Heat Sink Patents (Class 372/36)
  • Patent number: 10444451
    Abstract: A light shield may be formed in photonic integrated circuit between integrated optical devices of the photonic integrated circuit. The light shield may be built by using materials already present in the photonic integrated circuit, for example the light shield may include metal walls and doped semiconductor regions. Light-emitting or light-sensitive integrated optical devices or modules of a photonic integrated circuit may be constructed with light shields integrally built in.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: October 15, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Ruizhi Shi, Yang Liu, Ari Novack, Yangjin Ma, Kishore Padmaraju, Michael J. Hochberg
  • Patent number: 10431959
    Abstract: A light emitting device includes first and second semiconductor laser elements and a collimate lens. The first semiconductor laser element irradiates a first light having a first peak wavelength in a visible range. The second semiconductor laser element irradiates a second light having a second peak wavelength in the visible range, which is different from the first peak wavelength. The collimate lens is arranged on paths of the first and second lights. The collimate lens has a plurality of lens portions including a first lens portion through which the first light passes, and a second lens portion through which the second light passes. The second lens portion is connected to the first lens portion, and the first and second lens portions are different from each other in at least one of a shape of a light incident surface, a shape of a light extracting surface, and a height.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: October 1, 2019
    Assignee: NICHIA CORPORATION
    Inventors: Soichiro Miura, Kazuma Kozuru
  • Patent number: 10424897
    Abstract: A semiconductor laser device includes a heat sink, a submount, a first electrode, an insulating layer, a semiconductor laser element, a connecting portion, and a second electrode. The submount is conductive and on a first region of an upper surface of the heat sink. The first electrode is conductive and on a second region, different from the first region, of the upper surface of the heat sink. The first electrode is electrically connected either to at least part of a side surface of the submount or to an upper surface of the submount.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: September 24, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Naoto Ueda, Kouji Oomori, Takayuki Yoshida
  • Patent number: 10416400
    Abstract: A semiconductor module is disclosed. The semiconductor module includes a housing that encloses on a bottom thereof a spacer and a wiring substrate that mounts a semiconductor element thereon. The housing includes a feedthrough that secures one end of a transmission substrate. The other end of the transmission substrate faces the wiring substrate and the spacer. The other end of the transmission substrate provides a lower end and an upper end that form an extension protruding toward the wiring substrate. The upper end is set so close to the wiring substrate but the lower end forms a space for receiving a surplus adhesive oozing between the spacer and the wiring substrate.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: September 17, 2019
    Assignee: Sumitomo Electric Device Innovations, Inc.
    Inventor: Yasuyuki Yamauchi
  • Patent number: 10391900
    Abstract: An occupant support adapted for use in a vehicle includes a cushion, an air-permeable cushion cover, and a ventilation unit. The cushion is adapted to support an occupant on the occupant support. The air-permeable cushion cover is arranged around at least a portion the cushion. The ventilation unit is configured to selectively cool the occupant of the occupant support with convective cooling through the air-permeable cushion cover.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: August 27, 2019
    Assignee: Faurecia Automotive Seating, LLC
    Inventors: Ying (Carolyn) Zhao, Robert C. Fitzpatrick, Cedric Ketels, John M. Perraut
  • Patent number: 10386178
    Abstract: The present invention relates to a laser device (10) for projecting a structured light pattern (9) onto a scene (15). The device is formed of several arrays (1) of semiconductor lasers (2), each array (1) comprising an irregular distribution of emission areas (2a) of the semiconductor lasers (2). One or several imaging optics (4) image said arrays (1) to an imaging space and superpose the images of said arrays (1) in the imaging space to form said light pattern (9). The proposed laser device generates a light pattern with high contrast and efficiency which may be used for 3D imaging systems, e. g. in automotive applications.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: August 20, 2019
    Assignee: PHILIPS PHOTONICS GMBH
    Inventors: Holger Moench, Stephan Gronenborn, Mark Carpaij
  • Patent number: 10371909
    Abstract: A thermal interface may include a thermally conductive cap. The thermally conductive cap may include a base, a finger, and an extension. The base may define a plurality of cap openings. The finger may extend from the base. The extension may extend from the base. The thermal interface may also include a gasket defining a plurality of gasket openings. The gasket may be located on the base of the cap such that the gasket openings are positioned over the cap openings.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: August 6, 2019
    Assignee: FINISAR CORPORATION
    Inventors: Troy Wy Piew Chiang, Julia Koh, Tat Ming Teo, William H. Wang
  • Patent number: 10367324
    Abstract: A laser component is provided, including a laser medium and a transparent heat transmitting member, at least one of which is oxide. Bonding surfaces of the laser medium and the transparent heat transmitting member are exposed to oxygen plasma, and thereafter the bonding surfaces are brought into contact without heating. The laser medium and the transparent heat transmitting member are bonded at atomic levels, their thermal resistance is low, and no large residual stress is generated due to the bonding taking place under normal temperature. The process of oxygen plasma exposure ensures transparency of their bonding interface. The laser medium and the transparent heat transmitting member are stably bond via an amorphous layer.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: July 30, 2019
    Assignee: INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION NATIONAL INSTITUTES OF NATURAL SCIENCES
    Inventors: Takunori Taira, Arvydas Kausas, Lihe Zheng
  • Patent number: 10361532
    Abstract: Semiconductor lasers are arranged in a plurality of columns. The columns of the respective semiconductor lasers include semiconductor laser installed columns. Reflecting mirrors in the respective semiconductor laser installed columns reflect light in substantially the same axial direction as viewed from above, and constitute beam groups. The beam groups of the respective semiconductor laser installed columns are formed on both sides in a width direction of a housing. That is, the beam groups are configured for each of the semiconductor laser installed columns, and the respective beam groups are formed on mutually different axes as viewed from above.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: July 23, 2019
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yuta Ishige, Etsuji Katayama, Toshio Kimura
  • Patent number: 10359648
    Abstract: Example embodiments disclose a smart contact lens for augmented reality and methods of manufacturing and operating the smart contact lens. The smart contact lens includes a first contact lens, a display unit in a center region of the first contact lens, a peripheral device on the first contact lens and around the display unit, the peripheral device being connected to the display unit, and a passivation layer covering the display unit and the peripheral device. The method of manufacturing the smart contact lens includes forming a display unit; mounting the display unit in a center region of a first contact lens, forming a peripheral device on the first contact lens, around the display unit and in connection with the display unit, and forming a passivation layer to cover the display unit and the peripheral device.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: July 23, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Taeho Kim, Sungwoo Hwang, Sangwon Kim, Hoyoung Ahn, Daeyoung Chung
  • Patent number: 10333270
    Abstract: An optical module 1 according to an embodiment includes a plurality of laser diodes (LDs) 21 to 23, a multiplexing optical system 30 combining a plurality of laser beams from the respective plurality of LDs, and a package 10 accommodating the plurality of LDs and the multiplexing optical system. The package includes a support mounted with the multiplexing optical system, and a cap having a transmissive window that allows a resultant light beam to pass through. At least one of the LDs has an oscillation wavelength of nor more than 550 nm. The package has an internal moisture content of not more than 3000 ppm. The multiplexing optical system is fixed to the support by a resin curing adhesive.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: June 25, 2019
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Kyono, Hideyuki Ijiri, Takao Nakamura, Hiromi Nakanishi, Takatoshi Ikegami, Kuniaki Ishihara, Yohei Enya, Tetsuya Kumano
  • Patent number: 10333033
    Abstract: A light emitting device according to an embodiment includes a body having a recess; a light emitting chip disposed in the recess; and a first dampproof layer sealing the light emitting chip and extended from a surface of the light emitting chip to a bottom of the recess, wherein the light emitting chip includes a wavelength range of 100 nm to 280 nm, and the first dampproof layer includes a fluororesin-based material.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: June 25, 2019
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Jae Jin Kim, Do Hwan Kim
  • Patent number: 10317704
    Abstract: Example embodiments disclose a smart contact lens for augmented reality and methods of manufacturing and operating the smart contact lens. The smart contact lens includes a first contact lens, a display unit in a center region of the first contact lens, a peripheral device on the first contact lens and around the display unit, the peripheral device being connected to the display unit, and a passivation layer covering the display unit and the peripheral device. The method of manufacturing the smart contact lens includes forming a display unit; mounting the display unit in a center region of a first contact lens, forming a peripheral device on the first contact lens, around the display unit and in connection with the display unit, and forming a passivation layer to cover the display unit and the peripheral device.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: June 11, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Taeho Kim, Sungwoo Hwang, Sangwon Kim, Hoyoung Ahn, Daeyoung Chung
  • Patent number: 10305252
    Abstract: A power control method for a laser system comprising laser diodes arranged in diode banks is provided. Each diode bank comprises at least one of the laser diodes and has a maximum power. The method comprises operating a first diode bank of the diode banks to output a first power; and concurrently operating other of the diode banks to output other powers, at least one of the other powers being different than the first power.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: May 28, 2019
    Assignees: Lumentum Operations LLC, AMADA HOLDINGS COMPANY LTD.
    Inventors: Martin H. Muendel, Justin L. Franke, Joseph J. Alonis, Kaori Usuda, Minoru Ogata
  • Patent number: 10305254
    Abstract: A VCSEL can include: an elliptical oxide aperture in an oxidized region that is located between an active region and an emission surface, the elliptical aperture having a short radius and a long radius with a radius ratio (short radius)/(long radius) being between 0.6 and 0.8, the VCSEL having a relative intensity noise (RIN) of less than ?140 dB/Hz. The VCSEL can include an elliptical emission aperture having the same dimensions of the elliptical oxide aperture. The VCSEL can include an elliptical contact having an elliptical contact aperture therein, the elliptical contact being around the elliptical emission aperture. The elliptical contact can be C-shaped. The VCSEL can include one or more trenches lateral of the oxidized region, the one or more trenches forming an elliptical shape, wherein the oxidized region has an elliptical shape. The one or more trenches can be trapezoidal shaped trenches.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: May 28, 2019
    Assignee: Finisar Corporation
    Inventors: Deepa Gazula, Nicolae Chitica, Marek Chacinski, Gary Landry, Jim Tatum
  • Patent number: 10283929
    Abstract: Various embodiments may relate to a semiconductor laser device, including at least one laser diode, and at least one reflection surface which reflects diffusely and which is irradiated by the laser diode during operation, and an additional light-nontransmissive housing body having a cutout. The laser diode is the sole light source of the semiconductor laser device. The laser diode is mounted immovably relative to the at least one reflection surface. Light emitted by the semiconductor laser device during operation has the same spectral components as, or fewer spectral components than, light emitted by the laser diode. An interspace between the laser diode and the at least one reflection surface is free of an optical assembly. A light-emitting area of the semiconductor laser device is greater than a light-emitting area of the laser diode by at least a factor of 100.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: May 7, 2019
    Assignee: OSRAM OPTO Semiconductors GmbH
    Inventors: Hubert Halbritter, Mario Wiengarten
  • Patent number: 10256166
    Abstract: A semiconductor device includes a resin case which houses a semiconductor element, a plurality of lead frames disposed in the principal plane of a base of the resin case with spaces therebetween, and a block portion disposed over a space between adjacent lead frames along the adjacent lead frames. With the semiconductor device, the disposition of the block portion makes creepage distance long, compared with a case where the block portion is not disposed and therefore a space between the adjacent lead frames is flat. Accordingly, even if metal atoms contained in the lead frames or the like migrate on an insulator or at an interface because of migration, a conduction path is hardly formed between the adjacent lead frames. That is to say, a short circuit hardly occurs between the adjacent lead frames with the block portion therebetween. This semiconductor device provides improved reliability.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: April 9, 2019
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Masanori Tanaka, Tadanori Yamada
  • Patent number: 10256384
    Abstract: A light emitting diode (LED) support frame (10), LED device adopting the same, and LED display module. The LED support frame (10) comprises a base board (101) and a reflection cup (102). A light converging component (103) is arranged on the reflection cup (102). A concave light converging surface (1030) is provided at a side of the light converging component (103) and adjacent to a reflection cup mouth (1021). A part of a light beam emitted from an LED chip is directed to the light converging surface (1030), reflected by the light converging surface (1030), and finally converged with other light beams emitted from the LED chip to focus at a visual field observed by an observer. Therefore, the embodiment effectively reduces optical loss of lights from different directions in the light converging component (103).
    Type: Grant
    Filed: June 4, 2016
    Date of Patent: April 9, 2019
    Assignee: FOSHAN NATIONSTAR OPTOELECTRONICS CO., LTD
    Inventors: Chuanbiao Liu, Kuai Qin, Mingjun Zhu, Xiaolong Huang, Tinghong Yang
  • Patent number: 10256609
    Abstract: A surface-emitting laser according to one embodiment of the technology includes a laser element section that includes a first multi-layer film reflecting mirror, a first semiconductor layer of a first conductivity type, an active layer, a second semiconductor layer of a second conductivity type, a second multi-layer film reflecting mirror, a nitride semiconductor layer of the second conductivity type, and a light output surface in this order. The laser element section further includes an electrode that injects a current into the active layer.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: April 9, 2019
    Assignee: Sony Corporation
    Inventors: Shoichiro Izumi, Tatsushi Hamaguchi, Noriyuki Futagawa, Masaru Kuramoto
  • Patent number: 10230212
    Abstract: Systems, devices, methods, and computer-readable media for preventing laser kink failures. A laser diode device can include one or more laser diodes configured to emit electromagnetic radiation coherently. The laser diode device can also include one or more submounts upon which the one or more laser diodes are mounted. The one or more submounts can include one or more through vias including one or more fill materials different from a material of the one or more submounts. Further, one or more properties of the one or more through vias in the one or more submounts can be selected to reduce an amount of mismatch between an effective coefficient of thermal expansion of the one or more laser diodes and an effective coefficient of thermal expansion of the one or more submounts.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: March 12, 2019
    Assignee: Cisco Technology, Inc.
    Inventors: Mudasir Ahmad, Weidong Xie, Yaoyu Pang, Chiyu Liu, Qiang Wang
  • Patent number: 10222555
    Abstract: An optoelectronic coupling system and methods of forming the same include an optoelectronic chip mounted on a substrate. The optoelectronic chip includes one or more optoelectronic components. A lower lens array is positioned over the optoelectronic chip and has a lower surface, with a first cut-away portion to accommodate the optoelectronic chip, and an upper surface that has one or more lower lenses positioned over respective optoelectronic components. An upper lens array is positioned over the lower lens array and has comprising one or more upper lenses positioned over respective lower lenses.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: March 5, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hidetoshi Numata, Masao Tokunari
  • Patent number: 10207244
    Abstract: A method of manufacturing a plurality of through-holes in a layer of first material by subjecting part of the layer of said first material to ion beam milling. For batch-wise production, the method comprises after a step of providing the layer of first material and before the step of ion beam milling, providing a second layer of a second material on the layer of first material, providing the second layer of the second material with a plurality of holes, the holes being provided at central locations of pits in the first layer, and subjecting the second layer of the second material to said step of ion beam milling at an angle using said second layer of the second material as a shadow mask.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: February 19, 2019
    Assignee: SMARTTIP B.V.
    Inventor: Edin Sarajlic
  • Patent number: 10199795
    Abstract: An optical module 1 according to an embodiment includes a plurality of laser diodes (LDs) 21 to 23, a multiplexing optical system 30 combining a plurality of laser beams from the respective plurality of LDs, and a package 10 accommodating the plurality of LDs and the multiplexing optical system. The package includes a support mounted with the multiplexing optical system, and a cap having a transmissive window that allows a resultant light beam to pass through. At least one of the LDs has an oscillation wavelength of nor more than 550 nm. The package has an internal moisture content of not more than 3000 ppm. The multiplexing optical system is fixed to the support by a resin curing adhesive.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: February 5, 2019
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Kyono, Hideyuki Ijiri, Takao Nakamura, Hiromi Nakanishi, Takatoshi Ikegami, Kuniaki Ishihara, Yohei Enya, Tetsuya Kumano
  • Patent number: 10168244
    Abstract: A gaseous fuel monitoring system can include a gaseous fuel supply enclosure, an optical line extending along the gaseous fuel supply enclosure, and a relatively highly thermally conductive material contacting both the gaseous fuel supply enclosure and the optical line. The relatively highly thermally conductive material can comprise a pyrolytic carbon material. A method of detecting leakage from a gaseous fuel supply enclosure can include securing an optical line to the gaseous fuel supply enclosure, the securing comprising contacting a pyrolytic carbon material with the optical line and the gaseous fuel supply enclosure. A gaseous fuel monitoring system can include an optical interrogator connected to the optical line, which interrogator detects changes in light transmitted by the optical line due to changes in vibrations of the enclosure.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: January 1, 2019
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Rory D. Daussin, Neal G. Skinner
  • Patent number: 10139714
    Abstract: A light source apparatus according to an embodiment of the present technology includes a light source section, a member, and a support section. The light source section including a contacted surface formed in a predetermined position. The member is attached to the light source section and in contact with the contacted surface. The support section is capable of supporting a component of a load that acts on the contacted surface due to the weight of the member, the component being in at least a predetermined direction and supported by the support section in both orientations of the predetermined direction.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: November 27, 2018
    Assignee: SONY CORPORATION
    Inventor: Takashi Takamatsu
  • Patent number: 10109978
    Abstract: A device for cooling a laser diode pump comprising a Low Size Weight Power Efficient (SWAP) Laser Diode (LSLD) assembly, including a laser diode coupled to a submount on a first surface, the submount comprising a first thermally conductive material and a heatsink coupled to a second surface of the submount, wherein the heatsink comprises a second thermally conductive material, the heatsink comprising one or more members formed on a side opposite the coupled submount.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: October 23, 2018
    Assignee: NLIGHT, INC.
    Inventors: Manoj Kanskar, Johannes Boelen
  • Patent number: 10062320
    Abstract: A display device includes a multiplicity of pixels, at least one connection carrier, and a multiplicity of inorganic light-emitting diode chips. The connection carrier includes a multiplicity of switches. Each pixel contains at least one light-emitting diode chip. Each light-emitting diode chip is mechanically fixed and electrically connected to the connection carrier. Each switch is designed for driving at least one light-emitting diode chip and the light-emitting diode chips are imaging elements of the display device.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: August 28, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Stefan Illek, Norwin von Malm, Tilman Ruegheimer
  • Patent number: 10044171
    Abstract: In various embodiments, laser apparatuses include thermal bonding layers between various components and creep-mitigation systems for preventing or retarding movement of thermal bonding material out of the thermal bonding layers.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: August 7, 2018
    Assignee: TERADIODE, INC.
    Inventors: Parviz Tayebati, Bien Chann, Robin Huang, Michael Deutsch
  • Patent number: 9995941
    Abstract: An example demultiplexer may include at least one dispersive element that is common to multiple wavelength channels. The demultiplexer may additionally include multiple field lenses positioned optically downstream from the at least one dispersive element, where a number of the field lenses is equal to a number of the wavelength channels. An example multiplexer may include a single piece power monitor assembly that includes a collimator lens array, a focusing lens array, and a slot integrally formed therein. The collimator lens array may be positioned to receive multiple wavelength channels from a laser array. The focusing lens array may be positioned to focus multiple portions of the wavelength channels onto an array of photodetectors. The slot may be configured to tap the portions from the wavelength channels collimated into the single piece power monitor assembly by the collimator lens array and to direct the portions toward the focusing lens array.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: June 12, 2018
    Assignee: FINISAR CORPORATION
    Inventors: Sascha Hallstein, Cindy Hsieh, Brendan Hamel-Bissell
  • Patent number: 9991674
    Abstract: An optical transmitter with a heat dissipation structure is provided. The heat dissipation structure comprises a substrate and an optical transmitter unit. The substrate comprises a base body, a heat dissipation well disposed on the base body, and a thermal conductive block inserted into and fixed to the heat dissipation well. The thermal conductive block has on one side thereof a heat guiding plane. The optical transmitter unit comprises a heat dissipating substrate directly disposed on the heat guiding plane, and a laser diode directly disposed on the heat dissipating substrate. The laser diode features an active region whose height is lowered to shorten a heat conduction path wherein heat is transferred from the active region through the heat dissipating substrate to the heat guiding plane. The heat already transferred to the heat guiding plane is transferred horizontally by the thermal conductive block to the base body which encloses the heat dissipation well.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: June 5, 2018
    Assignee: LUXNET CORPORATION
    Inventors: Pi-Cheng Law, Po-Chao Huang, Hsing-Yen Lin, Chung-Hsin Fu, Hua-Hsin Su
  • Patent number: 9985176
    Abstract: Disclosed is a light emitting diode using light of a short wavelength band. The light emitting diode includes a first conductivity type semiconductor layer having a front side and a back side, a second conductivity type semiconductor layer having a front side and a back side, an active layer formed between the back side of the first conductivity type semiconductor layer and the front side of the second conductivity type semiconductor layer, a first electrode electrically connected to the first conductivity type semiconductor layer, a second conductivity type reflective layer formed on the back side of the second conductivity type semiconductor layer, and a reflective part formed on the second conductivity type reflective layer to reflect light of a short wavelength band and light of a blue wavelength band and electrically connected to the second conductivity type semiconductor layer. The second conductivity type reflective layer includes DBR unit layers.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: May 29, 2018
    Assignee: Lumens Co., Ltd.
    Inventor: Dae Won Kim
  • Patent number: 9980395
    Abstract: A manufacturing method of laser diode unit of the present invention includes steps: placing a laser diode on top of a solder member formed on a mounting surface of a submount, applying a pressing load to the laser diode and pressing the laser diode against the solder member, next, melting the solder member by heating the solder member at a temperature higher than a melting point of the solder member while the pressing load is being applied, and thereafter, bonding the laser diode to the submount by cooling and solidifying the solder member, thereafter, removing the pressing load, and softening the solidified solder member by heating the solder member at a temperature lower than the melting point of the solder member after the pressing load has been removed, and thereafter cooling and re-solidifying the solder member.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: May 22, 2018
    Assignees: TDK Corporation, ROHM CO., LTD., SAE Magnetics (H.K.) Ltd.
    Inventors: Koji Shimazawa, Osamu Shindo, Yoshihiro Tsuchiya, Yasuhiro Ito, Kenji Sakai
  • Patent number: 9971235
    Abstract: A light source device includes a substrate having a first surface, a plurality of light emitting elements disposed on the first surface side of the substrate, a bonding frame disposed on the first surface side of the substrate so as to surround the plurality of light emitting elements, and a cover disposed on an opposite side of the bonding frame to the substrate. The substrate has metal as a forming material. The cover includes a light transmissive member. The light transmissive member is opposed to the first surface of the substrate, and transmits the light emitted from the plurality of light emitting elements. The bonding frame is lower in thermal conductivity compared to the substrate.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: May 15, 2018
    Assignee: SEIKO EPSON CORPORATION
    Inventor: Hideo Miyasaka
  • Patent number: 9966729
    Abstract: A laser light source module includes: a plate-shaped stem; a power supply lead pin having an upper end protruding from an upper surface being one of main surfaces of the stem and a lower end penetrating to extend toward a lower surface side, the lower surface being the other of the main surface of the stem; a block fixed to the upper surface of the stem; a submount substrate that is fixed to a surface of the block and includes the semiconductor laser array mounted thereon, the surface being parallel to the upper surface of the stem; the semiconductor laser array located on the submount substrate such that a light emitting direction is parallel to the upper surface of the stem; and a collimator lens array that is located on a front surface of the semiconductor laser array and converts an output light beam of the semiconductor laser array into a parallel light beam.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: May 8, 2018
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Mitoru Yabe
  • Patent number: 9948065
    Abstract: The present invention proposes a semiconductor light-emitting device having an axis of symmetry, the device including two or more laser diodes, each of the laser diodes has an axis of symmetry, wherein the laser diodes are arranged in series on the axis of symmetry of the light-emitting device in such a way that their axes of symmetry coincide, wherein faces of the laser diodes are connected so that they are in electric and mechanic contact and form a bar of the laser diodes, a directional pattern of radiation thereof has an axis of symmetry coinciding with the axis of symmetry of the light-emitting device. The proposed light-emitting device can be used in laser lamps of white light for exciting phosphors since it provides a high degree of flare of cylindrical surfaces.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: April 17, 2018
    Inventors: Yury Georgievich Shreter, Yury Toomasovich Rebane, Aleksey Vladimirovich Mironov
  • Patent number: 9941658
    Abstract: A diode-laser bar assembly comprises a diode-laser bar mounted onto a cooler by way of an electrically-insulating submount. A laminated connector is provided that includes two electrically-conducting sheets bonded to opposite sides on an electrically-insulating sheet. An electrical insulator is located between the laminated connector and the cooler. One electrically-conducting sheet is connected to n-side of the diode-laser bar and the other electrically-conducting sheet is connected to p-side of the diode-laser bar.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: April 10, 2018
    Assignee: Coherent, Inc.
    Inventors: Xiaoping Liang, Fei Zhou
  • Patent number: 9923328
    Abstract: A cooling device that enables the tip position of optical fiber to be adjusted and is able to efficiently cool an entirely of the optical fiber. This cooling device is provided with a cooling base plate, a fiber holder and an adjustment member. The cooling base plate has a recessed accommodating part. The fiber holder is disposed in the recessed accommodating part so as to be freely movable in a first direction. The adjustment member is disposed in a gap between the fiber holder and an end face of the recessed accommodating part and is movable in the first direction by moving in a second direction that intersects the first direction. The adjustment member abuts against both the end face of the recessed accommodating part and an end face of the fiber holder.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: March 20, 2018
    Assignee: Mitsuboshi Diamond Industrial Co., LTD.
    Inventors: Masanao Murakami, Christian Schaefer
  • Patent number: 9909746
    Abstract: An illumination device includes a light source configured to emit laser light, a transmission part configured to transmit the laser light emitted from the light source, and a lighting appliance configured to convert a wavelength of the laser light transmitted through the transmission part and to emit illumination light. The transmission part includes a rail-shaped guide part extending in a linear shape along a transmission direction of the laser light. The lighting appliance is configured to be mounted in an arbitrary position of the guide part.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: March 6, 2018
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hideharu Kawachi, Shinichi Anami
  • Patent number: 9895184
    Abstract: The invention is a multi-functional ablation device that encompasses the use of both heat energy and cryogenic energy as integrated into one medical device. In one embodiment, the medical device integrates a heat source such as RF or HIFU in combination with a source of cryogenic energy such that the multi-functional ablation device is a dual thermal ablation device capable of utilizing either energy source alone or in combination.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: February 20, 2018
    Assignee: CPSI Holdings LLC
    Inventor: John M. Baust
  • Patent number: 9882345
    Abstract: The present invention realizes both a laser light source that, despite the use of a plurality of laser diodes and transmission through a modulator that allows transmission of a specific orientation of linearly polarized light, is free from the occurrence of uneven luminance or uneven color, and a projector device that uses this laser light source. The laser light source is provided with a plurality of laser diodes that are mounted on a substrate and that emit linearly polarized light in the same direction. The plurality of laser diodes are arranged such that the orientation of the emitted linearly polarized light is different for each laser diode.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: January 30, 2018
    Assignee: NEC Display Solutions, Ltd.
    Inventor: Takashi Hiraga
  • Patent number: 9831632
    Abstract: A laser component includes a housing in which a first carrier block is arranged. A first laser chip having an emission direction is arranged on a longitudinal side of the first carrier block. The first laser chip electrically conductively connects to a first contact region arranged on the first carrier block and a second contact region arranged on the first carrier block. There is a respective electrically conductive connection between the first contact region and a first contact pin of the housing and between the second contact region and a second contact pin of the housing.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: November 28, 2017
    Assignees: OSRAM Opto Semiconductor GmbH, OSRAM GmbH
    Inventors: Markus Horn, Andreas Breidenassel, Karsten Auen, Bernhard Stojetz, Thomas Schwarz
  • Patent number: 9806494
    Abstract: An optical module 1 according to an embodiment includes a plurality of laser diodes (LDs) 21 to 23, a multiplexing optical system 30 combining a plurality of laser beams from the respective plurality of LDs, and a package 10 accommodating the plurality of LDs and the multiplexing optical system. The package includes a support mounted with the plurality of LDs and the multiplexing optical system, and a cap having a transmissive window that allows a resultant light beam to pass through. At least one of the LDs has an oscillation wavelength of nor more than 550 nm. The package has an internal moisture content of not more than 3000 ppm. The multiplexing optical system is fixed to the support by a resin curing adhesive.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: October 31, 2017
    Inventors: Takashi Kyono, Hideyuki Ijiri, Takao Nakamura, Hiromi Nakanishi, Takatoshi Ikegami, Kuniaki Ishihara, Yohei Enya, Tetsuya Kumano
  • Patent number: 9746369
    Abstract: A beam generating device includes a semiconductor substrate, having an optical passband. A first array of vertical-cavity surface-emitting lasers (VCSELs) is formed on a first face of the semiconductor substrate and are configured to emit respective laser beams through the substrate at a wavelength within the passband. A second array of microlenses is formed on a second face of the semiconductor substrate, with the microlenses in respective alignment with the VCSELs so as to transmit the laser beams generated by the VCSELs.
    Type: Grant
    Filed: September 7, 2015
    Date of Patent: August 29, 2017
    Assignee: APPLE INC.
    Inventors: Alexander Shpunt, Zafrir Mor, Raviv Erlich
  • Patent number: 9731381
    Abstract: A laser cutting head powered by a laser emission apparatus including optical transmission devices and associated with a cutting machine tool, includes a collimation device to collimate a laser beam coming from the laser emission apparatus, a focusing device to focus a collimated laser beam leaving the collimation devices, and a casing to house the focusing unit. The focusing unit includes one focusing lens and support devices to house and hold the focusing lens and move it along an adjustment direction within the casing in order to vary a focal point of the laser beam leaving the focusing lens. The laser cutting head includes a cooling unit secured to the casing and heat conducting devices used to connect the support devices with the cooling unit in order to extract the heat generated by the laser beam crossing the focusing lens by thermal conduction from the support devices and the focusing lens.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: August 15, 2017
    Assignee: Salvagnini Italia S.p.A.
    Inventors: Enzo Gesuita, Riccardo Manzo
  • Patent number: 9722395
    Abstract: The present invention describes a method and apparatus for mounting a semiconductor disc laser (SDL). In particular there is described a cooling apparatus assembly (12) for mounting the semiconductor disc laser (1) the cooling apparatus assembly comprising a crystalline heat spreader (8) made of diamond, sapphire or SiC and optically contacted to the SDL (1). The apparatus further comprises a heatsink (13) made of copper and a recess (16) located on a first surface (15) of the heatsink. A pliable filler material (17) which may be In or an In alloy is provided within the recess (16) such that when a sealing plate (19) is fastened to the heatsink the SDL (1) is hermetically sealed within the recess. Hermetically sealing the SDL within the recess is found to significantly increase the lifetime of the device comprising the SDL. The heat sink (13) may be water cooled with pipes (14) delivering the water. In case the sealing plate (19) is made from for example Invar, it has an aperture (20).
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: August 1, 2017
    Assignee: SOLUS TECHNOLOGIES LIMITED
    Inventors: Craig James Hamilton, Gareth Thomas Maker
  • Patent number: 9680278
    Abstract: There is provided a laser cooling apparatus including: a laser for providing an emission; a silicon-on-insulator substrate; and a thin film microstructure thermally anchored to the silicon-on-insulator substrate, the thin film microstructure being made from a material selected from either a II-VI binary compound semiconductor or a II-VI tenary compound semiconductor.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: June 13, 2017
    Assignee: NANYANG TECHNOLOGY UNIVERSITY
    Inventors: Qihua Xiong, Jun Zhang, Dehui Li
  • Patent number: 9665035
    Abstract: This light source unit includes a light source, a collimator lens, a support body, and an adhesive agent. The collimator lens is configured to collimate laser light emitted from the light source. In the support body, a first support portion configured to support the light source and a second support portion configured to support the collimator lens are integrally molded with each other by use of a synthetic resin. The adhesive agent is attached by a larger amount between the second support portion and a second face which is on an opposite side to a first face on the light source side of the collimator lens, than between the second support portion and the first face.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: May 30, 2017
    Assignee: KYOCERA Document Solutions Inc.
    Inventor: Hideji Mizutani
  • Patent number: 9659914
    Abstract: A light-emitting diode chip package is provided. The light-emitting diode chip package includes a substrate; a light-emitting diode chip set (LED chip set) disposed over the substrate, wherein the LED chip set is formed by a plurality of light-emitting diode chips (LED chips) in one piece; and at least two electrodes disposed over the substrate and electrically connected to the LED chip set.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: May 23, 2017
    Assignee: Lextar Electronics Corporation
    Inventors: Yi-Jyun Chen, Chih-Hao Lin, Hsin-Lun Su, Fang-Chang Hsueh
  • Patent number: 9640947
    Abstract: A III-Nitride based Vertical Cavity Surface Emitting Laser (VCSEL), wherein a cavity length of the VCSEL is controlled by etching.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: May 2, 2017
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Casey O. Holder, Daniel F. Feezell, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Patent number: 9628192
    Abstract: Embodiments of the present invention disclose an optical transmitter, a 10 G-DML, an MPD 1, an MPD 2, a collimation lens, and a narrowband optical filter are disposed in a TO to achieve monitoring of an optical power, received optical powers are monitored by using the MPD 1 and the MPD 2, the detected optical powers are output to a wavelength locking monitoring circuit by using a TO pin, variations, which are detected by the wavelength locking monitoring circuit, of the optical power and a variation of a wavelength locking factor K0 are separately compared with corresponding thresholds, and a comparison result are sent to a wavelength locking control circuit, to enable the wavelength locking control circuit to adjust, according to the comparison result and by using the TO pin, a temperature of a TEC to perform wavelength alignment.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: April 18, 2017
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Zhenxing Liao, Lingjie Wang, Min Zhou, Jing Huang