Abstract: A discharging apparatus having two housing portions displaceable in relation to one another, a discharging opening for discharging a medium, and a reservoir for storing the medium. A manual displacement movement of the housing portions causes medium to be delivered from the reservoir to the discharging opening. The discharging apparatus has an electric load, an electromagnetic generator by which the mechanical energy introduced upon actuation is converted into electrical energy for supplying the electric load, and the electromagnetic generator has a magnet and a conductor connected to the electric load. A spring energy store with a stressing member movable in relation to the second housing portion, and a spring acting between the second housing portion and the stressing member are provided.
Abstract: Discharging apparatus for liquid, pasty or pulverulent media having a housing, a discharging opening, a reservoir for storing the medium prior to being discharged, and a handle which causes medium to be delivered from the reservoir to the discharging opening, wherein the discharging apparatus has an electric load and a converter for converting the mechanical energy introduced at the handle into electrical energy for supplying the electric load. Mechanical energy introduced at the handle is fed to the converter by a transmission unit. The linear movement of the handle or of a stressing member of a spring energy store, which can be subjected to stressing by means of the handle, is converted into a non-rotary oscillating movement of a pendulum member, wherein the converter is designed for converting the mechanical energy of the oscillating pendulum member into electrical energy.
Abstract: A magnetic cartridge such as a pick-up or cutter, whose magnetic circuits are at least partly hollow, the cavities extending mainly in the direction of the magnetic flux. Each magnetic circuit and in particular each polepiece is formed at least partly with a slot communicating with the cavity and extending substantially in the same direction. This reduces eddy-current losses in the magnetic circuit, thereby improving the treble reproduction of the pick-up.
Abstract: An engraving head incorporates a shaft which is supported for high frequency oscillation by axially spaced metal spring elements, and the shaft is acted upon by improved dampening means to minimize undesirable transverse and transient vibrations. A diamond cutting stylus is carried by a holder mounted within an arm projecting from the shaft by means which facilitate convenient removal and resharpening of the stylus. A diamond guide shoe has a flat face which engages the surface to be engraved adjacent the stylus and is supported by means which may be conveniently adjusted without rotation to obtain precision alignment of the face with the surface. A diamond deburring or shaving element has a shearing edge adjacent the stylus and is also supported for convenient angular adjustment to obtain precise alignment. The entire engraving head is pivotally supported by leaf springs and is raised and lowered by power operated means.
Abstract: In a pickup cartridge of the moving magnet type, the components of movement of a cantilever in the vertical and horizontal directions are individually detected to produce two kinds of electromotive forces respectively proportional to the velocity of the detected vertical and horizontal components of movement. The sum and difference signals of the two kinds of electromotive forces are separately obtained for stereophonic reproduction of signals recorded on a recorded disk. The vibration system is given different vibration characteristics for vertical movements thereof than those for horizontal movements thereof, without sacrificing electrical output characteristics such as channel separation characteristic and low frequency response characteristic.