Abstract: An electrode anchoring structure in a crystal-growing furnace includes at least one graphite electrode pillar, at least one metal electrode pillar, at least one anchoring base, and at least one locking nut, wherein the graphite electrode pillar is engaged with a nut base of the metal electrode pillar, and the at least one metal electrode pillar is, through the anchoring base, is secured to furnace wall. Therefore, the at least one graphite electrode pillar acts both as weight support and electrical-conducting electrode. Since the flange welded on furnace wall has a greater area exposed to the atmosphere, a desirable cooling effect can be achieved, and temperature drop can be expedited if water spray is performed. The anchoring base is provided with a resilient washer, such that a resilient force can be employed to adjust loading of each graphite electrode pillar in an axial direction.
Abstract: A supporting table having heaters inside a crystal-growing furnace includes a table plate and a plurality of supporting posts, wherein the supporting posts support the table plate and are, respectively, electrically connected with the heaters. Each supporting post includes, among others, a graphite electrode post, a metal electrode post, and an anchoring base. The supporting posts are each with its graphite electrode post screwed to a nut portion of the metal electrode post, and with the metal electrode post fixed to a wall of the crystal-growing furnace. The anchoring base includes, among others, a flange and an elastic washer, where the flange is welded to the wall of the furnace, and with the help of elasticity adjustment of the elastic washer, the supporting table can bear an equal distribution of loading from the supporting posts.
Abstract: The present invention provides a radiation apparatus with capability of preventing heat convection, which comprises a blackbody furnace having a cavity therein and an air pressure adjusting unit. The air pressure adjusting unit coupled to the blackbody furnace for adjusting the air pressure of the open end of the cavity according to the temperature difference between the cavity and the outside environment. By means of the design of the present invention, it is capable of preventing heat convection between the cavity and the outside environment by utilizing the air pressure adjusting unit for controlling the air pressure status around the open end of cavity such that the blackbody furnace is stable for services of calibrations and tests.
Type:
Grant
Filed:
December 30, 2007
Date of Patent:
November 23, 2010
Assignee:
Industrial Technology Research Institute
Abstract: Oven for non-metal melting, in particular silicon melting, with a housing enclosing an interior, at least one mould arranged in the interior for receiving a non-metal melt, at least one electrical heating device enclosing, at least partially, the at least one mould for influencing the temperature of the non-metal melt, and a power supply device connected in an electrically conductive manner to the at least one heating device for providing the heating device with a time-variable current I(t), wherein the current I(t) has a frequency of 0.1 Hz to 1000 Hz and the current I(t) is of a magnitude sufficient for setting a predetermined temperature of the non-metal melt, the currents in the plurality, where necessary, of heaters having a defined phase position in respect of one another.
Type:
Grant
Filed:
April 26, 2007
Date of Patent:
September 9, 2008
Assignee:
Deutsche Solar AG
Inventors:
Marc Dietrich, Bernhard Freudenberg, Armin Müller, Jens Seidel, Josef Stenzenberger
Abstract: An apparatus and a method for electrically heating a refractory lined process vessel or reactor by directly passing current through an electrically conductive refractory lining using electrical heating assemblies incorporating a resilient, convoluted nickel conductor. When the heating assemblies are attached to the electrically conductive refractory lining, an impressed voltage causes current to flow between the heating assemblies causing the refractory lining to be heated resistively.
Type:
Grant
Filed:
June 14, 1994
Date of Patent:
October 17, 1995
Assignee:
The Dow Chemical Company
Inventors:
Robert C. Gleichman, Richard W. Wittman, Marvin E. Brumfield, Jr.