Abstract: The present invention relates generally to a method and system for the real-time processing of seismic signals collected with multichannel seismic systems and to a stand-alone system for verifying the quality of such seismic signals so as to quickly and accurately determine if the acquisition parameters established for the multi-channel seismic system are producing interpretable seismic data. More particularly, a method for obtaining surrogate seismic signals representative of a multichannel set of seismic signals acquired with a marine exploration system and a measure of their quality are provided.
Abstract: A computationally-economical method for converting a set of areally-distributed seismic traces into a new, clearly-resolved, three-dimensional display of a volume of the earth without use of dip-dependent or azimuth-dependent migration velocities.
Type:
Grant
Filed:
November 18, 1985
Date of Patent:
May 3, 1988
Assignee:
Western Atlas International, Inc.
Inventors:
Craig Beasley, Ron Chambers, Helmut Jakubowicz
Abstract: A method for improvement of the signal-to-noise ratio of seismic data records comprising determination of the angle of incidence of acoustic waves transmitted into the earth with respect to subterranean reflecting layers which yields minimum attenuation of the acoustic wave during passage through intermediate layers is disclosed. The offset or distance between source and receiver is then selected so that the waves used to generate representations of the structure of the earth are incident on the reflector at substantially the optimal angle, thus yielding maximum signal strength, and maximizing the signal-to-noise ratio. Minimum offsets, to eliminate multiple surface/evaporite layer reflections from seismic records may be indicated as well.
Abstract: A seismic cable assembly has approximately 500 equally spaced elemental sensor units to receive seismic signals generated in the earth by a seismic impulse generator or "shot". The sensor units each include 3 hydrophones or geophones spaced about 6 feet apart, for a sensor unit length of about 12 feet, to receive seismic signals up to several hundred hertz. Signals representing seismic waves received at each of these 500 units are transmitted from the cable, to a central control and recording unit, mounted in a vehicle such as a towing ship. Connected to the cable will be one or more array-forming systems for processing seismic data from the sensor to synthesize various direction-sensitive hydrophone arrays located along the seismic cable.
Abstract: In seismic exploration, linear, multiple fold, common depth point sets of seismograms with three dimensional reflection geometry are used to determine the dip and strike of the subsurface reflecting interfaces and the average velocity of the path of the seismic energy to the reflecting interface. The reflections in each set appear with time differences on a hyperbola with trace spacings determined by the source receiver coordinate distance along the lines of exploration. The offset of the apex of this hyperbola is determined from a normal move-out velocity search of the type performed on two dimensional CDP sets. This search identifies the correct stacking velocity and hyperbola offset which are used to determine dip, strike and average velocity.
Abstract: Common depth point seismic signals from a plurality of seismic receivers are recorded on a field recorder. A first time shifter corrects the seismic signals for multiple normal moveout. A linear dip filter rejects unwanted multiple reflection signals. A second time shifter reverses the multiple normal moveout correction of the first time shifter. A third time shifter corrects the primary reflection signals for normal moveout. The primary reflection signal are then stacked and recorded as a composite common depth point seismic signal.
Abstract: In common depth point seismic exploration, seismic traces are corrected for normal moveout and stacked to form a composite trace. The composite trace is successively time shifted to provide a plurality of reference traces characterized by the normal moveout of the seismic traces. The reference traces are crosscorrelated with the seismic traces, and the resulting correlation functions are utilized to enhance the primary reflection signals of the seismic traces.