Electro-optic Patents (Class 372/12)
  • Publication number: 20120189024
    Abstract: A vertical cavity surface emitting laser (VCSEL) system and method of fabrication are included. The VCSEL system includes a gain region to amplify an optical signal in response to a data signal and a first mirror arranged as a partially-reflective high-contrast grating (HCG) mirror at an optical output of the VCSEL system. The VCSEL system also includes a second mirror. The first and second mirrors can be arranged as a laser cavity to resonate the optical signal. The VCSEL system further includes a doped semiconductor region to generate a current through the first mirror in response to a voltage signal to substantially alter the reflectivity of the first mirror to provide Q-switching capability of the VCSEL system.
    Type: Application
    Filed: January 25, 2011
    Publication date: July 26, 2012
    Inventors: David A. Fattal, Michael Renne Ty Tan, Raymond G. Beausoleil
  • Patent number: 8228959
    Abstract: A system generates FIR laser radiation. An electron source generates an electron beam. A grating horn interacts with the electron beam to produce the FIR laser radiation. The grating horn may comprise a flat base and a pair of grating elements attached to the base, each of the grating elements being ruled with a grating period, the grating elements oriented in phase and in substantial symmetry about a normal to the flat base.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: July 24, 2012
    Assignee: The Trustees of Dartmouth College
    Inventor: James Hayden Brownell
  • Patent number: 8208506
    Abstract: Systems and methods generate laser pulse trains for material processing. In one embodiment, stable laser pulse trains at high repetition rates are generated from a continuous wave (CW) or quasi-CW laser beams. One or more laser pulses in the laser pulse train may be shaped to control energy delivered to a target material. In another embodiment, multiple laser beams are distributed to multiple processing heads from a single laser pulse, CW laser beam, or quasi-CW laser beam. In one such embodiment, a single optical deflector distributes multiple laser beams among respective processing heads.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: June 26, 2012
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Yasu Osako, Hisashi Matsumoto
  • Patent number: 8184667
    Abstract: The configurations of an electro-optic Bragg deflector and the methods of using it as a laser Q-switch in a Q-switched laser and in a Q-switched wavelength-conversion laser are provided. As a first embodiment, the electro-optic Bragg deflector comprises an electrode-coated electro-optic material with one of a 1D and a 2D spatially modulated electro-optic coefficient. When a voltage is supplied to the electrodes, the electro-optic material behaves like a Bragg grating due to the electro-optically induced spatial modulation of the refractive index. The second embodiment relates to an actively Q-switched laser, wherein the electro-optic Bragg deflector functions as a laser Q-switch. The third embodiment of the present invention combines the Q-switched laser and a laser-wavelength converter to form a Q-switched wavelength-conversion laser, wherein the EO Bragg deflector can be monolithically integrated with a quasi-phase-matching wavelength converter in a fabrication process.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: May 22, 2012
    Assignee: National Tsing Hua University
    Inventors: An-Chung Chiang, Shou-Tai Lin, Yen-Chieh Huang, Yen-Yin Lin, Guey-Wu Chang
  • Patent number: 8175125
    Abstract: A laser device includes an outcoupling mirror, a laser medium, a phase-conjugate mirror based on stimulated Brillouin scattering, and an end mirror all arranged along an optical axis of the laser device. A controllable modulator is positioned between the phase-conjugate mirror and the end mirror. The outcoupling mirror and the end mirror form a start cavity. The outcoupling mirror and the phase-conjugate mirror form a main cavity.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: May 8, 2012
    Assignee: Institut Franco-Allemand de Recherches de Saint-Louis
    Inventor: Marc Eichhorn
  • Patent number: 8139616
    Abstract: A pulsed light generator of the invention includes: an excitation light source; a fiber grating into which excitation light from the excitation light source enters; a rare-earth doped optical fiber optically coupled with the fiber grating, in which a rare-earth element is doped into a core, serving as an optical transmitting section; an optical switch including a deflection element for causing a Q-switching operation; a first optical fiber that causes light from the rare-earth doped optical fiber to enter into the optical switch; and a second optical fiber for waveguiding pulsed light output from the optical switch. One surface side of the optical switch, into which light enters, is subjected to anti-reflection treatment with a reflectance with respect to a wavelength of the pulsed light output from the optical switch being 0.1% or less.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: March 20, 2012
    Assignee: Fujikura Ltd.
    Inventor: Michihiro Nakai
  • Patent number: 8126023
    Abstract: A pulsed laser for machining, has a mode switch, e.g. Q-switch device (15, 30, 40), in a resonant optical cavity (20) capable of supporting a given lasing mode, e.g. a transverse mode of oscillation when lasing action is started, arranged to induce, e.g. temporarily, a localized change, e.g. loss, in the cavity. The latter alters the given lasing mode, e.g. causes the oscillation to hop to a higher transverse mode temporarily, which on its hand may be extinguished by an aperture limiting diaphragm (5) or equivalent and subsequently reduce the induced loss temporarily, to return the oscillation to the given transverse mode and output the laser pulse. A modulator can be used for inducing the temporary loss for a first transverse lasing mode and extinguishing the higher transverse mode with a diaphragm. The induced loss can be over a localized area much smaller than the dimensions of a beam of the laser, so that a miniaturized modulator can be used. In this way pulsed operation may be achieved.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: February 28, 2012
    Assignee: Vrije Universiteit Brussel
    Inventors: Johan Stiens, Werner Vandermeiren
  • Publication number: 20120044960
    Abstract: An actively Q-switched laser based on UV illumination mitigates pyroelectric effects in lithium niobate. An exemplary embodiment comprises a pump source; a dichroic mirror having one end optically facing said pump source; a gain medium optically facing another end of said dichroic mirror; a polarizer having one end optically facing another end of said gain medium; a quarter wave plate having one end optically facing another end of said polarizer; and a electro-optic crystal having one end optically facing said quarter wave plate, at least one side of said electro-optic crystal being electrically connected to Q-switch driver to have the crystal function as a Q-switch. A UV illumination source illuminates a side surface of said electrical-optic crystal with UV light. An output mirror receives an output from said Q-switch and produces a laser emission.
    Type: Application
    Filed: August 17, 2010
    Publication date: February 23, 2012
    Applicant: United States of America, as represented by the Secretary of the Army
    Inventors: Lew Goldberg, Brian J. Cole
  • Patent number: 8081670
    Abstract: A system and method for controllably chirping electromagnetic radiation from a radiation source includes an optical cavity arrangement. The optical cavity arrangement enables electromagnetic radiation to be produced with a substantially linear chirp rate and a configurable period. By selectively injecting electromagnetic radiation into the optical cavity, the electromagnetic radiation may be produced with a single resonant mode that is frequency shifted at the substantially linear chirp rate. Producing the electromagnetic radiation with a single resonant mode may increase the coherence length of the electromagnetic radiation, which may be advantageous when the electromagnetic radiation is implemented in various applications. For example, the electromagnetic radiation produced by the optical cavity arrangement may enhance a range, speed, accuracy, and/or other aspects of a laser radar system.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: December 20, 2011
    Assignee: Digital Signal Corporation
    Inventor: Kendall Belsley
  • Patent number: 8002412
    Abstract: A projection system includes a light source module illuminating a plurality of monochromic lights, at least one optical modulator modulating the lights illuminated by the light source module according to each of color signals, a color combining prism combining the monochromic lights modulated by the optical modulator to form an image, and a projection lens projecting the image formed by the color combining prism toward a screen. A semiconductor diode including a P type semiconductor layer, an intrinsic semiconductor layer, and an N type semiconductor layer to absorb or transmit the monochromic lights according to the value of a reverse bias voltage is arranged in units of pixels.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: August 23, 2011
    Assignee: Samsung LED Co., Ltd.
    Inventor: Jae-hee Cho
  • Patent number: 7991025
    Abstract: Techniques and devices that stabilize a laser to a whispering gallery mode optical resonator.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: August 2, 2011
    Assignee: OEwaves, Inc.
    Inventors: Lutfollah Maleki, Vladimir Ilchenko
  • Patent number: 7970026
    Abstract: A continuously pumped, mode-locked laser is disclosed, which includes a cavity dumper that can remove a constant fraction of the light from the cavity at every 1/f period of time, independent of the time at which the first pulse in a train is initiated. The cavity dumper includes a modulator and two output arms, denoted as a primary output arm and a secondary output arm. When a user desires a train of pulses, the pulses are directed to the primary output arm. Between trains of pulses, when no pulse is desired by the user, the pulses are directed to the secondary output arm, which terminates in an absorber or at a secondary optical system. In this manner, the energy contained in each output pulse is essentially constant, from pulse-to-pulse and from train-to-train. This may overcome the disadvantage of many lasers that have a single output arm, in which the first pulse in a train may have an energy that depends on the length of the inactive period that immediately precedes the train.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: June 28, 2011
    Assignee: Ekspla Ltd.
    Inventors: Mikhail Grishin, Andrejus Michailovas
  • Publication number: 20110122896
    Abstract: A high-power diode end-pumped solid-state UV laser comprises high-power fiber-coupled end pumping laser diodes, a specially designed fundamental laser cavity and multiple high-power high-efficiency harmonic generations. Nonuniform fundamental laser cavity has to be used, i.e. the beam size of the fundamental laser cannot be uniform in the fundamental cavity. Thermal transfer inside the laser crystal and harmonic crystal has to be specially and carefully treated, and special crystal mounts were designed to optimize the thermal contact and maximize the heat transfer. In addition, harmonic crystal mounts were specially designed to minimize the loss and protect the hydroscopic crystals.
    Type: Application
    Filed: November 22, 2010
    Publication date: May 26, 2011
    Inventor: Guilin Mao
  • Publication number: 20110110386
    Abstract: Embodiments of the invention concern a passive discharge assembly comprising one or more substantially sharp electrode pins that are positioned proximate to a charged, insulating surface, such as the optical entrance and exit surface of a Q-switch crystal, e.g., lithium niobate (LiNbO3). The electrode pins are connected either to the ground or, alternatively, to a static source of neutralizing charge. The purpose of the electrodes is to ionize the air near the tips due to the high electric field generated by the surface charge. The air ions, in turn, neutralize the surface charge as they are attracted to the surface due to the electrical attraction. In the absence of a surface charge, no air ionization occurs. In one embodiment, the electrode pins are located near the Q-switch crystal surface, but outside the path of the laser beam propagating into and out of the Q-switch crystal.
    Type: Application
    Filed: November 11, 2009
    Publication date: May 12, 2011
    Applicant: FLIR Systems, Inc.
    Inventors: William E. Williams, Charles Carter, Robert Pollard
  • Patent number: 7929579
    Abstract: Apparatuses and methods are disclosed for applying laser energy having desired pulse characteristics, including a sufficiently short duration and/or a sufficiently high energy for the photomechanical treatment of skin pigmentations and pigmented lesions, both naturally-occurring (e.g., birthmarks), as well as artificial (e.g., tattoos). The laser energy may be generated with an apparatus having a resonator with the capability of switching between a modelocked pulse operating mode and an amplification operating mode. The operating modes are carried out through the application of a time-dependent bias voltage, having waveforms as described herein, to an electro-optical device positioned along the optical axis of the resonator.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: April 19, 2011
    Assignee: Cynosure, Inc.
    Inventors: Daniel Hohm, Mirko Mirkov, Richard Shaun Welches, Rafael Armando Sierra
  • Patent number: 7924902
    Abstract: The invention relates to a highly repetitive laser system operating according to the reproducible amplifier principle. Said system comprises at least one amplified laser medium, a laser resonator provided with at least one resonator mirror and at least one modulator and a pump source, in particular, a laser diode source, which is used to pump the laser medium. The highly repetitive laser system is compact by virtue of the fact that a pulse extensor, having a highly dispersive effect as a result of the structure or material thereof, is integrated into the laser resonator.
    Type: Grant
    Filed: November 25, 2004
    Date of Patent: April 12, 2011
    Assignee: High Q Laser Production GmbH
    Inventors: Daniel Kopf, Maximilian Josef Lederer
  • Publication number: 20110075688
    Abstract: The configurations of an electro-optic Bragg deflector and the methods of using it as a laser Q-switch in a Q-switched laser and in a Q-switched wavelength-conversion laser are provided. As a first embodiment, the electro-optic Bragg deflector comprises an electrode-coated electro-optic material with one of a 1D and a 2D spatially modulated electro-optic coefficient. When a voltage is supplied to the electrodes, the electro-optic material behaves like a Bragg grating due to the electro-optically induced spatial modulation of the refractive index. The second embodiment relates to an actively Q-switched laser, wherein the electro-optic Bragg deflector functions as a laser Q-switch. The third embodiment of the present invention combines the Q-switched laser and a laser-wavelength converter to form a Q-switched wavelength-conversion laser, wherein the EO Bragg deflector can be monolithically integrated with a quasi-phase-matching wavelength converter in a fabrication process.
    Type: Application
    Filed: December 9, 2010
    Publication date: March 31, 2011
    Applicant: NATIONAL TSING HUA UNIVERSITY
    Inventors: An-Chung Chiang, Shou-Tai Lin, Yen-Chieh Huang, Yen-Yin Lin, Guey-Wu Chang
  • Patent number: 7907644
    Abstract: A high-repetition laser system for generating ultra-short pulses according to the principle of pulse decoupling is described. This is achieved by the use of an amplifying laser medium, a laser resonator with at least one resonator mirror and at least one pulse decoupling component, a saturable absorber mirror, and a pump source for pumping the laser medium wherein the pulse decoupling component is an electro-optical modulator.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: March 15, 2011
    Assignee: High Q Laser Production GmbH
    Inventors: Daniel Kopf, Maximilian Josef Lederer, Uwe Morgner
  • Patent number: 7843975
    Abstract: The invention relates to a high-power fiberoptic laser device comprising at least one laser diode (1) capable of transmitting a pump wave, a triggered optical resonator (22) consisting of a first double-sheathed optical fiber (6), an optical amplifier consisting of a second double-sheathed optical fiber (10), first (33) and second (35) optical coupling means capable of coupling said pump wave onto at least one of the two optical fibers (6) and (10). According to the invention, at least one of the two fibers has a configuration according to which the pump wave coupled to this optical fiber (6) or (10) is partially absorbed, generating a residual pump wave which is coupled to the other optical fiber (6) or (10) by second optical coupling means, and said second optical fiber (10) has a length greater than that of the first optical fiber (6).
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: November 30, 2010
    Assignee: Eolite Systems
    Inventors: Francois Salin, Philippe Metivier
  • Publication number: 20100296531
    Abstract: Apparatuses and methods are disclosed for applying laser energy having desired pulse characteristics, including a sufficiently short duration and/or a sufficiently high energy for the photomechanical treatment of skin pigmentations and pigmented lesions, both naturally-occurring (e.g., birthmarks), as well as artificial (e.g., tattoos). The laser energy may be generated with an apparatus having a resonator with the capability of switching between a modelocked pulse operating mode and an amplification operating mode. The operating modes are carried out through the application of a time-dependent bias voltage, having waveforms as described herein, to an electro-optical device positioned along the optical axis of the resonator.
    Type: Application
    Filed: January 4, 2010
    Publication date: November 25, 2010
    Applicant: Cynosure, Inc.
    Inventors: Daniel Hohm, Mirko Mirkov, Richard Shaun Welches, Rafael Armando Sierra
  • Patent number: 7830581
    Abstract: A system for laser amplification includes a dual-crystal Pockels cell which is used to control emission of laser pulses from an ultra-fast laser. The Pockels cell is constructed to enable adjustment of the rotational orientation of one crystal relative to the other crystal. The rotational orientation of one or both crystals in the Pockels cell is adjusted to control sidebands in the laser pulse.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: November 9, 2010
    Assignee: AMO Development, LLC
    Inventors: Ruben Zadoyan, Michael Karavitis
  • Patent number: 7817685
    Abstract: Systems and methods generate laser pulse trains for material processing. In one embodiment, stable laser pulse trains at high repetition rates are generated from a continuous wave (CW) or quasi-CW laser beams. One or more laser pulses in the laser pulse train may be shaped to control energy delivered to a target material. In another embodiment, multiple laser beams are distributed to multiple processing heads from a single laser pulse, CW laser beam, or quasi-CW laser beam. In one such embodiment, a single optical deflector distributes multiple laser beams among respective processing heads.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: October 19, 2010
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Yasu Osako, Hisashi Matsumoto
  • Patent number: 7810462
    Abstract: A method for operating an ignition device for an internal combustion engine, particularly of a motor vehicle, having a laser device which has a laser-active solid that has a passive Q-switch. The duration of a pumping light pulse that is applied to the laser device is selected as a function of a specifiable number of laser pulses that is to be generated using the laser device.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: October 12, 2010
    Assignee: Robert Bosch GmbH
    Inventors: Werner Herden, Manfred Vogel, Heiko Ridderbusch
  • Patent number: 7808697
    Abstract: An array of light valves switch light by enabling and disabling total internal reflection (TIR) on a surface of the light valve. The disabling of the TIR is accomplished by putting another optical element in contact with the surface and then diffusing or changing the direction of the light. The mechanical mechanism to move the optical element is a simple one in that it only moves the optical element a small distance to change the valve from a first position to a second position.
    Type: Grant
    Filed: January 2, 2009
    Date of Patent: October 5, 2010
    Inventor: Brian Edward Richardson
  • Patent number: 7773643
    Abstract: A laser light generating apparatus includes a laser light source, a phase-modulator, a signal generating unit configured to generate a modulation signal applied to the phase-modulator, a first external resonator, a second external resonator disposed at the stage succeeding the first external resonator, nonlinear optical elements each provided in the external resonators configured to implement wavelength conversion, an optical path length varying unit for varying the optical path length of each of the external resonators, and a control circuit having a negative feedback arrangement configured to obtain error signals for each of the external resonators, and configured to control the optical path length varying unit using the error signals according to FM sideband method. In the laser light generating apparatus, the external resonators are each held simultaneously in a resonance state by setting the frequency of the modulation signal and by controlling the optical path length of each of the external resonators.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: August 10, 2010
    Assignee: Sony Corporation
    Inventor: Hisashi Masuda
  • Publication number: 20100195680
    Abstract: Apparatuses and methods are disclosed for applying laser energy having desired pulse characteristics, including a sufficiently short duration and/or a sufficiently high energy for the photomechanical treatment of skin pigmentations and pigmented lesions, both naturally-occurring (e.g., birthmarks), as well as artificial (e.g., tattoos). The laser energy may be generated with an apparatus having a resonator with the capability of switching between a modelocked pulse operating mode and an amplification operating mode. The operating modes are carried out through the application of a time-dependent bias voltage, having waveforms as described herein, to an electro-optical device (e.g., a Pockels cell) positioned along the optical axis of the resonator.
    Type: Application
    Filed: August 3, 2009
    Publication date: August 5, 2010
    Applicant: Cynosure, Inc.
    Inventors: Rafael Armando Sierra, Mirko Mirkov, Richard Shaun Welches
  • Patent number: 7746908
    Abstract: A high-repetition laser system for generating ultra-short pulses according to the principle of pulse decoupling is described. This is achieved by the use of an amplifying laser medium, a laser resonator with at least one resonator mirror and at least one pulse decoupling component, a saturable absorber mirror, and a pump source for pumping the laser medium wherein the pulse decoupling component is an electro-optical modulator.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: June 29, 2010
    Assignee: High Q Laser Production GmbH
    Inventors: Daniel Kopf, Maximilian Josef Lederer, Uwe Morgner
  • Patent number: 7742508
    Abstract: An electro-optic deflector 51 has an electro-optic material body 519 through which an optical beam 46 is passed. The deflector has no more than three longitudinal electrodes, of which no more than two electrodes 511, 512 have arcuate transverse cross-sections. The electrodes are arranged to create an electric field substantially transverse to a direction of the optical beam to deflect the optical beam passing between the electrodes. The electro-optic deflector has particular application in a Q-switched laser for generating sub-nanosecond optical pulses.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: June 22, 2010
    Assignee: Advanced Optical Technology Ltd.
    Inventors: John Martin Ley, Clive Lionel Michael Ireland
  • Patent number: 7724785
    Abstract: Multiple laser resonators share a common acousto-optic Q-switch. The Q-switch is driven by a radio-frequency (RF) transducer that causes an acoustic wave to propagate in the Q-switch. Turning off the RF transducer discontinues propagation of the acoustic wave and causes each of the laser resonators to deliver an optical pulse. The finite velocity of the acoustic wave causes the pulses to be delivered temporally spaced apart.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: May 25, 2010
    Assignee: Coherent, Inc.
    Inventors: Luis A. Spinelli, Sergei V. Govorkov
  • Patent number: 7710581
    Abstract: A wavelength of an optical source is monitored by first and second adjacent detectors on a common base. A bulk reflective component has first and second partially reflective surfaces that respectively direct first and second portions of energy from the source to the first and second detectors. A wavelength discriminator is positioned between the first detector and first surface. An optical isolator downstream of the reflective component prevents radiation from the source and exiting the component from being coupled to the detectors and back to the source.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: May 4, 2010
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventor: Andrew Thomas Harker
  • Patent number: 7697195
    Abstract: We disclose acousto-optic modulators that include: (a) an optical element configured to receive an input optical beam that propagates along a first direction; and (b) a transducer extending along the first direction and positioned on one or more surfaces of the optical element, the transducer having a transducer material positioned between two electrodes configured to apply a potential difference across the transducer to cause the transducer to generate an acoustic waveform propagating in a second direction in the optical element, and the input optical beam undergoing diffraction in a region of the optical element that includes the acoustic waveform.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: April 13, 2010
    Assignee: Zygo Corporation
    Inventor: Henry A. Hill
  • Publication number: 20100080251
    Abstract: A laser for generating pulsed laser radiation is provided, having a resonator, a laser-active medium, which is situated in the resonator, a Q-switch, which is situated in the resonator, and which can be put into a first state and a second state to set the resonator quality. The resonator quality is lower in the first state than in the second state. The laser also may have a detection unit, which, when the Q-switch is in the second state, measures the intensity of the building laser pulse and outputs it as an intensity signal. The laser may further have a control unit for controlling the Q-switch, which, as a function of a predetermined pulse duration and the applied intensity signal, switches the Q-switch from the second state into the first state, before the pulse buildup of the laser pulse is completed.
    Type: Application
    Filed: September 23, 2009
    Publication date: April 1, 2010
    Applicant: JENOPTIK Laser, Optik, Systeme GmbH
    Inventors: Jan Symanowski, Matthias Hoffman, Michael Ludemann
  • Publication number: 20100002732
    Abstract: A laser system according to the invention comprises pump generating means (x02, x03) for generating at least a first and a second, preferably focused, pump beam, and lasing means (x06, x07) for emitting radiation by being appropriately pumped. The lasing means (x06, x07) is disposed in a first resonator so as to receive the first pump beam in order to generate a first beam (x21) having a first frequency, and the lasing means (x06, x07) is disposed in a second resonator so as to receive the second pump beam in order to generate a second beam (x22) having a second frequency. At least one Q-switch (x08; x17, x18) is disposed in the first and the second resonator, so that the first beam and the second beam both pass a Q-switch (x08; x17, x18). The laser system (x01) has an output (x13) generated from said first beam (x21) and said second beam (x22), and at least a part of said output (x13) is fed back to a regulation system (x14), said regulation system (x14) controlling said pump generating means (x02, x03).
    Type: Application
    Filed: July 10, 2007
    Publication date: January 7, 2010
    Inventor: Peter Tidemand-Lichtenberg
  • Patent number: 7606274
    Abstract: An optical nose for detecting the presence of molecular contaminants in gaseous samples utilizes a tunable seed laser output in conjunction with a pulsed reference laser output to generate a mid-range IR laser output in the 2 to 20 micrometer range for use as a discriminating light source in a photo-acoustic gas analyzer.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: October 20, 2009
    Assignee: The UAB Research Foundation
    Inventors: Sergey Mirov, Vladimir Fedorov, Igor Moskalev
  • Publication number: 20090232166
    Abstract: An electro-optic deflector 51 has an electro-optic material body 519 through which an optical beam 46 is passed. The deflector has no more than three longitudinal electrodes, of which no more than two electrodes 511, 512 have arcuate transverse cross-sections. The electrodes are arranged to create an electric field substantially transverse to a direction of the optical beam to deflect the optical beam passing between the electrodes. The electro-optic deflector has particular application in a Q-switched laser for generating sub-nanosecond optical pulses.
    Type: Application
    Filed: October 17, 2007
    Publication date: September 17, 2009
    Inventors: John Martin Ley, Clive Lionel Ireland
  • Patent number: 7586957
    Abstract: Apparatuses and methods are disclosed for applying laser energy having desired pulse characteristics, including a sufficiently short duration and/or a sufficiently high energy for the photomechanical treatment of skin pigmentations and pigmented lesions, both naturally-occurring (e.g., birthmarks), as well as artificial (e.g., tattoos). The laser energy may be generated with an apparatus having a resonator with the capability of switching between a modelocked pulse operating mode and an amplification operating mode. The operating modes are carried out through the application of a time-dependent bias voltage, having waveforms as described herein, to an electro-optical device (e.g., a Pockels cell) positioned along the optical axis of the resonator.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: September 8, 2009
    Assignee: Cynosure, Inc
    Inventors: Rafael Armando Sierra, Mirko Mirkov, Richard Shaun Welches
  • Patent number: 7586958
    Abstract: A method and apparatus for switching an unpolarized pulsed laser is disclosed. An example is a laser system having a source for producing input energy in response to an input drive signal. A laser medium is provided for receiving the input energy and converting the input energy to a circulating beam which is reflected between an output mirror and a reflective mirror disposed on opposing sides of the laser medium. A displacer is disposed between the mirrors and in a path of the circulating beam. The displacer splits the circulating beam into an e-polarized wave and an o-polarized wave. A Pockels cell is disposed between the displacer and the reflective mirror. The Pockels cell is energized to change the phase of the polarized waves and deenergized to allow transmission of the waves without a phase change.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: September 8, 2009
    Assignee: Northrop Grumman Corporation
    Inventor: Chandler James Kennedy
  • Publication number: 20090190616
    Abstract: A laser device includes an outcoupling mirror, a laser medium, a phase-conjugate mirror based on stimulated Brillouin scattering, and an end mirror all arranged along an optical axis of the laser device. A controllable modulator is positioned between the phase-conjugate mirror and the end mirror. The outcoupling mirror and the end mirror form a start cavity. The outcoupling mirror and the phase-conjugate mirror form a main cavity.
    Type: Application
    Filed: January 29, 2009
    Publication date: July 30, 2009
    Applicant: INSTITUT FRANCO-ALLEMAND DE RECHERCHES DE SAINT-LOUIS
    Inventor: Marc Eichhorn
  • Patent number: 7567594
    Abstract: The invention discloses an actively Q-switched laser with an intracavity nonlinear coupler in which a stable optical frequency converted output is generated. A Gain Fluctuation Insensitivity Condition is defined and described for several examples. The nonlinear coupler with a coupling level which satisfies this Condition permits stable laser operation with minimal interaction between pulses, even when the pulses are clipped by the Q-switch. Thus, the output pulse duration and repetition frequency of the disclosed laser can be varied over a large range substantially independent of laser gain level and dynamics. Second and third harmonic optical frequency conversion is demonstrated, although the disclosed laser is applicable to other optical frequency conversion regimes as well.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: July 28, 2009
    Assignee: JDS Uniphase Corporation
    Inventors: Loren Eyres, Jeffrey Gregg, Werner H. Wiechmann, James J. Morehead
  • Patent number: 7551652
    Abstract: A shared modulator applies radial stress to the polarization-dependent fiber chains to induce birefringence and simultaneously Q-switch two or more fiber lasers. Multiple temporally overlapping pulsed beams can be generated with pulses <100 ns and even <30 ns with repetition rates from 50 Hz up to 650 KHz. A pair of Q-switched fiber lasers at slightly different wavelengths being well suited to provide a low-frequency light source through difference frequency generation (DFG) by nonlinear optical materials.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: June 23, 2009
    Assignee: NP Photonics, Inc
    Inventors: Shibin Jiang, Wei Shi, Matthew A. Leigh, Jie Zong
  • Patent number: 7539221
    Abstract: A fiber-laser-based implementation of a Gigahertz source through difference frequency generation (DFG) by nonlinear optical (NLO) materials is compact, tunable and scalable. A pair of pulsed fiber lasers, preferably single-frequency, generate output pulses at frequencies ?1 and ?2 that overlap temporally. A beam combiner combines the laser outputs and routes the combined output to a GHz generator head where a nonlinear interaction process in the NLO material generates GHz radiation.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: May 26, 2009
    Assignee: NP Photonics, inc
    Inventors: Shibin Jiang, Wei Shi, Matthew Leigh, Jie Zong
  • Patent number: 7522642
    Abstract: A system for laser amplification includes a dual-crystal Pockels cell which is used to control emission of laser pulses from an ultra-fast laser. The Pockels cell is constructed to enable adjustment of the rotational orientation of one crystal relative to the other crystal. The rotational orientation of one or both crystals in the Pockels cell is adjusted to control sidebands in the laser pulse.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: April 21, 2009
    Assignee: AMO Development LLC
    Inventors: Ruben Zadoyan, Michael Karavitis
  • Patent number: 7508850
    Abstract: The quality of pulses output from laser systems such as super-pulsed CO2 slab lasers can be improved using half-wavelength electro-optic modulators (EOMs), in combination with thin film polarizers (TFPs). A voltage applied across a CdTe crystal of the EOM rotates the polarization of a pulse passing through the EOM by 90°. The polarization determines whether the pulse passes through, or is redirected by, the TFP. The voltage applied to the crystal can be pulsed to prevent a drop in charge, which could allow radiation to leak to the application. A totem pole switch used to apply voltage to the EOM can receive a pulsed voltage for improved performance. Directing by the EOM allows pulses to be clipped at the front/back end(s), split into portions, and/or directed to separate scanners. Directing pulses or pulse portions to different scanners can increase the output of systems such as hole drilling systems.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: March 24, 2009
    Assignee: Coherent, Inc.
    Inventors: Leon A. Newman, John Kennedy, Joel Fontanella, Phillip J. Gardner
  • Publication number: 20090059967
    Abstract: The configurations of an electro-optic Bragg deflector and the methods of using it as a laser Q-switch in a Q-switched laser and in a Q-switched wavelength-conversion laser are provided. As a first embodiment of the present invention, the electro-optic Bragg deflector comprises an electrode-coated electro-optic material with a spatially modulated electro-optic coefficient. When a voltage is supplied to the electrodes, the electro-optic material behaves like a Bragg grating due to the electro-optically induced spatial modulation of the refractive index. The second embodiment of the present invention relates to an actively Q-switched laser, wherein the electro-optic Bragg deflector functions as a laser Q-switch. The third embodiment of the present invention combines the Q-switched laser and a laser-wavelength converter to form a Q-switched wavelength-conversion laser, wherein the EO Bragg deflector can be monolithically integrated with a quasi-phase-matching wavelength converter in a fabrication process.
    Type: Application
    Filed: February 28, 2008
    Publication date: March 5, 2009
    Applicant: NATIONAL TSING HUA UNIVERSITY
    Inventors: An-Chung Chiang, Shou-Tai Lin, Yen-Chieh Huang, Yen-Yin Lin, Guey-Wu Chang
  • Patent number: 7499206
    Abstract: A light valve that switches light does so by enabling and disabling total internal reflection (TIR) on a surface of the light valve. The disabling of the TIR is accomplished by putting another optical element in contact with the surface and then diffusing or changing the direction of the light. These valves may be used in an array for a projection system or one at a time. The mechanical mechanism to move the optical element is a simple in that it only moves the optical element a small distance to change the valve from an on position to an off position.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: March 3, 2009
    Inventor: Brian Edward Richardson
  • Patent number: 7460566
    Abstract: A laser system comprises a source, a laser medium, first and second mirrors, a Q-switch, and a control system. The source produces input energy. The laser medium converts the input energy to an output beam. The first and second mirrors are disposed on opposing sides of the laser medium. The output beam reflects between the first and second mirrors. The first mirror is an output mirror for releasing a pulsed laser beam having an energy level. The Q-switch is made of material that has an alterable optical property in response to a Q-switch input signal. The control system selectively varies the Q-switch input signal to control the energy level of the pulsed laser beam. A first Q-switch input signal produces a pulsed laser beam for a plurality of pulses at a maximum power level, while a second Q-switch input signal produces a pulsed laser beam at an intermediate power level.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: December 2, 2008
    Assignee: Northrop Grumman Corporation
    Inventor: Chandler James Kennedy
  • Publication number: 20080291949
    Abstract: A system for producing a laser light pulse is disclosed. The system includes a travelling wave or ring laser incorporating a gain medium with polarizing means for introducing substantially polarized radiation having a first polarization state into the travelling wave laser and output coupling means to substantially output couple radiation having an output polarization state from the travelling wave laser. The system further includes polarization changing means incorporated into the optical path of the travelling wave laser for changing the polarization of radiation having the first polarization state to a seeding polarization state, wherein radiation with the seeding polarization state seeds the gain medium, and radiation intensity modulation means for modulating the intensity of radiation in the travelling wave laser to vary the feedback of radiation into the gain medium, wherein the radiation intensity modulation means also modulates the radiation with respect to the output coupling means.
    Type: Application
    Filed: December 5, 2006
    Publication date: November 27, 2008
    Applicant: ADELAIDE RESEARCH & INNOVATION PTY LTD.
    Inventor: Peter John Veitch
  • Patent number: 7391794
    Abstract: A non-linearly frequency-converted Q-switched laser is “injection seeded” with short pulses from another laser, called a seed laser. Radiation produced by the Q-switched laser is frequency converted in a non-linear process. The injection seeding can enhance peak power and frequency conversion efficiency while reducing damage to a non-linear medium used to frequency convert radiation generated by the Q-switched laser.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: June 24, 2008
    Assignee: JDS Uniphase Corporation
    Inventor: Thomas J. Kane
  • Patent number: 7376354
    Abstract: All optical clock recovery includes a transmitter for generating an optical timing signal. The transmitter includes a semiconductor laser for the production of a dynamically synchronizable timing signal, the laser having an external resonator for feedback of the timing signal to the laser, the feedback having a delay time greater than a relaxation oscillation time for the laser, and the laser outputting an optical timing signal having a characteristic dynamic. The transmitter supplies the optical timing signal to a receiver configured to receive the timing signal and to synchronize to the laser on receipt of the timing signal, such that the receiver outputs a recovered timing signal having the characteristic dynamic.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: May 20, 2008
    Assignee: Nortel Networks Limited
    Inventor: John Kenton White
  • Publication number: 20080080569
    Abstract: A method and apparatus for switching an unpolarized pulsed laser is disclosed. An example is a laser system having a source for producing input energy in response to an input drive signal. A laser medium is provided for receiving the input energy and converting the input energy to a circulating beam which is reflected between an output mirror and a reflective mirror disposed on opposing sides of the laser medium. A displacer is disposed between the mirrors and in a path of the circulating beam. The displacer splits the circulating beam into an e-polarized wave and an o-polarized wave. A Pockels cell is disposed between the displacer and the reflective mirror. The Pockels cell is energized to change the phase of the polarized waves and deenergized to allow transmission of the waves without a phase change.
    Type: Application
    Filed: September 29, 2006
    Publication date: April 3, 2008
    Inventor: Chandler James Kennedy