Shear Wave Patents (Class 367/75)
  • Patent number: 10338242
    Abstract: Method and system for ongoing monitoring for underground structure at or near a production wellpad is provided. The system includes a sparse acquisition grid and utilizes information obtained from Rayleigh waves to monitor subsurface structures.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: July 2, 2019
    Assignee: ConocoPhillips Company
    Inventors: Roman Kazinnik, Michael Davidson, Ali Tura, Aaron L. Janssen, Charles C. Mosher, Ronnie B. Darnell
  • Patent number: 10330823
    Abstract: An inspection system to measure the condition of at least a wall of a ground opening, the inspection system having a head unit for lowering into a borehole during a data collection phase wherein at least one set of test data is collected concerning one or more physical characteristics of the borehole during the data collection phase, the head unit having an internal measurement system and a sensor arrangement with a plurality of sensors facing radially outwardly of a head axis that is generally parallel to at least a portion of a borehole axis, the plurality of sensors allowing the head unit to be moved during the data collection phase without rotation about the head axis, the plurality of sensors at least partially producing the at least one set of test data collected during the data collection phase.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: June 25, 2019
    Assignee: Pile Dynamics, Inc.
    Inventors: George R. Piscsalko, Dean A. Cotton, Richard E. Berris, Jr., Tyler A. Piedimonte
  • Patent number: 10191165
    Abstract: A method for using an offset vector tile gather to image a subsurface defines an offset vector tile gather by selecting a plurality of seismic traces from recorded seismic data. Each seismic trace in the offset vector tile includes reflections from subsurface reflectors and reflection points at depths below the surface of the subsurface. Each reflection point is in a given seismic trace, and each given seismic trace extends from a seismic source to a seismic receiver. The reflection points define an offset vector tile having a source line span and a receiver line span. The source line span is equal to or greater than a distance between adjacent seismic receiver lines, and the receiver line span is less than a distance between adjacent seismic source lines. The offset vector tile gather is used to produce a three dimensional image of the subsurface.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: January 29, 2019
    Assignee: CGG SERVICES SAS
    Inventor: Vetle Vinje
  • Patent number: 10151849
    Abstract: Desirable completion zones can be identified using closure stress in combination with one or more other attributes such as porosity. One computer-based well placement method includes using the computer to: process a seismic data volume to map the spatial distribution of a seismic-based CSS attribute; acquire logs from one or more boreholes in the subsurface region; derive from the logs a relationship between CSS and a minimum in-situ stress; apply the relationship to the CSS attribute map to produce a landing map that highlights desirable completion zones; and place one or more wells in the desirable completion zones. The borehole logs may include direct measurements of minimum in-situ stress (acquired via microfracture testing), sonic tool measurements of P-wave and S-wave velocity, and density tool measurements of bulk formation density.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: December 11, 2018
    Assignee: Chevron U.S.A. Inc.
    Inventors: Mayank Malik, John DeSantis, Fuju Chen, Li Jiang, Saijin Huang, John A. Best
  • Patent number: 10082560
    Abstract: A method. In one embodiment there is provided a method in which a direction from a sensor position to a noise source is determined. A coordinate rotation is applied to a first set of signal values, wherein each signal value of the first set of signal values is based on an output of a corresponding component of a three-component particle motion sensor at the sensor position. The applying generates a rotated set of signal values. The coordinate rotation comprises a coordinate rotation transforming a first set of coordinate axes to a second set of coordinate axes, wherein the first set of coordinate axes has each coordinate axis aligned with a corresponding component of the three-component particle motion sensor at the sensor position, and the second set of coordinate axes comprises a first axis pointed in a direction opposite the direction from the sensor position to the noise source.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: September 25, 2018
    Assignee: PGS Geophysical AS
    Inventors: Paul Edwin Murray, Robert Alexis Peregrin Fernihough
  • Patent number: 9784863
    Abstract: The present disclosure provides a system and method for estimating fracture density within a subsurface formation from S-wave seismic data. In one embodiment, the S-wave seismic data is separated into fast (“S1”) and slow (“S2”) data. A computer is used to compute local similarity of the S1 and S2 data and to compute a cumulative time-difference by which the S2 data lags the S1 data from the local similarity. Based on the computed cumulative time-difference, the fracture density of a subsurface formation is estimated.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: October 10, 2017
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Reeshidev Bansal, Sergey Fomel, Michael P. Matheney
  • Patent number: 9588241
    Abstract: Seismic data acquired by independent simultaneous sweeping (ISS®) techniques are processed is to attenuate random uncompressed cross-talk signals and improve the resolution of the pre-stack migrated time image. A frequency-varying mean filter is applied on cross-spread offset-azimuth gathers of the data. The frequency-space domain filter may vary its window size according to the characteristics of the cross-talk.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: March 7, 2017
    Assignee: Saudi Arabian Oil Company
    Inventors: Shoudong Huo, Hai Xu
  • Patent number: 9494027
    Abstract: Control device (100) controlling a drilling operation and methods by which the dynamics of the continuum in question can be divided into superimposed waves, of which the wave traveling in the direction of the actuator and/or drive (10) is compensated by the actuator. This prevents reflection of the energy on the actuator. By using two sensors (30, 40) the wave traveling towards the actuator (10) and the wave traveling away from the actuator (10) can be calculated separately from one another, so that both the parameters of the wave traveling toward the actuator and the parameters of the wave traveling away from the actuator can be determined in order to be able to perform a control of the driving device of the drill string (20) on this basis.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: November 15, 2016
    Assignees: TECHNISCHE UNIVERSITAT HAMBURG-HARBURG, TUTECH INNOVATION GMBH
    Inventors: Michael Steidl, Edwin Kreuzer
  • Patent number: 9453926
    Abstract: A system and method for investigating rock formations outside a borehole are provided. The method includes generating a first compressional acoustic wave at a first frequency by a first acoustic source; and generating a second compressional acoustic wave at a second frequency by a second acoustic source. The first and the second acoustic sources are arranged within a localized area of the borehole. The first and the second acoustic waves intersect in an intersection volume outside the borehole. The method further includes receiving a third shear acoustic wave at a third frequency, the third shear acoustic wave returning to the borehole due to a non-linear mixing process in a non-linear mixing zone within the intersection volume at a receiver arranged in the borehole. The third frequency is equal to a difference between the first frequency and the second frequency.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: September 27, 2016
    Assignees: Chevron U.S.A. Inc., Los Alamos National Security LLC
    Inventors: Cung Khac Vu, Christopher Skelt, Kurt Nihei, Paul A. Johnson, Robert Guyer, James A. Ten Cate, Pierre-Yves Le Bas, Carène S. Larmat
  • Patent number: 9228418
    Abstract: According to some embodiments, a borehole deployable apparatus is described that can be used to generate strong vibrations in a subterranean rock formation. In some embodiments, the apparatus accelerates a mass using mechanisms built into the tool and causes the mass to strike the borehole wall. The mechanisms can control the mass acceleration, and the frequency of strikes. In some embodiments, the apparatus is designed for use in the field of petroleum recovery where the vibrations are used to create or re-establish a flow rate for the fluids in the formation.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: January 5, 2016
    Assignee: Schlumberger Technology Corporation
    Inventors: Mohammed Badri, Reza Taherian
  • Patent number: 9213119
    Abstract: A method of conducting multiple source, multiple signal seismic surveys in a marine environment are provided.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: December 15, 2015
    Assignee: ConocoPhillips Company
    Inventors: Peter M. Eick, Joel D. Brewer, Stephen K. Chiu
  • Patent number: 9125589
    Abstract: An ultrasound system comprises an ultrasound probe for transmitting transmit beams and receiving receive beams. A processor controls the ultrasound probe to direct the transmit beams in a first direction to acquire a first incidence frame of data and a second direction to acquire an second incidence frame of data, wherein the first and second directions are different with respect to each other. A tissue characterization module compares the normal and oblique incidence frames of data to determine at least one property parameter of a scanned medium based on amplitude differences between the receive beams.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: September 8, 2015
    Assignee: General Electric Company
    Inventor: Anders Rasmus Sørnes
  • Patent number: 9121970
    Abstract: A monopole acoustic transmitter for logging-while-drilling comprising as a ring that comprises one or more piezoelectric arc segments. The ring is oriented in a plane whose normal is essentially coincident with the major axis of a logging tool in which it is disposed. The ring disposed within a recess on the outer surface of a short, cylindrical insert. The insert is inserted into a drill collar, rather than into the wall of the collar. The ring can comprise a continuous ring of piezoelectric material, or alternately arc segments or active ring segments of piezoelectric ceramic bonded to segments of other materials such as alumina to increase the frequency or heavy metals such as tungsten to reduce the frequency. The material and dimensions of the material used in-between the piezoelectric segments is chosen to alter the frequency of the ring.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: September 1, 2015
    Assignee: Precision Energy Services, Inc.
    Inventors: Medhat W. Mickael, Dale A. Jones
  • Patent number: 9091776
    Abstract: A subterranean mapping system may include at least one electrically conductive element associated with a subterranean formation having a passageway therein. The subterranean mapping system may also include a radiofrequency (RF) source coupled to the at least one electrically conductive element to generate an electromagnetic (EM) field in the subterranean formation. The subterranean mapping system may also include a subterranean mapping device configured to be carried along a path of travel within the passageway and while sensing the EM field versus time.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: July 28, 2015
    Assignee: HARRIS CORPORATION
    Inventor: Francis E. Parsche
  • Patent number: 9081116
    Abstract: A subterranean mapping system may include a pair of spaced electrically conductive well pipes in a subterranean formation containing a hydrocarbon resource. The pair of electrically conductive well pipes may include a fluid inlet pipe and a fluid outlet pipe. The subterranean mapping system may further include a radiofrequency (RF) source coupled to the pair of electrically conductive well pipes to generate an electromagnetic (EM) field in the subterranean formation. The subterranean mapping system may further include a subterranean mapping device configured to be carried along with a fluid flow along a path of travel from the fluid inlet pipe to the fluid outlet pipe and while sensing the EM field versus time.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: July 14, 2015
    Assignee: HARRIS CORPORATION
    Inventor: Francis E. Parsche
  • Patent number: 9030912
    Abstract: An approach is provided for a multi-component seismic data processing that separates P-type and S-type seismic waves in an affine coordinate system. A method for separating and composing seismic waves comprises: determining base vectors of the seismic waves; transforming and separating the seismic wave in an affine coordinate system; and obtaining a signal with true amplitudes and eliminating a mode leakage phenomenon. Therefore, the method achieves the wave separation and recovers the amplitudes of separated waves simultaneously, which reduces noises to provide more precisely seismic data and to satisfy the requirement of seismic data analysis and processing.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: May 12, 2015
    Assignee: Institute of geology and geophysics, Chinese Academy of Science
    Inventors: Yun Wang, Jun Lu
  • Patent number: 9030911
    Abstract: Disclosed herein is a method of delineating a second wellbore from a first wellbore. The method includes, emitting acoustic waves from a tool in the first wellbore, receiving acoustic waves at the tool reflected from the second wellbore, and determining orientation and distance of at least a portion of the second wellbore relative to the tool.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: May 12, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Xiao Ming Tang, Douglas J. Patterson
  • Publication number: 20140177386
    Abstract: A seismic survey system for surveying a subsurface. The system includes a volumetric land source buried underground for generating P-waves; a non-volumetric land source buried underground for generating P- and S-waves; plural receivers distributed about the volumetric and non-volumetric land sources and configured to record seismic signals corresponding to the P- and S-waves; and a controller connected to the volumetric land source and the non-volumetric land source and configured to shot them in a given pattern.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 26, 2014
    Applicant: CGG SERVICES SA
    Inventors: Eric FORGUES, Francois-Xavier GRESILLON, Julien COTTON
  • Publication number: 20140010046
    Abstract: The present invention provides a technique to separate compressional seismic waves from shear seismic waves and to determine their direction of propagation to enhance the seismic monitoring oil and gas reservoirs and the seismic monitoring of hydrofracturing in oil and gas wells. The invention utilizes various combinations of multi-component linear seismic sensors, multi-component rotational seismic sensors, and pressure sensors. Sensors are jointly deployed in arrays of shallow monitoring wells to avoid the complicating effects of the free surface of the earth. The emplacement of sensors in the shallow monitoring wells may be permanent. The method has a wide range of application in oil and gas exploration and production. This abstract is not intended to be used to interpret or limit the claims of this invention.
    Type: Application
    Filed: March 21, 2012
    Publication date: January 9, 2014
    Applicant: Geokinetics Acquistion Company
    Inventor: Robert H. Brune
  • Patent number: 8619500
    Abstract: A method for estimating principal stresses of a subterranean formation from seismic data. In one embodiment, rock strength parameters from seismic data of the formation is first determined to calculate the anisotropic elastic properties of the formation. The three principal stresses of the formation: vertical stress, minimum horizontal stress, and maximum horizontal stress, is determined using at least the calculated anisotropic elastic properties and the rock strength parameters of the formation. From the estimated principal stresses, the differential ratio of the maximum and minimum horizontal stresses can be determined to indicate optimal zones for hydraulic fracturing. In another embodiment, a tectonic strain term is introduced to calibrate the estimated principal estimated stress to a known reference point. In yet another embodiment, hoop stress is incorporated to estimate the fracture initiation pressures.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: December 31, 2013
    Inventor: Frederick D. Gray
  • Patent number: 8547795
    Abstract: A method to generate images of acoustic contrasts for structures located between at least one acoustic source and at least one receiver, said structures converting a part of the compressional energy to shear.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: October 1, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Jakob Brandt Utne Haldorsen, Richard T. Coates
  • Patent number: 8542556
    Abstract: A vibration sensor system for contacting the surface of a solid medium for detecting horizontally polarized shear waves and compressional waves. At least two contact points interface between a vibration sensor array and the solid medium to provide uninterrupted contact with the medium during detection of dynamic motions in the medium. A single vibration sensor is mounted on at least two adjacent contact points to convert detected dynamic motions to corresponding electrical signals. The single vibration sensor mounted on the two adjacent contact points forms a sub-array. The vibration sensor system has at least two sub-arrays. A conditioning and combining member treats sensor electrical signals from at least two sub-arrays to form a composite output signal for the system.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: September 24, 2013
    Inventor: Thomas E. Owen
  • Publication number: 20130201795
    Abstract: A method is described for identifying anisotropic regions in unconventional hydrocarbon reservoirs, such as in shale formations. Anisotropy can be indicative of a zone of fracturing, which may represent a “sweet spot” for drilling a productive well. Seismic amplitude data from receivers is recorded along two orthogonal lines radiating from a seismic source. After time-migration, the equations for each orthogonal direction may be summed to obtain values for A and (Biso+0.5*Bani) which are independent of azimuth angle. Since Biso is normally constant or slow varying over a shale formation, anisotropic regions may be identified by looking for anomalous values of (Biso+0.5*Bani).
    Type: Application
    Filed: October 19, 2012
    Publication date: August 8, 2013
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Changxi ZHOU, Samik SIL
  • Publication number: 20130176823
    Abstract: Methods and systems for estimating the residual static terms for multi-component land datasets are described. A one-pass estimation simultaneously using P-P pre-stack data and P-S pre-stack data for generating common source residual statics for the P-P data and the P-S data and separate receiver residual statics for the P-P data and the P-S data. A series of iterations are performed using either a linear or a non-linear simulation to converge on acceptable residual statics.
    Type: Application
    Filed: September 12, 2012
    Publication date: July 11, 2013
    Applicant: CGGVERITAS SERVICES SA
    Inventors: David LE MEUR, Guillaume POULAIN
  • Patent number: 8451688
    Abstract: Methods and apparatus to combine monopole and multipole acoustic logging measurements to determine shear slowness are disclosed. An example method to determine shear slowness of a formation from acoustic logging data disclosed herein comprises determining a plurality of mixed coherence values corresponding to a respective plurality of possible shear slowness values, each mixed coherence value determined by combining a monopole coherence value determined from monopole logging data and a multipole coherence value determined from multipole logging data, the monopole and multipole coherence values each being determined for a particular possible shear slowness value corresponding to the mixed coherence value, and using the particular shear slowness value corresponding to a maximum mixed coherence value in the plurality of mixed coherence values to represent the shear slowness of the formation.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: May 28, 2013
    Assignee: Schlumberger Technology Corporation
    Inventor: Shinji Yoneshima
  • Publication number: 20130121112
    Abstract: A 4D seismic technique, where a base seismic trace is measured at a first time in a region of the subsoil, and then a monitor seismic trace corresponding to the base seismic trace is measured at a second time. To interpret the 4D measurements, assumptions are made about the variation of elastic parameters in permeable layers at predefined positions in one direction between the first and the second time. Elastic parameters include the density (?) and the speed of propagation of the pressure waves (VP) in the permeable layers. Numerical evaluation is performed for a capability of each assumption about the variation of elastic parameters to give an account of a change between the measured base seismic trace and the measured monitor seismic trace, and the variation of the elastic parameters is estimated in accordance with an assumption of optimum capability.
    Type: Application
    Filed: July 19, 2011
    Publication date: May 16, 2013
    Applicant: TOTAL SA
    Inventors: Pierre Thore, Christian Hubans
  • Patent number: 8379482
    Abstract: Method for aligning converted wave seismic reflection data (PS data) with conventional PP seismic reflection data so that both data types may be used to more accurately image the subsurface for hydrocarbon exploration or field development. Amplitude vs. angle (AVA) or amplitude vs. offset (AVO) attributes of PP and PS seismic data are identified and defined, which attributes are theoretically expected to be in phase and optimize seismic resolution in the data. In one embodiment of the invention, such attributes are calculated (310), then the same horizons are identified in a series of PP attributes and in a series of PS attributes, then the second series is aligned with the first at the horizon locations (316, 320), then a time transfer function is generated and applied to the PS mode data (322), and the aligned joint-mode data are inverted (326) using, for example, AVA attributes.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: February 19, 2013
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Vijay Khare, Alexander A. Martinez, Michael P. Matheney, Reeshidev Bansal
  • Patent number: 8379483
    Abstract: A radial shear velocity profile of an earth formation is obtained by using dipole and/or cross-dipole measurements. The non-uniqueness in the inversion is addressed by using a constraint based on the fact that high-frequency dipole shear waves are mostly sensitive to the near-borehole shear velocity.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: February 19, 2013
    Assignee: Baker Hughes Incorporated
    Inventors: Xiao Ming Tang, Douglas J. Patterson
  • Patent number: 8325559
    Abstract: A system and method of processing seismic data obtained using a plurality of towed single-component receivers in a marine environment is described, the towed single-component receivers configured to measure compressional P waves. The method comprises retrieving seismic data from a storage device, the seismic data comprising P-P data and shear mode data, wherein the P-P data and shear mode data were both received at the towed single-component receivers configured to measure compressional P waves to generate the seismic data. The method further comprises processing the seismic data to extract SV-P shear mode data and generating shear mode image data based on the extracted shear mode data.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: December 4, 2012
    Assignee: Board of Regents of the University of Texas System
    Inventor: Bob A. Hardage
  • Publication number: 20120269035
    Abstract: The present disclosure relates to methods and systems for evaluating potential hydrocarbon prospect locations within a subsurface formation. First and second opposite polarity directional seismic signals are propagated from a seismic source through the subsurface formation and recorded. A pure shear wave record is derived from the recorded signals and compared to a compression wave record for at least one potential hydrocarbon reservoir location within the formation.
    Type: Application
    Filed: October 13, 2011
    Publication date: October 25, 2012
    Inventor: Alan J. Foley
  • Patent number: 8279708
    Abstract: A measurement method for a granular compaction pile 10 using a crosshole seismic test. The measurement method includes forming first to fifth measurement holes around the granular compaction pile, injecting grouting material into the first to fifth measurement holes and inserting casings into the first to fifth measurement holes, respectively, and installing an oscillator and a detector of a crosshole seismic tester in the first to fifth holes and detecting a velocity of a shearing wave, thereby measuring a diameter of the granular compaction pile according to a construction depth thereof. The shape and the diameter of the granular compaction pile are easily checked without causing damage to the granular compaction pile.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: October 2, 2012
    Assignee: Industry Academic Cooperation Foundation of Kyunghee University
    Inventors: Young Jin Mok, Hak Sung Kim, In Beom Park, Chul Soo Park
  • Publication number: 20120236687
    Abstract: A vibration sensor system for contacting the surface of a solid medium for detecting horizontally polarized shear waves and compressional waves. At least two contact points interface between a vibration sensor array and the solid medium to provide uninterrupted contact with the medium during detection of dynamic motions in the medium. A single vibration sensor is mounted on at least two adjacent contact points to convert detected dynamic motions to corresponding electrical signals. The single vibration sensor mounted on the two adjacent contact points forms a sub-array. The vibration sensor system has at least two sub-arrays. A conditioning and combining member treats sensor electrical signals from at least two sub-arrays to form a composite output signal for the system.
    Type: Application
    Filed: March 18, 2011
    Publication date: September 20, 2012
    Inventor: Thomas E. Owen
  • Publication number: 20120227500
    Abstract: A method of generating an axial shear wave in a formation surrounding a wellbore comprising urging a clamp pad into contact with a wall of the wellbore, and applying an axial force to the clamp pad to impart a shear force into the wall of the wellbore to generate a shear wave in the formation.
    Type: Application
    Filed: August 17, 2010
    Publication date: September 13, 2012
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Jennifer Market, Paul F. Rodney
  • Publication number: 20120063266
    Abstract: A system and method of acquiring and processing full elastic waveform data from a vertical-force source comprises providing seismic waves into the earth from the vertical-force source, sensing reflections of the seismic waves at multi-component geophones placed along the surface of the earth, and processing the reflections of the seismic waves to generate full elastic waveform data.
    Type: Application
    Filed: August 24, 2011
    Publication date: March 15, 2012
    Inventor: Bob A. Hardage
  • Publication number: 20120026831
    Abstract: A logging system for measuring anisotrophic properties of the materials penetrated by a borehole. A downhole or “logging tool” element of the system comprises a source section that comprises either a unipole or a dipole acoustic source. The receiver section comprises a plurality of receiver stations disposed at different axial spacings from the acoustic source. Each receiver station comprises one or more acoustic receivers. The system requires that the source and receiver sections rotate synchronously as the logging tool is conveyed along the borehole. Receiver responses are measured in a plurality of azimuthal angle segments and processed as a function of rotation angle of the tool. The logging system can be embodied as a logging-while-drilling system, a measurement-while-drilling system, and a wireline system that synchronously rotates source and receiver sections. All embodiments require that the acoustic source operate at a relatively high frequency.
    Type: Application
    Filed: August 2, 2010
    Publication date: February 2, 2012
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventor: Medhat W. Mickael
  • Patent number: 8102732
    Abstract: Methods and apparatus facilitating measurement of anisotropy are disclosed. According to some aspects, anisotropy can be determined while drilling. Monopole/quadrupole interactions, as well as monitoring dipole excitations and other methods, may be used to find the principal shear directions of a formation while drilling or during wireline or other operations.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: January 24, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Jahir Pabon, Chaur-Jian Hsu, Bikash K. Sinha
  • Publication number: 20120002505
    Abstract: An approach is provided for a multi-component seismic data processing that separates P-type and S-type seismic waves in an affine coordinate system. A method for separating and composing seismic waves comprises: determining base vectors of the seismic waves; transforming and separating the seismic wave in an affine coordinate system; and obtaining a signal with true amplitudes and eliminating a mode leakage phenomenon. Therefore, the method achieves the wave separation and recovers the amplitudes of separated waves simultaneously, which reduces noises to provide more precisely seismic data and to satisfy the requirement of seismic data analysis and processing.
    Type: Application
    Filed: July 1, 2011
    Publication date: January 5, 2012
    Applicant: Institue of Geology and Geophysics, Chinese Academy of Sciences
    Inventors: Yun Wang, Jun Lu
  • Patent number: 8072840
    Abstract: Method for identifying one or more fracture clusters in a formation surrounding a reservoir. In one implementation, the method may include generating a P to S image, comparing the P to S image to one or more images from a borehole, and identifying one or more fracture clusters using the P to S image and the borehole images.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: December 6, 2011
    Assignee: Schlumberger Technology Corporation
    Inventor: Azhar Akhtar
  • Patent number: 8004932
    Abstract: Cross-dipole measurements are obtained in a borehole. By estimating a direction of polarization of the fast shear mode at low and high frequencies and comparing the estimated distances, a cause of anisotropy is established. Formation stresses and directions may be estimated.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: August 23, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Yibing Zheng, Daniel Moos, Xiao Ming Tang, Vladimir Dubinsky, Douglas J. Patterson
  • Publication number: 20110182144
    Abstract: A method for estimating principal stresses of a subterranean formation from seismic data. In one embodiment, rock strength parameters from seismic data of the formation is first determined to calculate the anisotropic elastic properties of the formation. The three principal stresses of the formation: vertical stress, minimum horizontal stress, and maximum horizontal stress, is determined using at least the calculated anisotropic elastic properties and the rock strength parameters of the formation. From the estimated principal stresses, the differential ratio of the maximum and minimum horizontal stresses can be determined to indicate optimal zones for hydraulic fracturing. In another embodiment, a tectonic strain term is introduced to calibrate the estimated principal estimated stress to a known reference point. In yet another embodiment, hoop stress is incorporated to estimate the fracture initiation pressures.
    Type: Application
    Filed: January 24, 2011
    Publication date: July 28, 2011
    Inventor: Frederick D. Gray
  • Publication number: 20110134722
    Abstract: A technique includes a method and apparatus for simultaneous joint inversion of surface wave and refraction data to identify near surface geophysical and geological properties.
    Type: Application
    Filed: December 6, 2010
    Publication date: June 9, 2011
    Inventors: Massimo Virgilio, Claudio Strobbia
  • Patent number: 7894298
    Abstract: There is described a method of moveout or velocity analysis of seismic signals using the steps of obtaining such signals 5 from a plurality of receivers, identifying receiver functions within the acoustic signals, analyzing said receiver functions for velocity or moveout characteristics, using the result of said analyzing step to determine, properties of multiple layers of earth located below said 10 receivers. The analyses can involve the use of representation of the traveltime differences as approximated power series of slowness or horizontal distances. The method is the first to comprehensively deal with a multi-layered earth or velocity model.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: February 22, 2011
    Assignee: WesternGeco LLC
    Inventors: Dirk-Jan Van Manen, Andrew Curtis, Johan Robertsson
  • Patent number: 7872944
    Abstract: A microseismic method of monitoring fracturing operation or other passive seismic events in hydrocarbon wells is described using the steps of obtaining multi-component s-wave signals of the event; and using a linear derivative of S-wave arrival times of the signals in a first direction, an S-wave velocity and an s-wave polarization to determine at least two components of the S-wave slowness vector.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: January 18, 2011
    Assignee: Schlumberger Technology Corporation
    Inventors: Leo Eisner, Tomas Fischer
  • Publication number: 20110007605
    Abstract: A measurement method for a granular compaction pile 10 using a crosshole seismic test. The measurement method includes forming first to fifth measurement holes around the granular compaction pile, injecting grouting material into the first to fifth measurement holes and inserting casings into the first to fifth measurement holes, respectively, and installing an oscillator and a detector of a crosshole seismic tester in the first to fifth holes and detecting a velocity of a shearing wave, thereby measuring a diameter of the granular compaction pile according to a construction depth thereof. The shape and the diameter of the granular compaction pile are easily checked without causing damage to the granular compaction pile.
    Type: Application
    Filed: March 11, 2010
    Publication date: January 13, 2011
    Applicant: Industry Academic Cooperation Foundation of Kyunghee University
    Inventors: Young Jin MOK, Hak Sung Kim, In Beom Park, Chul Soo Park
  • Patent number: 7751980
    Abstract: A method of TI formation evaluation is disclosed. The method comprises receiving a plurality of borehole measurements; deriving a correlation between a first TI stiffness parameter and other TI stiffness parameters where the first and other TI stiffness parameters representing mechanical behavior of the TI formation; and computing the first and other TI stiffness parameters based on the borehole measurements and the derived correlation. The method further comprises evaluating TI formation elastic properties based on the computed first and other TI stiffness parameters. The method further comprises assuming that the shear modulus parallel to TI symmetric axis can be approximated from other moduli.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: July 6, 2010
    Assignee: Schlumberger Technology Corporation
    Inventors: GongRui Yan, Peng Liu, Laurent Jammes
  • Patent number: 7746725
    Abstract: Method for identifying one or more fracture clusters in a formation surrounding a reservoir. In one implementation, the method may include generating a P to S image, comparing the P to S image to one or more images from a borehole, and identifying one or more fracture clusters using the P to S image and the borehole images.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: June 29, 2010
    Assignee: Schlumberger Technology Corporation
    Inventor: Azhar Akhtar
  • Publication number: 20100135115
    Abstract: A method for determining values of anisotropic model parameters of a Tilted Transversely Isotropic (TTI) Earth model, the anisotropic parameters including P-wave velocity (Vp0) along a tilted symmetry axis, the Thomsen anisotropy parameters ? and ? (or ?=(???)/(1+2?)) representative of variations of wave velocities as a function of wave propagation angle from the symmetry axis, the method including acquiring input data for a geological volume of interest; determining a theoretical relationship between the input data and the anisotropic model parameters; and calculating the values of the anisotropic model parameters at each of a plurality of subsurface locations in the geological volume of interest based on the theoretical relationships and the input data using workflows involving iterative or sequential combinations of processes including input data preprocessing, conventional tomographic inversion, three dimensional tomographic inversion based on a tilted transversely isotropic model, and three dimensional p
    Type: Application
    Filed: December 3, 2008
    Publication date: June 3, 2010
    Inventors: Yonghe Sun, Yue Wang, Tong Xu, Leonard Lin Zhang
  • Publication number: 20100103774
    Abstract: A method to generate images of acoustic contrasts for structures located between at least one acoustic source and at least one receiver, said structures converting a part of the compressional energy to shear.
    Type: Application
    Filed: October 16, 2009
    Publication date: April 29, 2010
    Applicant: Schlumberger Technology Corporation
    Inventors: Jakob Brandt Utne Haldorsen, Richard T. Coates
  • Patent number: 7660202
    Abstract: A method for generating an average gamma factor for recorded PS data and recorded PP data. The method includes mapping one or more arrival times of the recorded PS data onto one or more expected arrival times of the recorded PP data using an estimated average gamma factor, identifying one or more corresponding pairs of events in the recorded PS data and the recorded PP data using forward modeling, applying geophysical reasoning on the corresponding pairs of events and generating the average gamma factor.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: February 9, 2010
    Assignee: WesternGeco L.L.C.
    Inventors: Keshan Zou, Jianchun Dai, Haibin Xu, Andrew E. Hannan, Adam P. Koesoemadinata
  • Publication number: 20100020642
    Abstract: Maximum and minimum horizontal stresses, and horizontal to overburden stress ratio, are estimated using radial profiles of shear moduli. Inversion enables estimation of maximum and minimum horizontal stresses using radial profiles of three shear moduli associated with an orthogonal set of axes defined by the three principal stress directions. Differences in the far-field shear moduli are inverted together with two difference equations obtained from the radial profiles of the dipole shear moduli C44 and C55, and borehole stresses in the near-wellbore region. The horizontal to overburden stress ratio is estimated using differences in the compressional, dipole shear, and Stoneley shear slownesses at two depths in the same lithology interval where the formation exhibits azimuthal isotropy in cross-dipole dispersions, implying that horizontal stresses are nearly the same at all azimuths.
    Type: Application
    Filed: July 24, 2008
    Publication date: January 28, 2010
    Applicant: Schlumberger Technology Corporation
    Inventor: Bikash K. Sinha