: PIXART IMAGING INCORPORATION
    Inventor: Ming-Han Tsai
  • Patent number: 9230908
    Abstract: The present invention relates to a through-wafer via device (10) comprising a wafer (12) made of a wafer material and having a first wafer surface (12a) and a second wafer surface (12b) opposing the first wafer surface (12a). The through-wafer via device (10) further comprises a plurality of side by side first trenches (14) provided with a conductive material and extending from the first wafer surface (12a) into the wafer (12) such that a plurality of spacers (16) of the wafer material are formed between the first trenches (14). The through-wafer via device (10) further comprises a second trench (18) provided with the conductive material and extending from the second wafer surface (12b) into the wafer (12), the second trench (18) being connected to the first trenches (14).
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: January 5, 2016
    Assignee: Koninklijke Philips N.V.
    Inventors: Ronald Dekker, Marcelis Bout, Marcel Mulder, Ruediger Mauczok
  • Patent number: 9226079
    Abstract: A microelectromechanical sensing structure for a capacitive acoustic transducer, including: a semiconductor substrate; a rigid electrode; and a membrane set between the substrate and the rigid electrode, the membrane having a first surface and a second surface, which are in fluid communication, respectively, with a first chamber and a second chamber, respectively, the first chamber being delimited at least in part by a first wall portion and a second wall portion formed at least in part by the substrate, the second chamber being delimited at least in part by the rigid electrode, the membrane being moreover designed to undergo deformation following upon incidence of pressure waves and facing the rigid electrode so as to form a sensing capacitor having a capacitance that varies as a function of the deformation of the membrane. The structure moreover includes a beam, which is connected to the first and second wall portions and is designed to limit the oscillations of the membrane.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: December 29, 2015
    Assignee: STMicroelectronics S.r.l.
    Inventors: Alessandra Sciutti, Matteo Perletti, Sebastiano Conti, Roberto Carminati
  • Patent number: 9173047
    Abstract: The invention features methods for the manufacture of electrical components such as ultrasound transducers. In particular, the inventions provides methods of patterning electrodes, e.g., in the connection of an ultrasound transducer to an electrical circuit; methods of depositing metal on surfaces; and methods of making integrated matching layer for an ultrasound transducer. The invention also features ultrasound transducers produced by the methods described herein.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: October 27, 2015
    Assignee: FUJIFILM SonoSite, Inc.
    Inventors: Marc Lukacs, Nicholas Christopher Chaggares, Desmond Hirson, Guofeng Pang
  • Patent number: 9166502
    Abstract: The present invention provides a technology for decreasing a dispersion of the performance among electromechanical transducers each having through wiring. A method for manufacturing an electromechanical transducer includes: obtaining a structure in which an insulative portion having a through hole therein is bonded onto an electroconductive substrate; filling the through hole with an electroconductive material to form a through wiring which is electrically connected with the electroconductive substrate; and using the electroconductive substrate as a first electrode, forming a plurality of vibrating membrane portions including a second electrode, which opposes to the first electrode through a plurality of gaps, on an opposite side of the first electrode to the side having the insulative portion, to thereby forming a plurality of cells.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: October 20, 2015
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Yoshihiro Hasegawa, Yasuyoshi Takai
  • Patent number: 9118994
    Abstract: A capacitance sensor has a substrate, a vibration electrode plate formed over an upper side of the substrate, a back plate formed over the upper side of the substrate to cover the vibration electrode plate, and a fixed electrode plate arranged on the back plate facing the vibration electrode plate. At least one of the vibration electrode plate and the fixed electrode plate is divided into a plurality of regions. A sensing unit configured by the vibration electrode plate and the fixed electrode plate is formed on each of the divided regions. An isolation portion that suppresses vibration from being propagated is formed on the back plate to partition the sensing units from each other.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: August 25, 2015
    Assignee: OMRON Corporation
    Inventors: Yuki Uchida, Takashi Kasai
  • Patent number: 9085012
    Abstract: For disposing projections of insulating film protruding into a hollow part in CMUT in order to suppress injection of electrical charge into the insulating film due to contact of a lower surface of a membrane with a lower surface of the hollow part, there are provided a structure of disposed projections preferred for suppressing increase in driving voltage for CMUT and decrease in receiving sensitivity, and an ultrasonic diagnostic apparatus using the same.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: July 21, 2015
    Assignee: HITACHI MEDICAL CORPORATION
    Inventors: Shuntaro Machida, Takashi Kobayashi
  • Patent number: 9061889
    Abstract: A MEMS microphone has a support surface, a microphone substrate over the support surface and an assembly of a microphone membrane and spaced back electrode supported over the substrate. The substrate has an opening beneath the assembly. The interface between the support surface and the substrate comprises a plurality of discrete spaced portions. This structure provides some resilience to differential expansion and contraction that can arise during processing. The support surface can then be a different material to the substrate, for example a PCB laminate as the support surface and silicon as the substrate.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: June 23, 2015
    Assignee: NXP, B.V.
    Inventor: Robert J. P. Lander
  • Patent number: 9066180
    Abstract: A micromechanical microphone structure configured as a layered structure includes: a semiconductor substrate; a diaphragm structure having an acoustically active diaphragm which at least partially spans a sound opening in the back side of the substrate and is provided with a movable electrode of a microphone capacitor, which diaphragm structure has openings via which pressure compensation occurs between the back side and the front side of the diaphragm; a stationary acoustically permeable counterelement having vents, which counterelement is situated in the layered structure above the diaphragm and which functions as a carrier for a nonmovable electrode of the microphone capacitor; and at least one ridge-like structural element which is situated at the outer edge area of the diaphragm, and which protrudes from the diaphragm plane into corresponding recesses in an adjoining layer.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: June 23, 2015
    Assignee: ROBERT BOSCH GMBH
    Inventors: Jochen Zoellin, Christoph Schelling
  • Patent number: 9036827
    Abstract: Ultrasonic signals are used to transmit sounds from a modulated ultrasonic generator to other locations from which the sounds appear to emanate. In particular, an ultrasonic carrier is modulated with an audio signal and demodulated on passage through the atmosphere. The carrier frequencies are substantially higher than those of prior systems, e.g., at least 60 kHz, and the modulation products thus have frequencies which are well above the audible range of humans; as a result, these signals are likely harmless to individuals who are within the ultrasonic fields of the system. The signals may be steered to moving locations, and various measures are taken to minimize distortion and maximize efficiency.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: May 19, 2015
    Assignee: Massachusetts Institute of Technology
    Inventor: F. Joseph Pompei
  • Patent number: 9035532
    Abstract: A sensor assembly including one or more capacitive micromachined ultrasonic transducer (CMUT) microarray modules which are provided with a number of individual transducers. The microarray modules are arranged to simulate or orient individual transducers in a hyperbolic paraboloid geometry. The transducers/sensor are arranged in a rectangular or square matrix and are activatable individually, selectively or collectively to emit and received reflected beam signals at a frequency of between about 100 to 170 Hz.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 19, 2015
    Assignee: UNIVERSITY OF WINDSOR
    Inventor: Sazzadur Chowdhury
  • Patent number: 9030919
    Abstract: The invention provides a broadband ocean bottom seismograph with a single glass sphere. The seismograph comprises an anchor at its bottom having a frame structure with a rigid ring for accommodating a seismometer chamber. The seismometer chamber comprises a bell-shaped protective hood opening downward where a seismometer sealed chamber is suspended to the inner surface of the protective hood by cables. The bottom of the seismometer sealed chamber protrudes through the opening of the protective hood to be seated in direct contact with the seabed. A functional chamber comprises a plastic instrument chamber and a glass global instrument chamber secured in the plastic chamber. The plastic instrument chamber is fixedly mounted on top of the protective hood. A release mechanism is mounted on the top of the functional chamber, and connected to frame of the anchor via fusible tensioning steel wires.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 12, 2015
    Assignee: Institute of Geology and Geophysics, Chinese Academy
    Inventors: Qingyu You, Tianyao Hao, Chunlei Zhao
  • Patent number: 8987844
    Abstract: A MEMS capacitive transducer with increased robustness and resilience to acoustic shock. The transducer structure includes a flexible membrane supported between a first volume and a second volume, and at least one variable vent structure in communication with at least one of the first and second volumes. The variable vent structure includes at least one moveable portion which is moveable in response to a pressure differential across the moveable portion so as to vary the size of a flow path through the vent structure. The variable vent may be formed through the membrane and the moveable portion may be a part of the membrane, defined by one or more channels, that is deflectable away from the surface of the membrane. The variable vent is preferably closed in the normal range of pressure differentials but opens at high pressure differentials to provide more rapid equalization of the air volumes above and below the membrane.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: March 24, 2015
    Assignee: Cirrus Logic International (UK) Limited
    Inventors: Colin Robert Jenkins, Tsjerk Hans Hoekstra, Euan James Boyd