Induction Patents (Class 373/7)
  • Patent number: 8968470
    Abstract: Disclosed herein are a graphite crucible for electromagnetic induction-based silicon melting and an apparatus for silicon melting/refining using the same, which performs a melting operation by a combination of indirect melting and direct melting. The crucible is formed of a graphite material and includes a cylindrical body having an open upper part through which a silicon raw material is charged into the crucible, and an outer wall surrounded by an induction coil, wherein a plurality of slits are vertically formed through the outer wall and an inner wall of the crucible such that an electromagnetic force created by an electric current flowing in the induction coil acts toward an inner center of the crucible to prevent a silicon melt from contacting the inner wall of the crucible.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: March 3, 2015
    Assignee: Korea Institute of Energy Research
    Inventors: Bo Yun Jang, Young Soo Ahn, Joon Soo Kim, Sang Hyun Park, Dong Kook Kim, Gwon Jong Yu
  • Patent number: 8822893
    Abstract: Thermoplastic pellitized materials are melted in gravity flow through coaxially oriented perforated cylindrical metal susceptors. The susceptors are equally energized by the interception of a common magnetic field formed by a high frequency powered inductor coil.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: September 2, 2014
    Inventor: Bernard C. Lasko
  • Patent number: 8630328
    Abstract: A melting furnace including a sealed container containing an inert gas atmosphere, a crucible that is located inside the sealed container and melts a raw material by induction heating, and a crucible cooling mechanism. The crucible cooling mechanism includes a pipe portion that includes an intake that communicates with the sealed container and enables the inert gas to be discharged from the sealed container, and an outlet that enables the inert gas to be introduced into the sealed container, a heat exchange portion that is located partway along the pipe portion, and a gas transporting portion that is located partway along the pipe portion.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: January 14, 2014
    Assignee: Ulvac, Inc.
    Inventors: Satoshi Naitoh, Ichiro Mukae
  • Publication number: 20100086002
    Abstract: Disclosed is a heating furnace system for hot stamping. A first heating furnace has a plurality of pairs of upper and lower rolls arranged in a lengthwise direction thereof in order to transfer a steel plate, and high-frequency coils alternately arranged with the pairs of upper and lower rolls in the lengthwise direction thereof. A second heating furnace continuously transfers the steel plate from the first heating furnace during heating the steel plate at temperature of Ac3 or more, and has a plurality of transfer rollers arranged in a lengthwise direction thereof. The second heating furnace includes an electric furnace or a gas furnace. This heating furnace system can reduce space required for facilities by 50% or more compared to the related art.
    Type: Application
    Filed: July 1, 2009
    Publication date: April 8, 2010
    Applicant: MS AUTOTECH CO., LTD.
    Inventors: Jung Bok Hwang, Sun Ung Kim, Won Hyuck Kim, Seung Jo Yoo, Hyun Woo Lee
  • Patent number: 7085305
    Abstract: Methods of operation of an induction melter include providing material within a cooled crucible proximate an inductor. A desired electromagnetic flux skin depth for heating the material within the crucible may be selected, and a frequency of an alternating current for energizing the inductor and for producing the desired skin depth may be selected. The alternating current frequency may be adjusted after energizing the inductor to maintain the desired electromagnetic flux skin depth. The desired skin depth may be substantially maintained as the temperature of the material varies. An induction heating apparatus includes a sensor configured to detect changes in at least one physical characteristic of a material to be heated in a crucible, and a controller configured for selectively varying a frequency of an alternating current for energizing an inductor at least partially in response to changes in the physical characteristic to be detected by the sensor.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: August 1, 2006
    Assignee: Battelle Energy Alliance, LLC
    Inventor: John G. Richardson
  • Patent number: 6831939
    Abstract: A method of operating an induction furnace so as to receive electric arc furnace (EAF) dust, basic oxygen furnace (BOF) sludge/dust and/or other iron and volatile metals containing materials as a feed stream on a batch, continuous or semi-continuous basis together with a iron-containing material feed, and therefrom produce an iron-containing hot metal or pig iron product while recovering iron value from the feed materials and recovering volatile metal components contained in the feed materials.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: December 14, 2004
    Assignee: Heritage Environmental Services, LLC
    Inventors: James E. Bratina, Fred M. Fehsenfeld, Sr.
  • Patent number: 6757317
    Abstract: A device for the melting or purifying of inorganic substances, in particular of glass, which comprises a number of metal tubes which may be attached to a cooling medium and which are arranged next to each other, in such a way that together they form a container, a high frequency coil for the injection of energy into the container contents and a plastic coating for the metal tubes, the decomposition temperature of which lies below the temperature of the melt. The cooling system is configured and arranged such that the temperature of the boundary layer of the melt, immediately surrounding the component, lies below that of the decomposition temperature of the coating material.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: June 29, 2004
    Assignee: Schott Glas
    Inventors: Christian Kunert, Uwe Kolberg, Hildegard Römer
  • Publication number: 20040091014
    Abstract: A method of operating an induction furnace so as to receive electric arc furnace (EAF) dust, basic oxygen furnace (BOF) sludge/dust and/or other iron and volatile metals containing materials as a feed stream on a batch, continuous or semi-continuous basis together with a iron-containing material feed, and therefrom produce an iron-containing hot metal or pig iron product while recovering iron value from the feed materials and recovering volatile metal components contained in the feed materials.
    Type: Application
    Filed: April 4, 2003
    Publication date: May 13, 2004
    Inventors: James E. Bratina, Fred M. Fehsenfeld
  • Publication number: 20040012901
    Abstract: Protection systems are described for electrical systems such as electrical arc furnaces. The protection systems may be designed and used to detect and clear faults that may occur within the electric arc furnace. For example, a pair of Rogowski coils may be used to detect current at their respective locations along a conductors, and output corresponding signals to a multi-function, differential relay having multiple voltage and current inputs. By comparing the signals from the Rogowski coils, the differential relay may determine whether a fault exists at some point along the conductors and between the pair of Rogowski coils. Further, the relay may then, in response to the fault, trip a circuit breaker or other network protection device, so that the fault may be corrected.
    Type: Application
    Filed: March 24, 2003
    Publication date: January 22, 2004
    Inventors: Ljubomir A. Kojovic, Martin T. Bishop
  • Publication number: 20010025782
    Abstract: A process and apparatus assuring low costs and high efficiency in practicing refuse incineration. A applying electromagnetic wave of a frequency band resonant with rotation or vibration of a specific substance e.g., dioxins molecule, thereby to heat the dioxins molecule selectively up to high temperature to remove the dioxins molecule by decomposition.
    Type: Application
    Filed: January 4, 2001
    Publication date: October 4, 2001
    Inventors: Sataro Yamaguchi, Yasuhiro Hasegawa
  • Patent number: 6289033
    Abstract: An environmentally controlled heating system for heating metal alloy billets wherein a trolley system carries the billets through the chambers of the induction heating system in crucibles that are pushed or pulled by actuators. The billets enter the system through a load-chamber and travel through a main chamber to a heating area where the loaded crucibles pass through a series of induction heating coils. The heated billets leave the heating area through a dump-chamber where they are delivered to a forming system. The empty crucibles reenter the main chamber and travel back to the loading area to receive another billet. The heating system is controlled through a computing device for monitoring and controlling the system, preferably a programmable logic controller. A vacuum system evacuates air from the chambers, and an inert gas system back-fills the chambers with an inert gas. A gettering system continually cleans the inert gas.
    Type: Grant
    Filed: December 8, 1998
    Date of Patent: September 11, 2001
    Assignee: Concurrent Technologies Corporation
    Inventors: Bryan P. Tipton, Russell S. Corrente, Chris C. Alexion, Mark C. Waterbury, Thomas P. Creeden
  • Patent number: 6101212
    Abstract: A sealed evacuatable crucible (1) for inductive melting of metals or other electrically conductive materials, including a plurality of palisades (2,2', . . . ) which are arranged parallel to one another, and for enclosing the melt and forming the crucible wall, and having a crucible base part (3) which carries the palisades (2,2', . . . ), and having an induction coil (18) which is wound around the palisades (2,2', . . .
    Type: Grant
    Filed: January 12, 1999
    Date of Patent: August 8, 2000
    Assignee: Ald Vacuum Technologies AG
    Inventors: Franz Hugo, Thomas Ruppel, Hans-Gunther Fellmann
  • Patent number: 6049560
    Abstract: An inductively heated drain tube fashioned of high temperature, electrically conducting materials is disclosed. An inductor surrounds the drain tube. The inductor and drain tube are cast within a refractory material. The drain tube is then placed in communication with the side of a bath of molten materials. When power is supplied to the inductor, the inductor couples with the drain tube, heating the drain tube and allowing it to act as a drain for high temperature molten materials. When power is removed from the inductor, a flow of cooling liquid through the inductor cools the drain tube, solidifying the molten materials and stopping their flow through the drain tube. The refractory material encases the inductor, acting as a thermal barrier and preventing damage from molten materials.
    Type: Grant
    Filed: December 3, 1998
    Date of Patent: April 11, 2000
    Inventor: Charles John Freeman
  • Patent number: 5757843
    Abstract: An annular exhaust gas passage 2 and an airtight retention member 3 for keeping the inside of a crucible induction furnace 1 airtight are installed on the top of the furnace 1, and an exhaust system under atmospheric pressure is connected to a valve 4 via an air duct that penetrates the airtight retention member 3. In addition, a sealing cover 7 that has a valve 8, which can be opened and closed, is used to keep the inside of the furnace airtight, while a system under reduced pressure is connected to the valve 8. These two systems constitute the entire exhaust system.
    Type: Grant
    Filed: July 10, 1995
    Date of Patent: May 26, 1998
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Hiroshi Otsuka, Tsuguharu Omori, Michio Kawasaki
  • Patent number: 5753004
    Abstract: A method of refining molten metal includes the steps of reduced-pressure-refining molten metal in a heated vessel, adding slag-forming agents into the refined molten metal while keeping the molten metal in the vessel, or after pouring the molten metal into another vessel, re-refining the molten metal by heating the molten metal with inert-gas plasma and while stirring the molten metal as occasion demands. Preferably, the refining apparatus includes two adjacent chambers, each chamber isolated from the surrounding atmosphere. The chambers can be connected with, or separated from, each other and each chamber is provided with an exhaust device. One of the chambers is provided with an induction heating refining furnace, and the other chamber is provided with inert gas plasma heater. The apparatus also includes a re-refining vessel which is transferable between the two chambers, and a material feeder for feeding slag-forming agents into the re-refining vessel.
    Type: Grant
    Filed: January 24, 1996
    Date of Patent: May 19, 1998
    Assignee: Hitachi Metals, Ltd.
    Inventors: Noboru Hanai, Kokichi Mikutsu, Tamiya Kishida, Mitsuru Suzuki, Katsumi Kanamoto, Takashi Mukai, Iwao Kashiwagi, Kenji Tokuda
  • Patent number: 5139236
    Abstract: A furnace system particularly adapted for use with a continuous upcaster. Instead of employing discrete furnaces, tundishes, ladles and the like, the instant unitary system employs a furnace, a feeding mechanism for directly introducing material into the furnace and a plasma torch to melt the material. The rate of material entering the furnace is balanced by the quantity of product emerging from the upcaster.
    Type: Grant
    Filed: April 11, 1991
    Date of Patent: August 18, 1992
    Assignee: Inco Alloys International, Inc.
    Inventor: William L. Mankins
  • Patent number: 4850573
    Abstract: Method of and apparatus for providing agitation of the melt in the induction melting of metals. A medium frequency melting power supply (12) of an induction furnace or crucible (10) acts in conjunction with a modulating circuit incorporating a wave form generator (14) whereby modulation at a predetermined amplitude and frequency is applied to the furnace power frequency during at least part of the melt processing cycle to cause agitation of the melt to a predetermined extent independently of the selected overall power input.
    Type: Grant
    Filed: January 15, 1988
    Date of Patent: July 25, 1989
    Assignee: Inductotherm Europe Limited
    Inventor: John H. Simcock
  • Patent number: 4695316
    Abstract: A system for simultaneously melting metal and holding molten metal for casting operations and the like comprises a plurality of coreless induction furnaces. Each furance has an induction coil having a plurality of coil turns. The induction coils of the furances are arranged to inductively heat metal in the furnaces and are connected in electrical series. A single power supply furnishes AC power to the series-connected induction coils. Electrical taps are located on each induction coil at spaced intervals along the coil for enabling electrical connections to be made to the induction coils at said intervals. Each interval comprises a preselected number of coil turns. Switch means are associated with each induction coil and connected to selected ones of the electrical taps for selectably switching a preselected number of coil turns into and out of circuit with the power supply for selectively melting or holding molten metal in the induction furnace associated with a selected coil.
    Type: Grant
    Filed: June 27, 1986
    Date of Patent: September 22, 1987
    Assignee: Inductotherm Corporation
    Inventor: Jesse M. Cartlidge
  • Patent number: 4425092
    Abstract: The invention relates to a method for burning fine-grain material, particularly for the manufacture of cement clinker from cement raw meal. The material is thermally treated in a multi-stage burning process with a pre-heating stage, a calcining stage with a high-degree of calcination, a sintering stage in a very short rotary kiln and a cooling stage. Fuel is introduced both into the sintering stage in the short rotary kiln as well as into the calcinating stage. Hot exhaust air from the cooling stage is supplied both to the sintering stage as well as to the calcining stage as furnace air. The invention also relates to an apparatus for the manufacture of mineral products of the burning process such as cement clinker.
    Type: Grant
    Filed: August 5, 1981
    Date of Patent: January 10, 1984
    Assignee: Klockner-Humboldt-Deutz AG
    Inventors: Kunibert Brachthauser, Horst Herchenbach
  • Patent number: 4392822
    Abstract: The invention relates to a method for burning fine-grain material, particularly for the manufacture of cement clinker from cement raw meal. The material is thermally treated in a multistage burning process with a pre-heating stage, a calcining stage with a high-degree of calcination, a sintering stage in a very short rotary kiln and a cooling stage. Fuel is introduced both into the sintering stage in the short rotary kiln as well as into the calcinating stage. Hot exhaust air from the cooling stage is supplied both to the sintering stage as well as to the calcining stage as furnace air. The invention also relates to an apparatus for the manufacture of mineral products of the burning process such as cement clinker.
    Type: Grant
    Filed: June 1, 1981
    Date of Patent: July 12, 1983
    Assignee: Klockner-Humboldt-Deutz AG
    Inventors: Kunibert Brachthauser, Horst Herchenbach