Optical Processing Patents (Class 367/64)
  • Patent number: 9921326
    Abstract: The disclosed method includes receiving resulting signals emanating from a subterranean formation, wherein the resulting signals are caused by signals emitted from seismic sources. The method further includes dividing the resulting signals into a plurality of sub-samples. The method includes determining a frequency content of one or more of the sub-samples and assigning a weight to or more components of the frequency content of the sub-sample to produce a weighted frequency content of the sub-sample, wherein the assigned weight is based, at least in part, on an estimate of the amount of noise present in the frequency content of the sub-sample. The method further includes combining the weighted frequency contents of the sub-samples to produce a weighted sample. The method further includes determining one or more properties of the subsurface formation based, at least in part, on the weighted sample.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: March 20, 2018
    Assignee: CGG SERVICES SAS
    Inventors: Eric Forgues, Michael Beilles, Cécile Berron
  • Patent number: 9490911
    Abstract: An apparatus is described which uses directly modulated InGaN Light-Emitting Diodes (LEDs) or InGaN lasers as the transmitters for an underwater data-communication device. The receiver uses automatic gain control to facilitate performance of the apparatus over a wide-range of distances and water turbidities.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: November 8, 2016
    Assignee: FAIRFIELD INDUSTRIES INCORPORATED
    Inventors: William Hopewell, Philip Lacovara, Michael Morris
  • Patent number: 9061639
    Abstract: A device and a method for triggering passenger protection devices, an accident sensor system generating a first signal and the passenger protection devices being triggered as a function of a frequency of a second signal, which is derived from the first signal, the frequency being determined as a function of a first length of a first signal characteristic of the second signal and of a second length of a second signal characteristic of the added-up second signal.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: June 23, 2015
    Assignee: ROBERT BOSCH GMBH
    Inventors: Frank Mack, Gunther Lang
  • Patent number: 8902408
    Abstract: A method for measuring three-dimensional coordinates of a probe center includes: providing a spherically mounted retroreflector; providing a probe assembly; providing an orientation sensor; providing a coordinate measurement device; placing the spherically mounted retroreflector on the probe head; directing the first beam of light from the coordinate measurement device to the spherically mounted retroreflector; measuring the first distance; measuring the first angle of rotation; measuring the second angle of rotation; measuring the three orientational degrees of freedom based at least in part on information provided by the orientation sensor; calculating the three-dimensional coordinates of the probe center based at least in part on the first distance, the first angle of rotation, the second angle of rotation, and the three orientational degrees of freedom; and storing the three-dimensional coordinates of the probe center.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: December 2, 2014
    Assignee: Faro Technologies Inc.
    Inventor: Robert E. Bridges
  • Patent number: 8797828
    Abstract: System for optical seismic surveying of an area of interest including at least one seismic source, at least one laser source, at least one optical sensing system and a processor, the processor being coupled with the seismic source, the laser source and the optical sensing system, the seismic source for generating at least one seismic wave in the area of interest, the laser source for generating a matrix of laser spots over the area of interest, the optical sensing system for detecting reflections of the laser spots as a speckle pattern, wherein the seismic source modifies the speckle pattern and wherein the processor determines at least one property of the seismic wave according to the modified speckle pattern thereby generating a seismic map of the area of interest.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: August 5, 2014
    Assignee: Soreq NRC
    Inventors: Aner Lev, Bruno Sfez
  • Patent number: 8369667
    Abstract: Downhole cables are described that are configured to protect internal structures that may be detrimentally impacted by exposure to the downhole environment, by protecting such structures by at least two protective layers. In some examples, the structures to be protected may be housed in a protective tube housed within the protective outer sheath. The described configuration enables the use of structures such as polymer fibers in the cables for strength and load-bearing capability by protecting the fibers, by multiple protective layers, from exposure to gases or fluids within a wellbore.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: February 5, 2013
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Lawrence Charles Rose
  • Patent number: 8090227
    Abstract: Purging of fiber optic conduits in subterranean wells. A downhole optical sensing system includes an optical line, at least two tubular conduits, one conduit being positioned within the other conduit, and the optical line being positioned within at least one of the conduits, and a purging medium flowed in one direction through one conduit, and flowed in an opposite direction between the conduits. A method of purging a downhole optical sensing system includes the steps of: installing at least two conduits and an optical line in a well as part of the sensing system, one conduit being positioned within the other conduit, and the optical line being positioned within at least one of the conduits; and flowing a purging medium through the conduits in the well, so that the purging medium flows in one direction through one conduit and in an opposite direction between the conduits.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: January 3, 2012
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Neal G. Skinner
  • Publication number: 20110038226
    Abstract: Remote seismic surveying systems and methods are disclosed. At least some embodiments illuminate a water or ground surface with a beam from a coherent electromagnetic wave source. Reflected electromagnetic energy is focused onto an image plane where it combines with a reference beam to form an interference pattern. Electronics track the intensity versus time for multiple points in the image and derive displacement signals for various physical locations in the survey region. These displacement signals are associated with seismic source firing times and locations before being stored as seismic traces in a survey database. Some variations use the reflected electromagnetic energy to create multiple interference patterns that vary due to different path length differences, thereby eliminating signal phase ambiguities.
    Type: Application
    Filed: August 12, 2009
    Publication date: February 17, 2011
    Inventor: Gary Lee Scott
  • Patent number: 7679994
    Abstract: Seismic sensor systems and sensor station topologies, as well as corresponding cable and sensor station components, manufacturing and deployment techniques are provided. For some embodiments, networks of optical ocean bottom seismic (OBS) stations are provided, in which sensor stations are efficiently deployed in a modular fashion as series of array cable modules deployed along a multi-fiber cable.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: March 16, 2010
    Assignee: Optoplan AS
    Inventors: Erlend Ronnekleiv, Ole Henrik Waagaard, Hilde Nakstad, Arne Berg, Jon Thomas Kringlebotn
  • Patent number: 7558155
    Abstract: Seismic sensor systems and sensor station topologies, as well as corresponding cable and sensor station components, manufacturing and deployment techniques are provided. For some embodiments, networks of optical ocean bottom seismic (OBS) stations are provided, in which sensor stations are efficiently deployed in a modular fashion as series of array cable modules deployed along a multi-fiber cable.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: July 7, 2009
    Assignee: Optoplan A/S
    Inventors: Erlend Rønnekleiv, Ole Henrik Waagaard, Hilde Nakstad, Ame Berg
  • Patent number: 7539080
    Abstract: Seismic sensor systems and sensor station topologies, as well as corresponding cable and sensor station components, manufacturing and deployment techniques are provided. For some embodiments, networks of optical ocean bottom seismic (OBS) stations are provided, in which sensor stations are efficiently deployed in a modular fashion as series of array cable modules deployed along a multi-fiber cable.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 26, 2009
    Assignee: Optoplan AS
    Inventors: Erlend Rønnekleiv, Ole Henrik Waagaard, Hilde Nakstad, Arne Berg
  • Publication number: 20080112264
    Abstract: Seismic sensor systems and sensor station topologies, as well as corresponding cable and sensor station components, manufacturing and deployment techniques are provided. For some embodiments, networks of optical ocean bottom seismic (OBS) stations are provided, in which sensor stations are efficiently deployed in a modular fashion as series of array cable modules deployed along a multi-fiber cable.
    Type: Application
    Filed: October 31, 2007
    Publication date: May 15, 2008
    Inventors: ERLEND RONNEKLEIV, Ole Henrik Waagaard, Hilde Nakstad, Ame Berg
  • Patent number: 7366055
    Abstract: Seismic sensor systems and sensor station topologies, as well as corresponding cable and sensor station components, manufacturing and deployment techniques are provided. For some embodiments, networks of optical ocean bottom seismic (OBS) stations are provided, in which sensor stations are efficiently deployed in a modular fashion as series of array cable modules deployed along a multi-fiber cable.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: April 29, 2008
    Assignee: Optoplan AS
    Inventors: Erlend Rønnekleiv, Ole Henrik Waagaard, Hilde Nakstad, Arne Berg
  • Patent number: 7220067
    Abstract: The present invention provides a protector assembly and process for protecting a downhole connection of a line (e.g., fiber optic or electrical) from the wellbore environment. Inside the housing that provides protection from the wellbore environment is a subassembly that provides anchoring to prevent movement of the cables' internal components that may damage the spliced connection.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: May 22, 2007
    Assignee: Schlumberger Technology Corporation
    Inventors: Scott A. Rubinstein, Ben A. Donnell
  • Patent number: 6765670
    Abstract: The present invention relates to a spectrometer module comprising an input, for receiving an incoming optical signal, a variable differential group delay (DGD) element, for applying a variable birefringence retardation to said incoming optical signal, and a detector unit for detecting the power of a signal exiting said variable DGD element, having a defined state of polarization. It also relates to a monitor module, a monitoring unit and a monitoring system, comprising such a spectrometer module for use in monitoring an optical network. Further, the invention relates to a spectrometer device, for spectrometry purposes, comprising a spectrometer module as stated above.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: July 20, 2004
    Assignee: Pro Forma Alfa
    Inventors: Bengt-Erik Olsson, Magnus Karlsson, Henrik Sunnerud
  • Patent number: 6253848
    Abstract: The present invention provides a method for forming wellbores. In one method, one or more wellbores are drilled along preplanned paths based in part upon seismic surveys performed from the surface. An acoustic transmitter conveyed in such wellbores transmits acoustic signals at a one or more frequencies within a range of frequencies at a plurality of spaced locations. A plurality of substantially serially spaced receivers in the wellbores and/or at s receive signals reflected by the subsurface formations. The sensors may be permanently installed in the boreholes and could be fiber optic devices. The receiver signals are processed by conventional geophysical processing methods to obtain information about the subsurface formations. This information is utilized to update any prior seismographs to obtain higher resolution seismographs. The improved seismographs are then used to determine the profiles of the production wellbores to be drilled.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: July 3, 2001
    Assignee: Baker Hughes Incorporated
    Inventors: Nils Reimers, John W. Harrell, James V. Leggett, III, Paulo S. Tubel
  • Patent number: 5717401
    Abstract: An active recognition system comprises a transceiver, tracking electronics, an optical processor, and a data handler. The transceiver transmits chirped pulses and receives a series of reflected ?replicas of the chirped pulse! replica pulses from ?features of! an object ?of interest!. The tracking electronics controls the transceiver to determine object range for gating the optical processor. The optical processor includes a "signal" Bragg cell driven by the reflection signal so that ?a! throughgoing light ?beam! is angularly redistributed as a function of the local spatial frequency of the acoustic waveform within the modulation aperture of the signal Bragg cell. At a first focal plane, the light defines a one-dimensional light distribution that includes moving spots that correspond to respective reflection replicas.
    Type: Grant
    Filed: September 1, 1995
    Date of Patent: February 10, 1998
    Assignee: Litton Systems, Inc.
    Inventors: Farhang Sabet-Peyman, Robert L. Cohoon
  • Patent number: 4503336
    Abstract: A beamformer device for forming at least one beam from the outputs of a sensor array, including: a plurality of radiation sources; means for providing to each radiation source a signal from an associated one of the sensors in the sensor array; a detector array of radiation-sensitive means for providing a series of spaced signals representing radiation incident from each of the radiation sources; and means for varying the delays between the spaced signals for optimizing the response of the device to a signal from a predetermined direction.
    Type: Grant
    Filed: June 14, 1982
    Date of Patent: March 5, 1985
    Assignee: Itek Corporation
    Inventors: Richard A. Hutchin, William C. Bradley
  • Patent number: 4204262
    Abstract: Signal processing apparatus having the capability to perform simultaneous space-time processing of sonar, radar and similar time-varying signals, and to effect the Fourier transform of multiple time-varying signals through electro-optical photoelastic means, photoconductive means, or photoemissive means.
    Type: Grant
    Filed: May 25, 1977
    Date of Patent: May 20, 1980
    Inventors: Michael M. Fitelson, Dennis R. Morgan