Control Of Pulse Characteristics Patents (Class 372/25)
  • Publication number: 20140226147
    Abstract: An electro-optical distance measuring device includes a laser driver for a laser diode for emitting laser light pulses. The laser driver has a laser diode voltage supply for providing a voltage below a laser threshold voltage of the laser diode, an inductive component in a supply path of the laser diode, and an electronic switching element. The electronic switching element is arranged in an interacting manner such that a current flow through the inductive component can be generated in a first switching position of the switching element and the current flow can be conducted through the laser diode in a second switching position of the switching element. One of the laser light pulses can be emitted as the result of a switch from the first switching position to the second switching position, and laser light cannot be emitted in the static first switching position or the static second switching position.
    Type: Application
    Filed: September 4, 2012
    Publication date: August 14, 2014
    Applicant: LEICA GEOSYSTEMS AG
    Inventors: Reto Metzler, Bernhard Fiegl, Kurt Giger
  • Patent number: 8804779
    Abstract: A system, apparatus, and method may provide laser beams of two or more wavelengths from diode pumped solid-state laser sources (220, 222, 224). The beam paths of these laser beams with different wavelengths, which are generated by the laser sources (220, 222, 224), may be aligned along a common optical axis 280 by an optical configuration, to treat at least one target area. Frequency-doubled laser beams, output from a plurality of diode pumped solid state laser cavities, may be passed through fold mirrors (M2, M5, M8), and combined on a common optical axis 280, using one or more combiner mirrors (M10, M11, M12), to unify the beam paths. Selected laser beams may be delivered to a target using one or more delivery systems.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: August 12, 2014
    Assignee: Lumenis Ltd.
    Inventors: David Haydn Mordaunt, Steven Scott Christensen, Allison Albrecht Ferro, David A. Dewey
  • Patent number: 8804787
    Abstract: A laser system includes a semiconductor laser having a laser driver coupled thereto. An output of the semiconductor laser is optically coupled to an input of an optical splitter that provides outputs including or coupled to a first branch having a first branch fiber coupled to a feedback reflector which provides a cavity boundary that defines a passive secondary cavity for the semiconductor laser, and a second branch including a back reflection reduction device. The roundtrip attenuation from an output facet of the laser to the feedback reflector is from ?30 dB to ?80 dB. The laser driver provides sufficient drive stability so that a frequency variation of the semiconductor laser is less than one free spectral range (FSR) of the secondary cavity. An output of said system is taken after the back reflection reduction device.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: August 12, 2014
    Assignee: Gooch and Housego PLC
    Inventors: Steven Michael Coleman, Alexander Rosiewicz
  • Patent number: 8803027
    Abstract: A thin beam laser crystallization apparatus for selectively melting a film deposited on a substrate is disclosed having a laser source producing a pulsed laser output beam, the source having an oscillator comprising a convex reflector and a piano output coupler; and an optical arrangement focusing the beam in a first axis and spatially expanding the beam in a second axis to produce a line beam for interaction with the film.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: August 12, 2014
    Assignee: Cymer, LLC
    Inventor: Thomas Hofmann
  • Publication number: 20140219300
    Abstract: A system and method for high power parametric amplification based on performing amplification in a frequency domain after time domain pulses are optically Fourier transformed, to overcome bandwidth limitations. In a nutshell, a first optical Fourier transformation of a seed spectrum is performed and parametric amplification is carried out in this spatially dispersed frequency plane. As a consequence, individual parts of the spectrum can be amplified using an optical amplification medium comprising a series of optical amplification units, such as different narrowband crystals, placed one next to each other. Each crystal is tuned independently to optimize its corresponding spectral slice. A second optical Fourier transformation recovers the time domain laser pulses. This method enables scalability of amplified bandwidth and pulse energy at the same time.
    Type: Application
    Filed: August 16, 2012
    Publication date: August 7, 2014
    Applicant: INSTITU NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Bruno E. Schimidt, Francois Legare, Heide Ibrahim
  • Publication number: 20140219299
    Abstract: Seed pulse generators for fiber amplifier systems include a seed pump controller coupled to a seed pump laser diode. A photodetector is situated to detect seed pulse generation, and is coupled to the seed pump controller so that seed pumping is decreased upon pulse detection. For a laser diode pump source, a pump current can be pulsed to produce a seed pulse and then decreased to a bias level such as a DC bias current that is less than a pump laser threshold current. Single seed pulses can be generated with reduced pulse jitter.
    Type: Application
    Filed: February 4, 2013
    Publication date: August 7, 2014
    Applicant: NLIGHT PHOTONICS CORPORATION
    Inventor: nLight Photonics Corporation
  • Patent number: 8798108
    Abstract: An embodiment relates to a device for generating a short duration laser pulse, which comprises: means for generating a laser beam and for filtering same, arranged in such a way as to generate an input laser beam providing an input laser pulse; a transparent slide comprising a non-linear scattering material; the laser generation means being arranged so that the slide widens the spectrum of the input laser pulse by phase self-modulation in order to generate a wide-spectrum laser pulse; compression means adapted for compressing the wide-spectrum laser pulse in order to generate a short duration laser pulse; wherein the laser generation means are arranged so that the input beam is spatially uniform on the transparent slide and has a break integral B lower than three when the input beam passes through the transparent slide.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: August 5, 2014
    Assignee: Ecole Polytechnique
    Inventors: GĂ©rard Mourou, Gilles Cheriaux, Christophe Radier
  • Patent number: 8798107
    Abstract: A method and device are provided for generating bursts of sub-pulses, preferably in the picosecond range. Seed pulses are first generated, and then phase modulated to spread their spectral profile to several time-dependent spectral components. The phase modulated seed pulses are then spectrally filtered to remove spectral components and retain only selected ones, creating gaps in the amplitude profile of the seed pulses which therefore form bursts of sub-pulses. Various parameters such as the modulation amplitude, the modulation frequency, the spectral characteristics of the filters and the overall amplitude of the seed pulses may be controlled to provide a great versatility and adaptability.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: August 5, 2014
    Assignee: Institut National d'Optique
    Inventors: Pascal Deladurantaye, Louis Desbiens, Vincent Roy, Yves Taillon
  • Patent number: 8792156
    Abstract: An illumination system is disclosed for providing dual-excitation wavelength illumination for non-linear optical microscopy and micro-spectroscopy. The illumination system includes a laser system, an optical splitting means, a frequency shifting system, and a picosecond amplifier system. The laser system includes a laser for providing a first train of pulses at a center optical frequency ?1. The optical splitting means divides the first train of pulses at the center optical frequency ?1 into two trains of pulses. The frequency shifting system shifts the optical frequency of one of the two trains of pulses to provide a frequency shifted train of pulses. The picosecond amplifier system amplifies the frequency shifted train of pulses to provide an amplified frequency-shifted train of pulses having a pulse duration of at least 0.5 picoseconds.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: July 29, 2014
    Assignees: President and Fellows of Harvard College, The Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Khanh Kieu, Nasser Peyghambarian, Xiaoliang Sunney Xie, Christian W. Freudiger, Dan Fu
  • Publication number: 20140204396
    Abstract: An electro-optical distance measuring device includes a laser driver for a laser diode for emitting laser light pulses. The measuring device further includes a laser diode voltage supply having a cascade of at least two voltage regulators, each of which provides an output voltage at a level below a laser threshold voltage of the laser diode. By changing from a first to a second switching position of an electronic switching element of the measuring device, one of the laser light pulses can be emitted and, in the steady-state first and the steady-state second switching positions, no laser light is emitted.
    Type: Application
    Filed: December 19, 2013
    Publication date: July 24, 2014
    Applicant: LEICA GEOSYSTEMS AG
    Inventors: Kurt GIGER, Reto METZLER, Bernhard FIEGL
  • Patent number: 8787410
    Abstract: Compact high brightness light sources for the mid and far IR spectral region, and exemplary applications are disclosed based on passively mode locked Tm fiber comb lasers. In at least one embodiment the coherence of the comb sources is increased in a system utilizing an amplified single-frequency laser to pump the Tm fiber comb laser. The optical bandwidth generated by the passively mode locked Tm fiber comb laser is further decreased by using simultaneous 2nd and 3rd order dispersion compensation using either appropriate chirped fiber Bragg gratings for dispersion compensation, or fibers with appropriately selected values of 2nd and 3rd order dispersion. Fibers with large anomalous values of third order dispersion, or fibers with large numerical apertures, for example fibers having air-holes formed in the fiber cladding may be utilized.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: July 22, 2014
    Assignee: Imra America, Inc.
    Inventor: Martin Fermann
  • Patent number: 8780947
    Abstract: The invention relates to a mirror arrangement for guiding a laser beam in a laser system having at least one first end mirror and one second end mirror, wherein said end mirrors define a resonator having an optical resonator axis, wherein the laser beam is guided into the resonator as an input laser beam and is guided out of the resonator again after multiple reflection at the first and second end mirrors as an output laser beam. The sequence of reflections at the first and second end mirror thereby determines a direction of rotation between the first and second end mirror, defined as an axis of rotation relative to the resonator axis, whereby a first beam path is defined and the laser beam circulates in a direction of rotation between the first and second end mirrors in the resonator defined as an axis of rotation relative to the resonator axis.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: July 15, 2014
    Assignee: High Q Laser GmbH
    Inventors: Joachim Meier, Ulrike Wegner, Maximilian Josef Lederer
  • Patent number: 8780440
    Abstract: A chirped pulse amplification system includes a laser source providing an input laser pulse along an optical path. The input laser pulse is characterized by a first temporal duration. The system also includes a multi-pass pulse stretcher disposed along the optical path. The multi-pass pulse stretcher includes a first set of mirrors operable to receive input light in a first plane and output light in a second plane parallel to the first plane and a first diffraction grating. The pulse stretcher also includes a second set of mirrors operable to receive light diffracted from the first diffraction grating and a second diffraction grating. The pulse stretcher further includes a reflective element operable to reflect light diffracted from the second diffraction grating. The system further includes an amplifier, a pulse compressor, and a passive dispersion compensator disposed along the optical path.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: July 15, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Andrew James Bayramian, William A. Molander
  • Patent number: 8774240
    Abstract: A frequency-drift amplification device for a pulsed laser, including: a stretcher for time-stretching an incident laser pulse; at least one amplifying medium for amplifying the laser pulse; a main compressor for time-compressing the laser pulse to a desired duration for an output pulse of the amplification device; and at least one adjustment compressor between the stretcher and the main compressor, and in which the laser pulse undergoes four diffractions on diffraction gratings to time-compress the stretched laser pulse to a duration that is greater than the desired duration for the output pulse of the amplification device.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: July 8, 2014
    Assignee: Ecole Polytechnique
    Inventor: Gilles Cheriaux
  • Patent number: 8774239
    Abstract: An ultrafast laser generating system comprises a laser signal generator, a laser signal amplifier and a beam splitting element. The laser signal generator is configured to generate a first nanosecond pulse laser. The laser amplifier is configured to amplify the first nanosecond pulse laser from the laser signal generator so as to generate a second nanosecond pulse laser, which includes a picosecond pulse laser. The beam splitting element is configured to receive the second nanosecond pulse laser and split the picosecond pulse laser from the second nanosecond pulse laser.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: July 8, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Yao Wun Jhang, Hsin Chia Su, Chien Ming Huang, Chieh Hu, Hong Xi Tsau, Shih Ting Lin
  • Patent number: 8766137
    Abstract: An optical transmitting unit transmits a pulsed laser beam oscillated by a pulsed laser beam oscillator to a focusing unit in a laser processing apparatus. A wavelength band expanding unit expands the wavelength band of the pulsed laser beam, and a pulse width expanding unit increases the pulse width of the expanded pulsed laser beam. A focusing lens focuses the expanded pulsed laser beam. An optical fiber transmits the focused pulsed laser beam through a collimating lens and a pulse width compressing unit compresses the pulse width of the collimated pulsed laser beam to restore the original pulse width for transmission.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: July 1, 2014
    Assignee: Disco Corporation
    Inventor: Keiji Nomaru
  • Publication number: 20140177661
    Abstract: There is provided a pulse shaping device including a pulse generator configured to generate pulsed light by using a semiconductor laser for emitting light of a predetermined wavelength, and an optical member provided in a subsequent stage of the pulse generator and configured to compress a pulse time width of the pulsed light. The pulsed light has a first frequency dispersion state. The optical member imparts a second frequency dispersion state to the pulsed light, the second frequency dispersion state being a frequency dispersion state opposite to the first frequency dispersion state.
    Type: Application
    Filed: December 10, 2013
    Publication date: June 26, 2014
    Applicant: Sony Corporation
    Inventors: Kenji Tanaka, Michio Oka
  • Patent number: 8761215
    Abstract: A digital pulse shaping module provides a digital waveform such as a pulse shape, gating or a synchronizing digital signal for use with a pulsed laser oscillator. The digital pulse shaping module includes a waveform data generator that generates N-bit words having a number N of bits. A serializer is further provided to receive the N-bit words from the waveform data generator and outputs each bit individually in a series of bits corresponding to the digital waveform. The digital pulse shaping module further includes a delay module that provides a fine delay in the outputting of the bits by the serializer. This fine delay corresponds to a number of bits smaller than N, impacting on the timing of the outputted signal at the bit level. A pulse shaping generator has a plurality of digital pulse shaping modules.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: June 24, 2014
    Assignee: Institut National d'Optique
    Inventors: Michel Jacob, Pascal Deladurantaye, Yves Taillon
  • Patent number: 8760753
    Abstract: The present invention relates to a device (12) and to a method for amplifying light impulses (13). The device comprises a stretcher (15) stretching the light impulses over time, at least one amplifier (16) amplifying the stretched light impulses, and a compressor (17) compressing the stretched and amplified light impulses, wherein the amplifier (16) applies a non-linear phase generated by self-phase modulation to the stretched light impulses. In order to provide a device and a method for amplifying light impulses, by means of which light impulses having higher light impulse quality and light impulse peak power can be generated, the invention proposes that means for spectrally shaping the light impulses are disposed ahead of the amplifier (16) in the beam path, wherein the means for spectrally shaping the light impulses bring about a spectral trimming of the light impulses.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: June 24, 2014
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Friedrich-Schiller-Universitaet Jena
    Inventors: Jens Limpert, Enrico Seise, Damian Schimpf, Fabian Roeser, Andreas Tuennermann
  • Patent number: 8761213
    Abstract: A frequency-doubled OPS-laser having a desired output wavelength of 532 nm is tunable about that wavelength by a temperature tuned birefringent filter (BRF). The temperature of the BRF is varied while measuring transmission of a sample of the output through a Nd:YAG crystal having an absorption peak at a wavelength of about 532.4 nm. The peak is detected as a minimum of transmission and the temperature at which that minimum occurs is recorded. From wavelength-change-versus-temperature data for the BRF a temperature is calculated at which the output wavelength has the desired value and is maintained at that value to stabilize the output wavelength.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: June 24, 2014
    Assignee: Coherent GmbH
    Inventors: Wolf Seelert, Vasiliy Ostroumov
  • Patent number: 8761216
    Abstract: The invention is a method and apparatus for creating a color and optical density selectable visible mark on an anodized aluminum specimen. The method includes providing a laser marking system having a laser, laser optics and a controller operatively connected to said laser to control laser pulse parameters and a controller with stored laser pulse parameters, selecting the stored laser pulse parameters associated with the desired color and optical density, directing the laser marking system to produce laser pulses having laser pulse parameters associated with the desired color and optical density including temporal pulse widths greater than about 1 and less than about 1000 picoseconds to impinge upon said anodized aluminum.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: June 24, 2014
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Haibin Zhang, Glenn Simenson, Robert Hainsey, David Barsic, Jeffrey Howerton, Wayne Crowther, Patrick Leonard
  • Patent number: 8750344
    Abstract: In a laser pump arrangement for a laser medium that amplifies a laser beam, comprising at least one laser pump source (1?) with a plurality of emitters for generating partial pumping streams (TPS1?, TPS2?), the partial pumping streams (TPS1?, TPS2?) are led through a coupling optic to a homogenizer (3?) and then are thoroughly mixed in one axis through multiple reflections. In the process, the homogenizer (3?) and the laser medium are designed and disposed such that the pump stream exiting the homogenizer (3?) is led directly onto or into the laser medium while maintaining divergence in the mixing axis (DA), wherein the partial pumping streams (TPS1?, TPS2?) are projected, in particular focused, directly onto or into the laser medium in a projection axis (PA) that is perpendicular to the mixing axis (DA).
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: June 10, 2014
    Assignee: High Q Laser GmbH
    Inventors: Daniel Kopf, Maximilian Lederer
  • Publication number: 20140153597
    Abstract: An apparatus for generating a short-pulse laser using a temporally modulated sideband gain is provided. The apparatus includes a laser diode and an external reflector. By use of a time difference resulted by a nanosecond laser pulse signal at the external reflector, a sideband gain is obtained for generating a short-pulse picosecond laser output.
    Type: Application
    Filed: May 28, 2013
    Publication date: June 5, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yao-Wun JHANG, Chien-Ming Huang, Hsin-Chia Su, Shih-Ting Lin, Chih-Lin Wang, Hong-Xi Tsau
  • Publication number: 20140153596
    Abstract: A pulse multiplier includes a beam splitter and one or more mirrors. The beam splitter receives a series of input laser pulses and directs part of the energy of each pulse into a ring cavity. After circulating around the ring cavity, part of the pulse energy leaves the ring cavity through the beam splitter and part of the energy is recirculated. By selecting the ring cavity optical path length, the repetition rate of an output series of laser pulses can be made to be a multiple of the input repetition rate. The relative energies of the output pulses can be controlled by choosing the transmission and reflection coefficients of the beam splitter. This pulse multiplier can inexpensively reduce the peak power per pulse while increasing the number of pulses per second with minimal total power loss.
    Type: Application
    Filed: December 11, 2012
    Publication date: June 5, 2014
    Applicant: KLA-Tencor Corporation
    Inventors: Yung-Ho Alex Chuang, Justin Dianhuan Liou, J. Joseph Armstrong, Yujun Deng
  • Patent number: 8736954
    Abstract: High power parallel fiber arrays for the amplification of high peak power pulses are described. Fiber arrays based on individual fiber amplifiers as well as fiber arrays based on multi-core fibers can be implemented. The optical phase between the individual fiber amplifier elements of the fiber array is measured and controlled using a variety of phase detection and compensation techniques. High power fiber array amplifiers can be used for EUV and X-ray generation as well as pumping of parametric amplifiers.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: May 27, 2014
    Assignee: IMRA America, Inc.
    Inventors: Martin E. Fermann, Ingmar Hartl, Andrius Marcinkevicius, Liang Dong
  • Patent number: 8737438
    Abstract: A laser crystallization apparatus and method are disclosed for selectively melting a film such as amorphous silicon that is deposited on a substrate. The apparatus may comprise an optical system for producing stretched laser pulses for use in melting the film. In still another aspect of an embodiment of the present invention, a system and method are provided for stretching a laser pulse. In another aspect, a system is provided for maintaining a divergence of a pulsed laser beam (stretched or non-stretched) at a location along a beam path within a predetermined range. In another aspect, a system may be provided for maintaining the energy density at a film within a predetermined range during an interaction of the film with a shaped line beam.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: May 27, 2014
    Assignee: Cymer, LLC
    Inventors: Palash P. Das, Thomas Hofmann, Jesse D. Davis, Richard L. Sandstrom
  • Patent number: 8737439
    Abstract: The invention relates to an optical assembly (1) comprising a pulsed light source (2) for generating primary light pulses (4), a pulse splitter (5) for splitting said primary light pulses (4) into first and second secondary light pulses (7), and a delay element (8) for delaying said second secondary light pulses (7) relative to said first secondary light pulses (6), where the pulse repetition rate of said pulsed light source (2) is variable in order to change a temporal delay between different secondary light pulses (6,7) The invention is characterized in that said optical assembly (1) comprises a thermal insulation (12), a temperature stabilizer (16) or a temperature compensator (13) for said delay element (8) and/or a control circuit (27) for determining and controlling a drift of said pulse repetition rate.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: May 27, 2014
    Assignee: Menlo Systems GmbH
    Inventors: Rafal Wilk, Ronald Holzwarth, Michael Mei
  • Patent number: 8731008
    Abstract: A source of femtosecond laser pulses (50) comprising a 980 nm picosecond seed pulse source (12), a Ytterbium (Yb) doped fiber amplifier (14) operating in the three-level regime, a passive air-clad fiber (52) and a pulse compressor (16). The seed pulses are spectrally broadened due to self phase modulation (SPM) in the air-clad Yb doped fiber (18) and further broadened due to SPM in the passive core of the passive air-clad fiber (52), to produce sufficient spectral broadening to allow the pulses to be compressed in the dispersion compensator (16) into femtosecond pulses. The Yb doped fiber may have a phosphosilicate host composition in order to mitigate photodarkening.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: May 20, 2014
    Assignee: Fianium Ltd.
    Inventors: John Redvers Clowes, Anatoly Borisovich Grudinin, Pascal Dupriez
  • Patent number: 8730570
    Abstract: Techniques and devices for using a chirped fiber Bragg grating to compress amplified laser pulses.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: May 20, 2014
    Assignee: Calmar Optcom, Inc.
    Inventor: Anthony Hong Lin
  • Publication number: 20140133503
    Abstract: Systems and methods of high efficiency amplification of pulsed laser output for high energy ultra-short pulse laser systems are provided herein. According to some embodiments, methods for amplifying pulsed laser output for high energy ultra-short pulse laser systems include receiving pulsed laser output and amplifying the pulsed laser output by propagating the pulsed laser output through a non-silica based gain medium that has been doped with a concentration of rare earth ions, wherein the concentration of the rare earth ions within the gain medium is approximately greater than one percent by weight.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 15, 2014
    Inventors: Xiang Peng, Kyungbum Kim, Michael M. Mielke
  • Patent number: 8724207
    Abstract: Recent invention of longitudinally chirped volume Bragg gratings has dramatically changed a design of high power femtosecond lasers. Replacing of bulky pairs of conventional surface gratings with compact and robust chirped volume Bragg gratings for stretching and compression of laser pulses in chirped-pulse-amplification systems enabled decrease of size and weight of those systems by several times. The methods and devices enable substantial increase of stretching time and compression to shorter pulses, enhancement of stretched and compressed beams quality by stationary or dynamic shaping of gratings, and shaping of laser pulses in both temporal and spectral domains.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: May 13, 2014
    Assignees: University of Central Florida Research Foundation, Inc., Optigrate Corporation
    Inventors: Oleksiy Andrusyak, Almantas Galvanauskas, Leonid B. Glebov, Larissa Glebova, Julien Lumeau, Sergiy Mokhov, Eugeniu Rotari, Vadim I. Smirnov, Boris Ya Zeldovich
  • Publication number: 20140126591
    Abstract: A pulsed laser oscillator includes at least one first electrooptical element that polarizes light according to an applied voltage and a voltage control unit that applies a voltage to the first electrooptical element and controls the voltage. The voltage control unit changes over time a voltage value applied to the first electrooptical element, to control a pulse width of laser light.
    Type: Application
    Filed: January 9, 2014
    Publication date: May 8, 2014
    Applicant: V TECHNOLOGY CO., LTD.
    Inventors: Koichi KAJIYAMA, Michinobu Mizumura, Tetsuya Kiguchi, Daisuke Ishii, Yoshikatsu Yanagawa, Masami Takimoto
  • Patent number: 8717670
    Abstract: A fiber-MOPA includes a seed-pulse source followed by fiber amplifier stages. The seed pulse source delivers signal pulses for performing a laser operation and delivers radiation between the seed pulses to maintain the collective average of the seed pulse power and intermediate radiation power constant. Keeping this average power constant keeps the instantaneous available gain of the fiber amplifier stages constant. This provides that the seed pulse delivery can be changed from one regime to a next without a period of instability between the regimes.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: May 6, 2014
    Assignee: Coherent, Inc.
    Inventors: Andrei Starodoumov, Ronald Lambert, Michael Snadden, Andreas Diening
  • Patent number: 8718103
    Abstract: The present invention relates to an apparatus for generating an ultra-short ultra-high intensity pulse laser, comprising: a pulse laser providing unit which generates an ultra-short ultra-high intensity pulse laser, stretches pulse width, then selects and provides only a pulse laser having a predetermined polarizing angle; a polarization characteristic adjusting unit which divides the pulse laser provided by the pulse laser providing unit into S-polarizing component light and P-polarizing component light, varies the phase difference and amplitude difference between the S-polarizing component light and the P-polarizing component light, and combines the two types of light to generate a pulse laser with varied polarization characteristics; and a pulse compression unit which compresses the pulse width of the pulse laser, the polarization characteristics of which are varied by the polarization characteristic adjusting unit, and outputs the pulse laser.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: May 6, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Nam-Soo Myung, Seung-Hwan Kim
  • Patent number: 8718106
    Abstract: An apparatus includes a pulsed laser source that produces a pulsed laser beam at an input repetition rate and an input pulse power; a passive pulse splitter that receives the pulsed laser beam and outputs a signal including a plurality of sub-pulses for each input pulse of the pulsed laser beam, where the sub-pulses have a repetition rate that is greater than the input repetition rate and at least two of the sub-pulses have power less than the input pulse power; a sample accommodating structure configured to accommodate a sample placed in the path of a sample beam that is formed from the beam that exits the pulse splitter; and a detector that receives a signal of interest emitted from a sample accommodated by the sample accommodating structure based on the incident sample beam.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: May 6, 2014
    Assignee: Howard Hughes Medical Institute
    Inventors: Na Ji, Eric Betzig
  • Patent number: 8718105
    Abstract: A laser source (10) for emitting an output beam (12) includes a first gain medium (16B) that generates a first beam (16A), a second gain medium (18B) that generates a second beam (18A), a common feedback assembly (28) positioned in the path of the first beam (16A) and the second beam (18), and a control system (32). The common feedback assembly (28) redirects at least a portion of the first beam (16A) back to the first gain medium (16B), and at least a portion of the second beam (18A) back to the second gain medium (18B). The control system (32) selectively and individually directs power to the first gain medium (16B) and the second gain medium (18). Additionally, the common feedback assembly (28) can include a feedback mover (46) that continuously adjusts the angle of incidence of the first beam (16A) and the second beam (18A) on the feedback assembly (28).
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: May 6, 2014
    Assignee: Daylight Solutions, Inc.
    Inventors: Miles James Weida, David F. Arnone
  • Patent number: 8707921
    Abstract: A method for operating a laser device which has a laser-active solid and a preferably passive Q-switch in which the laser device is acted upon by pumped light for generating a laser pulse. The radiation spontaneously emitted by the laser device is analyzed for drawing a conclusion about an operating state of the laser device, in particular about a laser pulse being generated.
    Type: Grant
    Filed: May 26, 2008
    Date of Patent: April 29, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Heiko Ridderbusch
  • Patent number: 8704200
    Abstract: An EUV light source is disclosed which may comprise a plurality of targets, e.g., tin droplets, and a system generating pre-pulses and main-pulses with the pre-pulses for irradiating targets to produce expanded targets. The system may further comprise a continuously pumped laser device generating the main pulses with the main pulses for irradiating expanded targets to produce a burst of EUV light pulses. The system may also have a controller varying at least one pre-pulse parameter during the burst of EUV light pulses. In addition, the EUV light source may also include an instrument measuring an intensity of at least one EUV light pulse within a burst of EUV light pulses and providing a feedback signal to the controller to vary at least one pre-pulse parameter during the burst of EUV light pulses to produce a burst of EUV pulses having a pre-selected dose.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: April 22, 2014
    Assignee: Cymer, LLC
    Inventors: Alexander N. Bykanov, Igor V. Fomenkov
  • Patent number: 8698399
    Abstract: A method of sustaining a plasma, by focusing a first wavelength of electromagnetic radiation into a gas within a volume, where the first wavelength is substantially absorbed by a first species of the gas and delivers energy into a first region of a plasma having a first size and a first temperature. A second wavelength of electromagnetic radiation is focused into the first region of the plasma, where the second wavelength is different than the first wavelength and is substantially absorbed by a second species of the gas and delivers energy into a second region of the plasma region within the first region of the plasma having a second size that is smaller than the first size and a second temperature that is greater than the first temperature.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: April 15, 2014
    Assignee: KLA-Tencor Corporation
    Inventors: Ilya V. Bezel, Anatoly Shchemelinin, Eugene Shifrin, Matthew W. Derstine, Richard W. Solarz
  • Patent number: 8693508
    Abstract: A light source apparatus includes an optical resonator formed by an optical amplification medium and an optical switch. The optical switch includes a saturable absorber and changes its transmittance or reflectance when receiving an optical pulse emitted from a light irradiation source which includes a wavelength-tunable light source. The light source apparatus emits amplified light from the optical resonator in correspondence with the center wavelength of the optical pulse from the wavelength-tunable light source. The relationship between a length L and an effective refractive index n of the optical resonator and a repetition frequency f of the optical pulse satisfies a condition L<c/(nf), and a relationship between the length L and a recovery time ? in which the changed transmittance or reflectance of the optical switch recovers satisfies a condition ?>(nL)/c.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: April 8, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Tomohiro Yamada
  • Patent number: 8693514
    Abstract: The present invention enables simultaneous setting or automatic setting of a pulse peak and a pulse width of a light pulse. In a configuration comprising a light emitting element outputting laser light, a driving current supply section supplying a driving current to the light emitting element, a modulator applying a modulation voltage for pulse modulation of the laser light to the light emitting element, and a modulation control section controlling a modulation pattern as a pattern of pulse modulation of the modulation voltage for the modulator, the modulation control section sets a modulation voltage value in the modulation pattern based on information on a driving current value, and sends information on the modulation pattern to the modulator so that the modulation voltage reaches the set value.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: April 8, 2014
    Assignee: Megaopto Co., Ltd.
    Inventor: Shinobu Tamaoki
  • Publication number: 20140092927
    Abstract: A femtosecond laser based laser processing system having a femtosecond laser, frequency conversion optics, beam manipulation optics, target motion control, processing chamber, diagnostic systems and system control modules. The femtosecond laser based laser processing system allows for the utilization of the unique heat control in micromachining, and the system has greater output beam stability, continuously variable repetition rate and unique temporal beam shaping capabilities.
    Type: Application
    Filed: December 9, 2013
    Publication date: April 3, 2014
    Applicant: IMRA AMERICA, INC.
    Inventors: Lawrence Shah, James M. Bovatsek, Alan Y. Arai, Tadashi Yamamoto, Rajesh S. Patel, Donald J. Harter
  • Patent number: 8687665
    Abstract: Semiconductor light-emitting devices; methods of forming semi-conductor light emitting devices, and methods of operating semi-conductor light emitting devices are provided. A semiconductor light-emitting device includes a first laser section monolithically integrated with a second laser section on a common substrate. Each laser section has a phase section, a gain section and at least one distributed Bragg reflector (DBR) structure. The first laser section and the second laser section are optically coupled to permit optical feedback therebetween. Each phase section is configured to independently tune a respective one of the first laser section and second laser section relative to each other.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: April 1, 2014
    Assignee: Sandia Corporation
    Inventors: Anna Tauke-Pedretti, Erik J. Skogen, Gregory A. Vawter, Weng W. Chow
  • Patent number: 8687662
    Abstract: Methods and systems for generating pulses of laser radiation at higher repetition rates than those of available excimer lasers are disclosed that use multiple electronic triggers for multiple laser units and arrange the timings of the different triggers with successive delays, each delay being a fraction of the interval between two successive pulses of a single laser unit. Methods and systems for exposing nanoscale patterns using such high-repetition-rate lasers are disclosed.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: April 1, 2014
    Assignee: Anvik Corporation
    Inventor: Kanti Jain
  • Patent number: 8685599
    Abstract: A method of pulsed laser intrinsic marking can provide a unique identifier to detect tampering or counterfeiting.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: April 1, 2014
    Assignee: Sandia Corporation
    Inventors: David P. Adams, Joel Patrick McDonald, Bradley Howell Jared, V. Carter Hodges, Deidre Hirschfeld, Dianna S. Blair
  • Patent number: 8687661
    Abstract: In order to maintain a constant laser output pulse power in a RF-energized, sealed-off, diffusion cooled, pulsed, CO2 gas-discharge laser, each laser output pulse is generated by train or burst of shorter RF pulses. When the time between laser output pulses becomes short enough that the power in one pulse would be reduced by gas-discharge heating effects of a previous pulse, power in the RF pulse trains is varied by varying the duration or duty cycle of pulses in the bursts, thereby keeping output-pulse power in the laser output pulses constant. RF pulses in any burst can have a different duration for tailoring the temporal shape of a corresponding laser-output pulse.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: April 1, 2014
    Assignee: Coherent, Inc.
    Inventors: Peter Rosenthal, John Kennedy, Vern Seguin, David Allie
  • Patent number: 8675700
    Abstract: A laser system in this disclosure may include: a master oscillator configured to output pulsed laser light, a coherence reduction optical system configured to reduce coherence of the pulsed laser light from the master oscillator, and a controller configured to control the coherence reduction optical system so that a speckle of the pulsed laser light varies.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: March 18, 2014
    Assignee: Gigaphoton, Inc.
    Inventors: Shuntaro Watanabe, Takashi Onose, Osamu Wakabayashi
  • Patent number: 8675697
    Abstract: A master oscillator system may include a grating configured to function as one resonator mirror in an optical resonator, a spectral bandwidth tuning unit configured to tune the spectral bandwidth of a laser beam transmitted within the optical resonator, a storage unit configured to store a control value of the spectral bandwidth tuning unit corresponding to a desired spectral bandwidth and a controller configured to control the spectral bandwidth tuning unit based on the control value stored in the storage unit.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: March 18, 2014
    Assignee: Gigaphoton Inc.
    Inventors: Satoshi Tanaka, Hiroshi Tanaka, Osamu Wakabayashi
  • Patent number: 8675699
    Abstract: A laser pulse synthesis system is provided. A further aspect of the present system uses a phase-only modulator to measure ultrashort laser pulses. An additional aspect achieves interferences between split subpulses even though the subpulses have different frequencies. Yet another aspect of a laser system employs multi-comb phase shaping of a laser pulse. In another aspect, a laser system includes pulse characterization and arbitrary or variable waveform generation through spectral phase comb shaping.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: March 18, 2014
    Assignee: Board of Trustees of Michigan State University
    Inventors: Marcos Dantus, Vadim V. Lozovoy
  • Publication number: 20140064308
    Abstract: A laser processing apparatus, a filter device and a method are used for controlling a pulse laser, which is controllable in terms of its pulse energy and of a temporal triggering of laser pulses, during material processing of an object, in particular during the marking of a plastics-based document. The method includes comparing a pulse energy signal which assumes voltage values, in temporal correlation with a clock signal, which represent a pulse energy for the laser pulses for processing, with a threshold value condition and generating a logic result signal. The clock signal is passed to a gate and controlling the gate using the logic result signal and generating a retrieval signal thereby. An energy control signal is provided which has a voltage according to a specification of a control voltage. The retrieval signal and the energy control signal are used to control the pulse laser.
    Type: Application
    Filed: November 18, 2011
    Publication date: March 6, 2014
    Applicant: BUNDESDRUCKEREI GMBH
    Inventor: Daniel Mysliwitz