Of Noncompressional Acoustic Wave Energy Patents (Class 367/31)
  • Patent number: 7463550
    Abstract: Methods and apparatus facilitating radial profiling of shear slowness or shear modulus c66 in the cross-sectional plane of a borehole in an anisotropic formation with the vertical X3-axis are disclosed. According to some aspects of the invention, sonic tool bias is accounted for and removed from radial profiles. According to some aspects, sonic tool bias is accounted for by modeling the sonic tool as a heavy-fluid.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: December 9, 2008
    Assignee: Schlumberger Technology Corporation
    Inventors: Bikash K. Sinha, Jahir Pabon, Mare Yamamoto
  • Publication number: 20080247270
    Abstract: Measurements of acoustic velocities are made through a case borehole in the absence and presence of an applied magnetic field. A formation resistivity parameter may be estimated from differences in the acoustic velocities.
    Type: Application
    Filed: April 4, 2007
    Publication date: October 9, 2008
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Leonty A. Tabarovsky, Vitaly N. Dorovsky, Yuriy A. Nefedkin, Kholmatzhon Imomnazarov
  • Publication number: 20080062814
    Abstract: Fracture- and stress-induced sonic anisotropy is distinguished using a combination of image and sonic logs. Borehole image and sonic logs are acquired via known techniques. Analysis of sonic data from monopole P- and S-waves, monopole Stoneley and cross-dipole shear sonic data in an anisotropic formation are used to estimate at least one compressional and two shear moduli, and the dipole fast shear direction. Fracture analysis of image logs enables determination of fracture types and geometrical properties. Geological and geomechanical analysis from image logs provide a priori discrimination of natural fractures and stress-induced fractures. A forward quantitative model of natural fracture- and stress-induced sonic anisotropy based on the knowledge of fracture properties interpreted from image logs allows the computation of the fast-shear azimuth and the difference in slowness between the fast- and slow-shear. The misfit between predicted and observed sonic measurements (i.e.
    Type: Application
    Filed: October 27, 2006
    Publication date: March 13, 2008
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Romain C.A. Prioul, John Adam Donald, Randolph Koepsell, Tom R. Bratton, Peter Kaufman, Claude Signer
  • Publication number: 20070280048
    Abstract: A phased array of transducers is used to generate elastic waves into the earth formation in a selected direction. The impedance measured at the input to the transducer array is indicative of the elastic impedance of the earth formation in the selected direction.
    Type: Application
    Filed: June 6, 2006
    Publication date: December 6, 2007
    Applicant: Baker Hughes Incorporated
    Inventors: Vladimir Dubinsky, Xiao Ming Tang, Yibing Zheng, Douglas J. Patterson
  • Patent number: 7099810
    Abstract: An acoustic tool that provides a reduced tool mode and enhanced accuracy for estimating shear wave propagation slowness in slow formations is disclosed. In one embodiment, the acoustic tool comprises: an acoustic source, an array of acoustic receivers, and an internal controller. The acoustic source excites waves that propagate in a quadrupole mode. The internal controller processes signals from the array of acoustic receivers to determine a peak phase semblance having a slowness value that varies with frequency. The minimum slowness value associated with the peak phase semblance provides an accurate estimate of the shear wave propagation slowness. The acoustic source preferably includes four source elements. The elements that are 90° apart are preferably driven in inverse-phase to obtain the quadrupole excitation pattern.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: August 29, 2006
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Batakrishna Mandal
  • Patent number: 7095676
    Abstract: Tube waves are used to locate and characterize a solids deposit inside a fluid-filled pipe. An acoustic tube wave pulse is transmitted along the pipe. On encountering a solids deposit, the tube wave pulse is perturbed and partially reflected by changes in the boundary conditions between the fluid and the pipe to produce two deposit-modified acoustic waves. One is a perturbed wave travelling in the same direction as the tube wave pulse. The other is a reflected wave travelling in the opposite direction. One of these deposit-modified acoustic waves is received to produce an acoustic signal. Accumulated acoustic signals are processed by Fast-Fourier Transform to produce frequency-based digital data. Phase data from the frequency-based digital data is inverted to produce slowness spectrum data. Power data from the frequency-based digital data is inverted to produce attenuation spectrum data. Spectrum data is used to locate a solids deposit in the pipe.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: August 22, 2006
    Assignee: Schlumberger Technology Corporation
    Inventors: Ralph M. D'Angelo, Kenneth W. Winkler, David L. Johnson, Gale Gustavson, Oliver C. Mullins
  • Patent number: 7042802
    Abstract: A method for determining the maximum and minimum horizontal stresses of formations surrounding a borehole includes the following steps: suspending a logging device in the borehole; transmitting sonic energy from the logging device to establish flexural waves in the formations; receiving, at the logging device, sonic energy from the flexural waves, and producing, from the received sonic energy, measurement signals at a number of frequencies; determining, at the number of frequencies, the fast and slow flexural wave velocities in the formations, to obtain fast and slow flexural velocity dispersions; establishing a model of formation stresses in which stresses of a loaded state are represented by the sum of an omnidirectional hydrostatically loaded mean reference stress, a vertical stress perturbation, and maximum and minimum horizontal stress perturbations; establishing an inversion model that includes inputs from the fast and slow flexural velocity dispersions and also includes unknown horizontal perturbations
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: May 9, 2006
    Assignee: Schlumberger Technology Corporation
    Inventor: Bikash K. Sinha
  • Patent number: 7020045
    Abstract: The invention relates to a source block with a downhole seismic source for use in seismic acquisition during production, comprising: a device for locking the block in a first position spaced from the well casing, a device for releasing the locking device, a device for urging the source block against the casing. The source block is characterized by comprising, a fluid circuit for controlling the operation of the locking and releasing devices, this fluid circuit comprising a rupture disc.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: March 28, 2006
    Assignee: Read ASA
    Inventor: Helge Brandsæter
  • Patent number: 6920082
    Abstract: The present invention is a method of determining formation horizontal shear wave velocity, formation transverse isotropy and an effective logging tool modulus. The method comprises determining an effective logging tool modulus by modeling the logging tool as a fluid filled cylindrical shell. Measured Stoneley-wave slowness values are acquired for a formation. A horizontal formation shear wave velocity, Vsh, is calculated as a function of the measured Stoneley-wave slowness and an estimated Stoneley-wave slowness wherein the estimated average Stoneley-wave slowness is computed using the effective tool modulus. A difference between the measured Stoneley-wave slowness and the estimated Stoneley-wave slowness is minimized and the horizontal shear-wave velocity value for the minimized difference is output. Transverse isotropy may be then be calculated as a function of the determined Vsh and vertical shear wave velocity, Vsv, determined from standard logging techniques.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: July 19, 2005
    Assignee: Baker Hughes Incorporated
    Inventor: Xiao Ming Tang
  • Patent number: 6868036
    Abstract: An acoustic logging tool includes external baffle assemblies forming a waveguide structure at the acoustic source. The logging tool is designed for acoustic logging of earth formation surrounding a borehole. The external baffle assemblies form a waveguide structure that is designed to increase signal to noise ratio in an acoustic logging tool using dipole or other acoustic waves. In a preferred embodiment, the acoustic logging tool includes an elongated transmitter module, and a receiver sonde having a linear array of acoustic receivers. The transmitter module includes first and second cylindrical masses spaced apart along the axis by first and second spacers. The first cylindrical mass defines a first circular facing surface and a first cylindrical outer surface. The second cylindrical mass defines a second circular facing surface and a second cylindrical outer surface.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: March 15, 2005
    Assignee: Schlumberger Technology Corporation
    Inventors: Canyun Wang, Jahir Pabon
  • Patent number: 6791899
    Abstract: The patent discloses a signal processing technique for determining the fast and slow shear wave polarizations, and their orientation, for acoustic waves in an anisotropic earth formation. The signal processing method decomposes composite received waveforms a number of times using a number of different strike angles. The decomposed signals are used to create estimated source signals. The estimated source signals are compared in some way to obtain an objective function. Locations in a plot where the objective function reaches minimum values are indicative of the acoustic velocity of the fast and slow polarizations within the formation.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: September 14, 2004
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Joakim O. Blanch, Georgios L. Varsamis
  • Patent number: 6766252
    Abstract: The specification discloses a signal processing technique applicable in acoustic logging devices. The method involves receiving a set of acoustic signals and converting those received signals to their frequency domain representation. Values of the frequency domain representations along constant frequencies are correlated to produce a correlation matrix. Eigenvectors and eigenvalues of the correlation matrix are determined, and the eigenvectors corresponding to signals of interest are removed to create a subspace. Thereafter, a series of test vectors, which test vectors embody a series of estimated slowness values, are applied to the subspace vector. If the test vector maps to or may be represented by the subspace, then the estimated slowness embodied in the test vector maps to noise of the system and is not the correct value for the formation. If, however, the test vector does not map to the subspace, then the slowness embodied in the test vector approximates the actual formation slowness.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: July 20, 2004
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Joakim O. Blanch, Georgios L. Varsamis
  • Patent number: 6747914
    Abstract: An acoustic system and method for monitoring a hydrocarbon reservoir. Wellbore tube wave energy may be created by natural or ambient sources or tube waves may be excited intentionally. Wellbore tube wave energy is converted to seismic body wave energy at minor borehole obstructions or irregularities. Each obstruction or discontinuity position along the borehole has an associated unique waveform source coda that may be measured for processing the body waves radiated into the earth formation surrounding the well bore. A plurality of sensors detects the radiated seismic energy after the seismic body wave energy has transited intervening earth formations. The system may be employed for permanent monitoring of mineral resources and resource management. Measurements of reservoir characteristics may be acquired at many different times over the productive life of a reservoir.
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: June 8, 2004
    Assignee: Baker Hughes Incorporated
    Inventor: Peter S. Aronstam
  • Patent number: 6714480
    Abstract: A method for determining properties of a transverse isotropic region of earth formations traversed by a wellbore having substantially vertical and deviated sections therethrough, including measuring sonic velocity properties in formations surrounding the substantially vertical section of the wellbore; measuring sonic velocity properties in formations surrounding the deviated section of the wellbore; and determining, from the measured velocities, all of the transverse isotropic elastic constants of the region.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: March 30, 2004
    Assignee: Schlumberger Technology Corporation
    Inventors: Bikash K. Sinha, Colin Michael Sayers, Takeshi Endo
  • Patent number: 6681199
    Abstract: A product-sum operation portion for performing a product-sum operation (wavelet transformation) with respect to an input time-series signal by using as a base of integral a complex function in which the imaginary number portion is &pgr;/2 shifted in phase from the real number portion, a phase calculation portion for calculating a phase &thgr; from the ratio between the real number portion and the imaginary number portion of a result of the product-sum operation, a peak time detection portion for detecting a time point at which the calculated phase &thgr; changes from 2&pgr; to zero, as a peak time, are provided. Since the wavelet transformation is performed by using a basic wavelet function that is localized in terms of time and frequency, a peak time can be promptly detected. Furthermore, since a differential operation is not employed but the product-sum operation is performed, false detection caused by noises or the like can be prevented.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: January 20, 2004
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Katsuji Imai, Motomi Iyoda, Masuji Oshima
  • Publication number: 20040001389
    Abstract: The present invention is a method of determining formation horizontal shear wave velocity, formation transverse isotropy and an effective logging tool modulus. The method comprises determining an effective logging tool modulus by modeling the logging tool as a fluid filled cylindrical shell. Measured Stoneley-wave slowness values are acquired for a formation. A horizontal formation shear wave velocity, Vsh, is calculated as a function of the measured Stoneley-wave slowness and an estimated Stoneley-wave slowness wherein the estimated average Stoneley-wave slowness is computed using the effective tool modulus. A difference between the measured Stoneley-wave slowness and the estimated Stoneley-wave slowness is minimized and the horizontal shear-wave velocity value for the minimized difference is output. Transverse isotropy may be then be calculated as a function of the determined Vsh and vertical shear wave velocity, Vsv, determined from standard logging techniques.
    Type: Application
    Filed: June 27, 2002
    Publication date: January 1, 2004
    Applicant: Baker Hughes
    Inventor: Xiao Ming Tang
  • Patent number: 6639871
    Abstract: A method of processing seismic traces corresponding to two modes of propagation in the subsoil, the method being characterized by the following steps: determining at least one pair of correlated events from the seismic traces corresponding to the two modes respectively; determining the ratio of the differences between the vertical travel times Ts and Tp in the S domain and in the P domain, corresponding to said correlated pairs of events; and determining the values of Ts and Tp over the time interval defined by the two pairs of correlated events so that throughout said time interval, the ratio rt=Ts/Tp is equal to the ratio Vp/Vs of the speeds in the P domain and in the S domain, and so that the mean value of said ratio r over said time interval corresponds to the ratio of the differences between the vertical travel times corresponding to the pairs of correlated events.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: October 28, 2003
    Assignee: Compagnie Generale de Geophysique
    Inventors: Robert Garotta, Pierre-Yves Granger
  • Patent number: 6614716
    Abstract: A method for determining properties of an earth formation surrounding an earth borehole that involves: providing a logging device moveable through the borehole; transmitting sonic energy into the formation; receiving sonic energy that has traveled through the formation; producing signals representative of the received sonic energy; determining whether the formation is anisotropic; determining whether the formation is inhomogeneous; and outputting a characterization of the formation as one of the following types: isotropic/homogeneous, anisotropic/homogeneous, isotropic/inhomogeneous, and anisotropic/inhomogeneous.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: September 2, 2003
    Assignee: Schlumberger Technology Corporation
    Inventors: Thomas Plona, Bikash K. Sinha, Michael Kane, Ramachandra Ganesh Shenoy, Sandip Bose
  • Patent number: 6611761
    Abstract: A method for determining a radial profile of sonic shear velocity of formations surrounding a fluid-containing borehole, including: suspending a logging device in the borehole; transmitting sonic energy from the logging device to establish flexural waves in the formation; receiving sonic energy from the flexural waves and producing, from the received sonic energy, measurement signals at a number of frequencies; determining, at each frequency, the flexural wave velocity in the formation; deriving sonic compressional and shear velocities of the substantially undisturbed formation; deriving sonic compressional velocity of the borehole fluid; and determining the radial profile of sonic shear velocity from the derived compressional and shear velocities of the substantially undisturbed formation, the derived compressional velocity of the borehole fluid, and the flexural wave velocities.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: August 26, 2003
    Assignee: Schlumberger Technology Corporation
    Inventors: Bikash K. Sinha, Robert Burridge, Michael R. Kane
  • Publication number: 20030151975
    Abstract: The present invention is a method of estimating formation properties by analyzing acoustic waves that are emitted from and received by a bottom hole assembly.
    Type: Application
    Filed: December 13, 2002
    Publication date: August 14, 2003
    Inventors: Minyao Zhou, Hans Thomann, Stuart Ronald Keller
  • Patent number: 6510104
    Abstract: A logging system has a sonde in a borehole, which transmits sonic waves with one or more dipole sources to optimally excite dipole flexural mode sonic waves in the borehole. The system first determines the Airy frequency of the borehole. Then, the dipole sources are fired at a dipole firing frequency selected based on the Airy frequency.
    Type: Grant
    Filed: June 7, 2000
    Date of Patent: January 21, 2003
    Assignee: Schlumberger Technology Corporation
    Inventor: Toru Ikegami
  • Patent number: 6415648
    Abstract: The present invention provides a method that is useful in determining the permeability of rock within a subterranean formation surrounding a borehole. The method involves the establishment of a compressional wave in the borehole rock of interest and the subsequent detection of a slow compressional wave that is directly related to the permeability of the rock. The slow compressional wave typically has a velocity of approximately 900 m/s. In contrast, the compressional waves used to make borehole measurements in the past have, velocities of approximately 2000-3000 m/s.
    Type: Grant
    Filed: February 18, 1999
    Date of Patent: July 9, 2002
    Assignee: Colorado School of Mines
    Inventor: Maximiliaan Peeters
  • Patent number: 6351991
    Abstract: A method for determining unknown stress parameters in earth formation measures velocities in four sonic transmissions modes (compression, fast shear, slow shear and Stoneley) at a series of depths. Relationships between measured velocities and other measured values, two independent linear constants, and three nonlinear constants associated with equations of motion for pre-stressed isotropic materials are expressed in a set of four or five velocity difference equations derived from non-linear continuum mechanics. The velocity difference equations are solved using inversion for useful stress parameters, including maximum horizontal stress, minimum horizontal stress, pore pressure, and change in pore pressure over time.
    Type: Grant
    Filed: June 5, 2000
    Date of Patent: March 5, 2002
    Assignee: Schlumberger Technology Corporation
    Inventor: Bikash K. Sinha
  • Patent number: 6209640
    Abstract: The present invention provides a method for forming wellbores. In one method, one or more wellbores are drilled along preplanned paths based in part upon seismic surveys performed from the surface. An acoustic transmitter conveyed in such wellbores transmits acoustic signals at a one or more frequencies within a range of frequencies at a plurality of spaced locations. A plurality of substantially serially spaced receivers in the wellbores and/or at surface receive signals reflected by the subsurface formations. The sensors may be permanently installed in the boreholes and could be fiber optic devices. The receiver signals are processed by conventional geophysical processing methods to obtain information about the subsurface formations. This information is utilized to update any prior seismographs to obtain higher resolution seismographs. The improved seismographs are then used to determine the profiles of the production wellbores to be drilled.
    Type: Grant
    Filed: March 22, 2000
    Date of Patent: April 3, 2001
    Assignee: Baker Hughes Incorporated
    Inventors: Nils Reimers, John W. Harrell, James V. Leggett, III, Paulo S. Tubel
  • Patent number: 6176344
    Abstract: A method and system for determining the azimuth position and distance of a reflector or subterranean reflecting surface of a formation bed outside a borehole. A monopole transmitter may be used with a monopole/dipole receiver pair, or a monopole transmitter and a dipole transmitter pair may be used with a monopole receiver in accordance with the invention to determine the azimuth position and distance of the reflector. Azimuth resolution is improved through use of multiple receiver elements at equal radius about the longitudinal axis of a borehole tool, or through mathematical rotation of receiver elements.
    Type: Grant
    Filed: October 27, 1997
    Date of Patent: January 23, 2001
    Assignee: Western Atlas International, Inc.
    Inventor: Robert A. Lester
  • Patent number: 6114972
    Abstract: An apparatus for obtaining resistivity readings of the earth surrounding a wellbore (32) to determine the downhole location of the apparatus or to generate a log is disclosed. The apparatus comprises an electromagnetic transmitter (40) for transmitting electromagnetic waves (42, 46) into the earth and an electronics package (122). The electronics package includes a power source (200) providing a current to the electromagnetic transmitter (40), a current sensing device (204) for detecting the current drawn by the electromagnetic transmitter (40), a sample and hold circuit (210) for sampling the current drawn by the electromagnetic transmitter (40) and a memory device (214) for storing the current draw information.
    Type: Grant
    Filed: January 20, 1998
    Date of Patent: September 5, 2000
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Harrison C. Smith
  • Patent number: 6094400
    Abstract: A method for determining a representation of an anisotropic earth formation is described, wherein the inversion step for generating the representation from recorded seismic data is performed using several values of a pre-defined anisotropy parameter addition to components of the moveout velocity. The anisotropy parameter is preferably introduced into the moveout equation or dispersion relation, which in turn is used in the inversion process.
    Type: Grant
    Filed: March 20, 1997
    Date of Patent: July 25, 2000
    Assignee: Schlumberger Technology Corporation
    Inventor: Luc Thomas Ikelle
  • Patent number: 6065538
    Abstract: The present invention provides a method for forming wellbores. In one method, one or more wellbores are drilled along preplanned paths based in part upon seismic surveys performed from the surface. An acoustic transmitter conveyed in such wellbores transmits acoustic signals at a one or more frequencies within a range of frequencies at a plurality of spaced locations. A plurality of substantially serially spaced receivers in the wellbores and/or at surface receive signals reflected by the subsurface formations. The sensors may be permanently installed in the boreholes and could be fiber optic devices. The receiver signals are processed by conventional geophysical processing methods to obtain information about the subsurface formations. This information is utilized to update any prior seismographs to obtain higher resolution seismographs. The improved seismographs are then used to determine the profiles of the production wellbores to be drilled.
    Type: Grant
    Filed: October 9, 1997
    Date of Patent: May 23, 2000
    Assignee: Baker Hughes Corporation
    Inventors: Nils Reimers, John W. Harrell, James V. Leggett, III, Paulo S. Tubel
  • Patent number: 6061633
    Abstract: For various reasons it may be desirable to change the way a sonde is programmed to behave and respond to the data it receives and operates on, and at present each time this must be done it has been necessary to lift the sonde out of the borehole and then disassemble it to permit the removal of the old ROM and its replacement with a new ROM storing the new program. The operability and efficiency of such an arrangement is poor. To deal with this, the present invention proposes that the sonde also includes: signal processing means for processing a sampled detection signal according to a predetermined signal processing program; first memory means for storing that signal processing program; and second memory means storing a writing program for writing the signal processing program in the first memory means according to a command from the ground surface processing apparatus.
    Type: Grant
    Filed: April 12, 1999
    Date of Patent: May 9, 2000
    Assignee: Schlumberger Technology Corporation
    Inventors: Masafumi Fukuhara, Takeaki Nakayama
  • Patent number: 6061298
    Abstract: Methods and systems are provided for orientation of multicomponent geophones, for rotating traces, and for correcting polarity differences between traces. According to an example embodiment, a receiver orientation angle is assigned, based on a determination of an angle between one or more horizontal components and one or more sources.
    Type: Grant
    Filed: June 8, 1998
    Date of Patent: May 9, 2000
    Assignee: PGS Tensor, Inc.
    Inventors: Eric Madtson, Jianchao Li, Mehmet Suat Altan, Xianhuai Zhu
  • Patent number: 6058073
    Abstract: A computer-implemented method, and system implementing the method, of performing impedance inversion of seismic survey data are disclosed. Sonic and density well logs are used to generate an elastic impedance model, at selected angles of incidence or offset range, using an expression for elastic impedance that depends upon the measured or estimated compressional velocity, shear velocity, and density of the subsurface layers in the survey region. The elastic impedance expression also includes a reference density value, and is dependent upon the ray parameter (or angle of incidence). This elastic impedance model is used, for example by way of a pseudo-density log, in estimating the input wavelet, and in carrying out an impedance inversion of the seismic survey over the entire survey region, for at least two angles of incidence.
    Type: Grant
    Filed: March 30, 1999
    Date of Patent: May 2, 2000
    Assignee: Atlantic Richfield Company
    Inventor: Bruce J. VerWest
  • Patent number: 6018496
    Abstract: A method and apparatus for determining the hydraulic isolation of layers in an earth formation. The characteristics of various interfaces between the materials in the borehole are evaluated. An acoustic investigation is performed by directing an acoustic signal at a radial segment of the borehole. The signal passes through the casing and the fill material and produces a resulting signal which has travelled along a path encountering various interfaces in the borehole. This signal is processed to make hydraulic isolation determinations.
    Type: Grant
    Filed: May 17, 1995
    Date of Patent: January 25, 2000
    Assignee: Schlumberger Technology Corporation
    Inventors: Fred E. Stanke, Ralph M. D'Angelo
  • Patent number: 5999484
    Abstract: A method of analyzing Stoneley waveforms obtained in a well logging operation, includes analyzing the waveforms by means of multiparameter inversion using one or more externally provided parameters to obtain borehole fluid slowness and borehole fluid attenuation. and analyzing the Stoneiey waveforms by multiparameter inversion using the borehole fluid slowness and borehole fluid attenuation and the externally provided parameters so as to determine a parameter, such as mobility, related to permeability of the formation being logged. Complex conjugate back propagation [using a maximum likelihood/least mean squares error estimator or] by applying Prony's method and fitting model-derived dispersion curves can be used to obtain mobility.
    Type: Grant
    Filed: March 19, 1997
    Date of Patent: December 7, 1999
    Assignee: Schlumberger Technology Corporation
    Inventors: Christopher V. Kimball, Pawel Lewicki
  • Patent number: 5995447
    Abstract: A system for acoustically imaging a target region behind an acoustically reflective layer includes a transducer configuration for acquiring acoustic image data from the reflective layer and target region, wherein the reflective layer and target region are divided into voxels circumferentially disposed about a central point. The system includes a mechanism for processing the data comprising a transmitting transducer for transmitting a first acoustic pulse, a receiving transducer for detecting a first arrival of a first acoustic reflection signal associated with the first acoustic pulse, and a mechanism for suppressing multiple reflected signals from the acoustic reflection signal associated with the first acoustic pulse, wherein the suppressing mechanism facilitates the acquisition of image data from the target region.
    Type: Grant
    Filed: May 14, 1997
    Date of Patent: November 30, 1999
    Assignee: Gas Research Institute
    Inventors: Batakrishna Mandal, James R. Birchak, James E. Masino, John W. Minear, Thomas E. Ritter
  • Patent number: 5926437
    Abstract: A seismic source and seismic detector are placed within a wellbore, and are secured in generally fixed relation within the wellbore. Multiple sources can be utilized, or multiple detectors may be utilized, within a single wellbore. Also, additional sources or detectors may be placed in adjacent wells. The source may be periodically actuated to obtain seismic data, and subsequent actuation may be directly compared with prior actuations to evaluate reservoir characteristics.
    Type: Grant
    Filed: April 8, 1997
    Date of Patent: July 20, 1999
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Edgar J Ortiz
  • Patent number: 5877996
    Abstract: Transducer arrangement for use as receivers in acoustic borehole measurements, in particular for the purpose of geological steering, stratigraphic imaging and control during drilling of deviated and horizontal wells, whereby transducer sensitivity is focused generally in radial directions normal to the drill string axis in close proximity to the drill bit (45). Two separate and substantially similar transducer elements are adapted to be located at substantially the same axial position along the drill string axis. The transducer elements having their output terminals interconnected with opposite polarities, so as to have a combined minimum response to incident acoustic waves and vibrations being identical at both transducer elements.
    Type: Grant
    Filed: July 15, 1996
    Date of Patent: March 2, 1999
    Assignee: Den Norske Stats Oljeselskap A.S
    Inventors: Asbj.o slashed.rn Krokstad, Svein Mjaaland, Erik Iversen Nakken
  • Patent number: 5838633
    Abstract: A method of estimating formation in-situ stress magnitude and nonlinear constants of an earth formation traversed by a borehole includes analyzing the flexural wave dispersions for dipole sources aligned parallel and perpendicular to the maximum far-field compressive stress direction together with the Stoneley wave dispersion derived from a monopole source. In the presence of formation and borehole stresses above and beyond those in an assumed isotropic reference state, the borehole flexural and Stoneley wave velocity dispersions are also functions of the formation stresses and nonlinear constants. A multi-frequency inversion of the flexural or Stoneley wave velocity dispersions over a selected frequency band is performed to determine the uniaxial stress magnitude S and the quantities ##EQU1## where c.sub.111, c.sub.112, and c.sub.123 are the formation non-linear constants.
    Type: Grant
    Filed: January 27, 1997
    Date of Patent: November 17, 1998
    Assignee: Schlumberger Technology Corporation
    Inventor: Bikash K. Sinha
  • Patent number: 5808963
    Abstract: Parametric inversion is used to advantage in a technique and apparatus for borehole logging to determine properties of anisotropic formations, and a dispersion function that varies with frequency is used in the modeling of the formations.
    Type: Grant
    Filed: January 29, 1997
    Date of Patent: September 15, 1998
    Assignee: Schlumberger Technology Corporation
    Inventor: Cengiz Esmersoy
  • Patent number: 5781502
    Abstract: The present invention relates to a filtering method for discriminating elliptical waves among other waves propagating in a material medium (such as a geologic formation for example) by a combined processing of the components measured along several axes of the waves received by a multi-axis receiver. It comprises detection by at least one receiver (R) (consisting for example of one or several directional detectors such as geophones or accelerometers coupled with said formation) of the wave components in at least two orthogonal directions. A determination (by a processing assembly (1)) of the wavelet transforms of the signals is produced by this receiver (R) in response to the waves received and selection of the amplitudes of the signals resulting from this wavelet transformation is performed according to a criterion based on the ratio of the respective amplitudes thereof. The method can be used for the filtering of surface or tube waves within the scope of a seismic exploration.
    Type: Grant
    Filed: July 24, 1996
    Date of Patent: July 14, 1998
    Assignee: Institut Francais du Petrole
    Inventor: Marc Becquey
  • Patent number: 5712829
    Abstract: A method for determining orientations and velocities of slow and fast waves in an anisotropic earth formation. Signals are used from an acoustic logging tool including dipole transmitters and receiver arrays. An initial value of angle subtended between orientation of the fast wave and one of the transmitters is selected. A waveform of a fast principal wave and slow principal wave at first and second selected receiver positions are calculated from received signals at each of these positions and the selected subtended angle. A derivative waveform with respect to subtended angle is calculated for both fast and slow principal waves. An initial velocity of slow waves is selected and the calculated waveforms of the slow principal wave and its derivative waveform at the first position are time shifted by a time corresponding to distance between first and second receiver positions and the selected value of velocity.
    Type: Grant
    Filed: August 14, 1996
    Date of Patent: January 27, 1998
    Assignee: Western Atlas International, Inc.
    Inventors: Xiaoming Tang, Raghu K. Chunduru
  • Patent number: 5687138
    Abstract: A method of analyzing Stoneley waveforms obtained in a well logging operation, includes analyzing the waveforms by means of multiparameter inversion using one or more externally provided parameters to obtain borehole fluid slowness and borehole fluid attenuation, and analyzing the Stoneley waveforms by multiparameter inversion using the borehole fluid slowness and borehole fluid attenuation and the externally provided parameters so as to determine a parameter, such as mobility, related to permeability of the formation being logged. Complex conjugate back propagation using a maximum likelihood/least mean squares error estimator or by applying Prony's method and fitting model-derived dispersion curves can be used to obtain mobility.
    Type: Grant
    Filed: October 3, 1995
    Date of Patent: November 11, 1997
    Assignee: Schlumberger Technology Corporation
    Inventors: Christopher V. Kimball, Pawel Lewicki
  • Patent number: 5661696
    Abstract: Methods and apparatus for generating an error bar (variance) log for a formation parameter are disclosed. According to the method, acoustic waveforms are detected at a plurality (M) of detectors which are a function of a source signal which has interacted with the formation and noise, and the detected waveforms are sampled and processed in order to obtain a semblance or a normalized mean square error. Using the semblance or the NMSE which is related to the semblance, a signal to noise ratio 2E/N.sub.0 can be found by recognizing that the semblance function has a non-central beta distribution whose mean is a function of the signal to noise ratio 2E/N.sub.0, the time-bandwidth product N, and M. The signal to noise ratio is then used to find the Cramer-Rao lower bound which is taken as an estimate of the variance. An error bar log is formed by repeating these steps at a plurality of locations along the borehole.
    Type: Grant
    Filed: August 11, 1995
    Date of Patent: August 26, 1997
    Assignee: Schlumberger Technology Corporation
    Inventors: Christopher K. Kimball, David J. Scheibner
  • Patent number: 5616840
    Abstract: A method for modeling fracture zones in the sidewall of a borehole and for estimating the hydraulic conductivity thereof. The method first separates Stoneley wavefields into a directly-transmitted wavefield and a one-way (i.e. downgoing) reflected wavefield from which the depth configuration may be determined. The separated wavefields are corrected for the effects of borehole irregularity due to such effects as washouts and the like by numerically modeling Stoneley wave propagation using caliper and slowness measurements. The hydraulic conductivity is estimated from parameters derived from synthetic and measured Stoneley-wave data across the fracture zone in combination with measurements of the borehole radius.
    Type: Grant
    Filed: March 27, 1996
    Date of Patent: April 1, 1997
    Assignee: Western Atlas International
    Inventor: Xiaoming Tang
  • Patent number: 5598377
    Abstract: A method of correcting compressional velocity well log measurements for the effects of gas in the pore space of earth formations. The method includes the steps of determining a relationship between measurements of shear velocity and a ratio of measurements of compressional velocity with respect to shear velocity for the earth formations for when the earth formations are substantially liquid-filled. A first boundary of the relationship is determined for when the earth formations are substantially composed of shale, a second boundary is determined for when the earth formations are substantially devoid of shale. A cutoff is determined by adjusting an ordinate intercept value of the relationship to substantially include shear velocity and compressional velocity measurements corresponding to the earth formation having gas in the pore space. The cutoff is set to substantially exclude shear and compressional velocity measurements corresponding to the earth formations being substantially liquid-filled.
    Type: Grant
    Filed: October 4, 1995
    Date of Patent: January 28, 1997
    Assignee: Western Atlas International, Inc.
    Inventors: Todd K. Fishburn, Jane E. Thomas Smith
  • Patent number: 5587966
    Abstract: Methods for determining an optimal frequency band for processing of flexural waves according to bias-corrected STC or QSTC are disclosed. A preliminary estimate of the formation shear slowness S and a determination of the borehole diameter D are first obtained, and the flexural waves are processed in a frequency band having a center frequency f.sub.c which is a function of preliminary estimate of S and the product of that estimate of S and diameter D. Where the preliminary estimate of S indicates a slow formation, f.sub.c is chosen as 0.6/SD. Where the estimate indicates a fast formation, f.sub.c is chosen as 0.2/SD. In other or all formations, a smooth function such as [0.2+((0.8/.pi.) arctan ((S-100)/100))/SD] can be used to choose the center frequency. Alternatively, if errors in the environmental parameters can be estimated statistically, they can be used to select an optimum center frequency. Once f.sub.
    Type: Grant
    Filed: October 13, 1994
    Date of Patent: December 24, 1996
    Assignee: Schlumberger Technology Corporation
    Inventors: Christopher V. Kimball, David J. Scheibner
  • Patent number: 5583825
    Abstract: A method for deriving reservoir lithology and fluid content for a target location from pre-stack seismic reflection data. The method uses inversion of pre-stack seismic reflection data for both the target location and a calibration location having known subsurface lithology and fluid content to derive the subsurface lithology and fluid content at the target location. The inversion process is preferably a viscoelastic inversion to account for the effects of friction on seismic wave propagation. The results of the inversion process are a set of subsurface elastic parameters for both the target and calibration locations. Relative magnitudes of these subsurface elastic parameters are compared, together with the known subsurface lithology and fluid content at the calibration location, to derive the subsurface lithology and fluid content at the target location.
    Type: Grant
    Filed: September 2, 1994
    Date of Patent: December 10, 1996
    Assignee: Exxon Production Research Company
    Inventors: James J. Carrazzone, David Chang, Catherine Lewis, Pravin M. Shah, David Y. Wang
  • Patent number: 5532978
    Abstract: A method for correction of seismic data for taking into account azimuthal anisotropy in the subsurface is described. The data is corrected using an azimuthally anisotropic normal moveout equation, thereby yielding better signal to noise ratio as well as providing valuable information as to the degree and direction of azimuthal anisotropy in the subsurface.
    Type: Grant
    Filed: December 22, 1993
    Date of Patent: July 2, 1996
    Assignee: Atlantic Richfield Company
    Inventor: Dennis Corrigan
  • Patent number: 5485431
    Abstract: Methods and apparatus are provided for determining an indication of a nonlinear property of the formation. A sonic tool is used in a borehole to generate a signal having multiple cycles of a wave of a predetermined frequency. The amplitude of a tube wave resulting from the signal is measured. The measured amplitude is then used to determine an indication of the nonlinearity of the formation according to a relationship which relates the measured amplitude to the amplitude of a second harmonic tube wave which is generated in the borehole by the tube wave of the predetermined frequency due to the nonlinear property of the formation. The indication of nonlinearity may then be utilized to give an indication of the relative consolidation of the formation surrounding the borehole.
    Type: Grant
    Filed: November 19, 1993
    Date of Patent: January 16, 1996
    Assignee: Schlumberger Technology Corporation
    Inventors: David L. Johnson, Sergio Kostek, Andrew Norris
  • Patent number: 5475650
    Abstract: A method of investigating a formation traversed by a borehole includes, measuring at a plurality of different static borehole pressures the acoustic Stoneley and/or flexural wave velocities of waves propagating through the borehole and formation, and generating an indication of the nonlinearity of the formation by processing the velocity measurements. The velocity measurements are processed either by determining a fractional change in the measured acoustic velocity and dividing that fractional change by the change in borehole pressure to provide frequency dependent acoustoelastic coefficients, or by determining the fractional change in the measured acoustic velocity, and subtracting from the fractional change a component generated by the borehole fluid and a component due to linear aspects of the formation to provide a nonlinear formation component. By processing the velocity measurements at a plurality of frequencies, the nonlinear formation components are used to find nonlinear parameters of the formations.
    Type: Grant
    Filed: August 31, 1994
    Date of Patent: December 12, 1995
    Assignee: Schlumberger Technology Corporation
    Inventors: Bikash K. Sinha, Sergio Kostek
  • Patent number: 5398215
    Abstract: Low and high frequency flexural waves or their equivalents are generated with dipole or other source transducers. From measurements made at receiving transducers which are oriented at two orthogonal directions in a horizontal plane normal to the borehole axis, and via known processing techniques, the received signals are transformed into arrivals as a function of frequency such that the principal polarization directions and the magnitudes of the maximum and minimum wave velocities at those directions are determined at different frequencies. If the maximum velocity of the relatively low frequency flexural waves are in a first principal polarization direction, and the maximum velocity of the relatively high frequency flexural waves are in a second principal polarization direction which is substantially normal to the first principal direction, uniaxial stress in the formation is attributed to stress induced azimuthal anisotropy as opposed to an instrinsic anistropy in the formation.
    Type: Grant
    Filed: April 8, 1994
    Date of Patent: March 14, 1995
    Assignee: Schlumberger Technology Corporation
    Inventors: Bikash K. Sinha, Sergio Kostek