Detail Of Sample Holder Or Support Therefor Patents (Class 374/12)
  • Patent number: 10782193
    Abstract: An example apparatus can comprise an emitter to emit radio frequency radiation, an absorber that changes temperature based on emissions from the emitter, and one or more sensors to measure a temperature difference between a sample and a reference coupled to the absorber.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: September 22, 2020
    Assignees: UT-Battelle, LLC, Iowa State University Research Foundation, Inc.
    Inventors: Tom Byvank, Benjamin S. Conner, Roger A. Kisner, Michael A. McGuire, Orlando Rios, Michael S. Kesler, Gerard M. Ludtka, Boyd Evans, Cajetan Ikenna Niebedim, Ralph William McCallum
  • Patent number: 10697756
    Abstract: A plate for a 3D scanning system can include a plate body configured to mount to a 3D scanning system, and a plurality of artifact alignment apertures defined in the plate body arranged in a predetermined pattern to allow a predetermined mounting arrangement of one or more artifacts. The artifact alignment apertures are configured to allow an artifact to be mounted to the plate body.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: June 30, 2020
    Assignee: Delavan Inc.
    Inventor: Joseph Samo
  • Patent number: 10585057
    Abstract: The invention relates to detecting a composition of a sample or contamination in liquids by detecting corresponding changes in their thermal properties. In a disclosed arrangement, an apparatus is provided comprising a first probe element configured to provide a first surface in direct contact with the sample and a second surface that is not in direct contact with the sample. A measurement system measures a rate of heat transfer through the first surface. A processing unit analyses the measured rate of heat transfer in order to detect a heat transfer characteristic of the sample that is indicative of a composition of the sample.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: March 10, 2020
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Kamaljit Singh Chana, Jonathan Shamus Sullivan
  • Patent number: 9939329
    Abstract: A device for thermal analysis including: a pair of sample container assembly sets, having a sample container and a heat sink connected using a predetermined thermal resistance; a heating unit for equally heating the pair of sample container assembly sets; a temperature control for the heating unit; a weight measurement unit measuring difference between a sample and a reference material; while the heating unit is changed.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: April 10, 2018
    Assignee: Netzsch-Gerätebau GmbH
    Inventors: Yoshio Shinoda, Ryoichi Kinoshita
  • Patent number: 8926171
    Abstract: A balance for a simultaneous differential thermal analysis instrument that combines gravimetric measurements with measurements that require propagation of electrical signals from the sample holder to an apparatus for recording the electrical signals. In one embodiment of the present invention, conductive cross-flexure pivots are used in a parallel guided balance to mechanically and electrically couple the components of the balance mechanism to the apparatus that records the electrical signals.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: January 6, 2015
    Assignee: Waters Technologies Corporation
    Inventors: Robert L. Danley, Xiaoping Hu
  • Patent number: 8840300
    Abstract: Certain embodiments disclosed herein are directed to a sensor comprising a support member, a sample sensor coupled to the support member and comprising a sample support electrically coupled to a first set of interconnects, and a reference sensor coupled to the support member and comprising a ring coupled to a second set of interconnects, in which the ring is positioned adjacent to and surrounding at least a portion of the sample support of the sample sensor.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: September 23, 2014
    Assignees: Perkinelmer Health Sciences, Inc., Anatech B.V.
    Inventor: Martinus J. L. M. Wijffels
  • Patent number: 8821008
    Abstract: A balance for a simultaneous differential thermal analysis instrument that combines gravimetric measurements with measurements that require propagation of electrical signals from the sample holder to an apparatus for recording the electrical signals. In one embodiment of the invention, conductive flat planar strip flexure pivots are used in a single-meter movement balance to mechanically and electrically couple the components of the balance mechanism to the apparatus that records the electrical signals.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: September 2, 2014
    Assignee: Waters Technologies Corporation
    Inventors: Robert L. Danley, Xiaoping Hu
  • Publication number: 20140129043
    Abstract: A controller and method for controlling the temperature of a steam room. The controller comprises a backing plate and a housing that serves as a moisture barrier. The housing comprises an overlay portion and mounts to the backing plate. A circuit board is mounted to the backing plate. One or more primary temperature sensors are mounted to the circuit board and located within the housing, are spaced above the circuit board, and are biased against the overlay portion. One or more secondary temperature sensors are located within the housing to sense a temperature of a backside of the respective one of more primary temperature sensors wherein an estimation of a temperature of the steam room is obtained.
    Type: Application
    Filed: November 5, 2013
    Publication date: May 8, 2014
    Inventor: James Rocco SCALERA
  • Patent number: 8708556
    Abstract: A thermal analyzer heats and cools a sample placed inside a furnace for measuring a thermal characteristic of the sample during heating and cooling. The thermal analyzer has a multilayer structure for covering the furnace and its surroundings so as to isolate the furnace and its surroundings from an external environment. The multilayer structure includes a multilayer wall with two layers formed of a material having high thermal conductivity and heat dissipation property. The two layers are spaced apart from one another to provide therebetween an interlayer that contains a substance having a heat capacity substantially equal to a gas contained in the furnace so that heat transfer between the two layers is minimized.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: April 29, 2014
    Assignee: SII NanoTechnology
    Inventors: Kentaro Yamada, Shinya Nishimura, Hirohito Fujiwara
  • Patent number: 8393785
    Abstract: A nanocalorimeter includes a merging layer having, a drop placement area for holding drops to be merged and a thermal equilibration area. A measurement layer includes a substrate, and a temperature probe on the substrate, wherein the temperature probe extends out of the surface of the substrate to come into operative contact with the thermal equilibration area when the measurement layer is placed in operative association with the merging layer. The nanocalorimeter is configured to have the merging layer and the measurement layer non-integrated, making the measurement layer reusable.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: March 12, 2013
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Dirk De Bruyker, Francisco E. Torres, Michal V. Wolkin, Gregory B. Anderson, Eugene M. Chow
  • Patent number: 8308352
    Abstract: An apparatus for single-side, thermal shock testing of a specimen may comprise a base and thermal insulation. The base may comprise an internal cavity disposed within the base. The internal cavity may extend through a first outer surface of the base. A specimen-supporting surface may be recessed within the first outer surface for supporting a specimen within the base to substantially close the internal cavity. The thermal insulation may not substantially cover the first outer surface, but may substantially cover other outer surfaces of the base.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: November 13, 2012
    Assignee: The Boeing Company
    Inventors: John C. Waldrop, III, Daniel J. Perron, Laura Sullivan Riegel
  • Patent number: 8147133
    Abstract: A measured system for use with a calorimeter and related methods of operation.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: April 3, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Daniel Ellison, Ryan Ubelhor
  • Patent number: 8087821
    Abstract: A heat flux differential scanning calorimeter (DSC) is disclosed. The DSC can be configured with a highly conductive sample assembly enclosure. The enclosure can include a high emissivity coating. In one embodiment, the enclosure extends along a longitudinal direction that is about the same as that of an infrared lamp assembly used to heat the enclosure, thereby increasing the efficiency of heating the sample enclosure. In one embodiment, a gas-filled thermal resistor is used to couple the measurement assembly to a heat sink, such that samples can be rapidly heated and rapidly cooled.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: January 3, 2012
    Assignee: Waters Technologies Corporation
    Inventor: Robert L. Danley
  • Patent number: 8066429
    Abstract: A thermal measurement apparatus and method for performing heat flux differential scanning calorimetry (DSC) is disclosed. A variable thermal resistor is used to couple a measurement assembly to a heat sink in the thermal measurement apparatus, such that samples can be rapidly heated and rapidly cooled. The apparatus can be configured with a highly conductive sample assembly enclosure. The enclosure can include a high emissivity coating. In one embodiment, the enclosure extends along a longitudinal direction that is about the same as that of an infrared lamp assembly used to heat the enclosure, thereby increasing the efficiency of heating the sample enclosure. In one configuration, the variable thermal resistor comprises a gap whose gas composition can be varied during a sample measurement to independently optimize sample heating and cooling rates.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: November 29, 2011
    Assignee: Waters Technologies Corporation
    Inventor: Robert L. Danley
  • Patent number: 8042992
    Abstract: Certain embodiments disclosed herein are directed to a sensor comprising a support member, a sample sensor coupled to the support member and comprising a sample support electrically coupled to a first set of interconnects, and a reference sensor coupled to the support member and comprising a ring coupled to a second set of interconnects, in which the ring is positioned adjacent to and surrounding at least a portion of the sample support of the sample sensor.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: October 25, 2011
    Assignees: Anatech B.V., PerkinElmer LAS, Inc.
    Inventor: Martinus J. L. M. Wijffels
  • Publication number: 20110235671
    Abstract: To improve measurement accuracy by eliminating influence of a change of a temperature environment around a furnace of a thermal analyzer, the thermal analyzer includes a multilayer structure of at least two sealed layers for covering the furnace and its surroundings so as to isolate the furnace and its surroundings from an outside. An interlayer of the multilayer structure is loaded with a substance having a heat capacity equal to the heat capacity of a gas inside the furnace.
    Type: Application
    Filed: March 28, 2011
    Publication date: September 29, 2011
    Inventors: Kentaro Yamada, Shinya Nishimura, Hirohito Fujiwara
  • Patent number: 7922386
    Abstract: A thermal analysis apparatus includes: a sample temperature control device for surrounding a sample placed on a measurement position and controlling the temperature of the sample; a balance beam for supporting the sample and capable of tilting about a pivot point; and a sample moving device that allows the balance beam to slide between a first position at which the sample is situated at the measurement position and a second position at which the sample is situated at a distant position which is a position outside the sample temperature control unit. The distant position is a position which is deviated laterally from a line trajectory extending from the measurement position to the outside of the sample temperature control device. When the sample is at the measurement position, the balance beam is allowed to linearly slide and subsequently to rotationally slide about an axial line, to thereby transport the sample from the measurement position to the distant position.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: April 12, 2011
    Assignee: Rigaku Corporation
    Inventor: Nobuhiro Tanaka
  • Patent number: 7909505
    Abstract: A device and method for investigating phase transformation properties and structural changes of materials. In one form, the device simulates actual thermal processing conditions, while the method can be used in both simulations as well as in actual processing conditions. An analysis using at least one of the device and method is referred to as a single sensor differential thermal analysis, as it compares the temperature recorded in a measured specimen against a reference thermal history without requiring the derivation of the reference thermal history from measured reference temperatures.
    Type: Grant
    Filed: January 6, 2009
    Date of Patent: March 22, 2011
    Assignee: The Ohio State University
    Inventors: Boian Todorov Alexandrov, John C. Lippold, Seth Jason Norton
  • Patent number: 7774164
    Abstract: A computer which functions by a performance prediction program for a ground source heat pump system of the present invention and a performance prediction system constructed thereby include a dimensionless distance calculating means, a first dimensionless time calculating means, a second dimensionless time calculating means, a boundary time acquiring means, an underground temperature change calculating means, and a tube surface temperature change calculating means. The performance prediction program and performance prediction system can be applied to the design of heat exchange system by obtaining predicted underground temperature data for the ground source heat pump system with high accuracy and predicting the performance for the ground source heat pump system based on the resulting underground temperature changes, etc., in view of the use of a plurality of buried tubes, underground temperature change patterns for buried tubes placed at different intervals, and the use of U-shaped tube heat exchangers.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: August 10, 2010
    Assignees: National University Corporation Hokkaido University, Nippon Steel Engineering Co., Ltd.
    Inventors: Katsunori Nagano, Takao Katsura
  • Publication number: 20090310645
    Abstract: A method of stably controlling the temperature of a sample placed on a sample stage to a desired temperature by estimating a sample temperature accurately, the sample stage including a refrigerant flow path to cool the sample stage, a heater to heat the sample stage, and a temperature sensor to measure the temperature of the sample stage. This method comprises the steps of: measuring in advance the variation-with-time of supply electric power to the heater, temperature of the sample, and temperature of the temperature sensor, without plasma processing; approximating the relation among the measured values using a simultaneous linear differential equation; estimating a sample temperature from the variation-with-time of sensor temperature y1, heater electric power u1, and plasma heat input by means of the Luenberger's states observer based on the simultaneous linear differential equation used for the approximation; and performing a feedback control of sample temperature using the estimated sample temperature.
    Type: Application
    Filed: August 19, 2008
    Publication date: December 17, 2009
    Inventors: Naoyuki Kofuji, Tsunehiko Tsubone
  • Patent number: 7588366
    Abstract: There is provided a differential scanning calorimeter in which a base line stability and a responsiveness are improved. There is made a constitution in which the stability is ensured by making a neck-like part in a heat passage from a heat reservoir 1 to a sensor plate 4 and, at the same time, a two-dimension heat flow passage to a sample holder 5a is ensured.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: September 15, 2009
    Assignee: SII NanoTechnology Inc.
    Inventor: Ryoichi Kinoshita
  • Patent number: 7473028
    Abstract: A device and method for investigating phase transformation properties and structural changes of materials. In one form, the device simulates actual thermal processing conditions, while the method can be used in both simulations as well as in actual processing conditions. An analysis using at least one of the device and method is referred to as a single sensor differential thermal analysis, as it compares the temperature recorded in a measured specimen against a reference thermal history without requiring the derivation of the reference thermal history from measured reference temperatures.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: January 6, 2009
    Assignee: The Ohio State University
    Inventors: Boian Todorov Alexandrov, John C. Lippold, Seth Jason Norton
  • Patent number: 7473031
    Abstract: Thermal sensors for calorimetry can include vanadium oxide, heavily p-doped amorphous silicon, or other materials with high temperature coefficients of resistivity. Such thermal sensors can have low noise equivalent temperature difference (NETD). For example, a thermal sensor with NETD no greater than 100 ?K over a bandwidth range of approximately 3 Hz or more can include a thermistor including vanadium oxide sputtered at room temperature under conditions that yield primarily V2O5; more specifically, the NETD can be no greater than 35 ?K, or even 10 ?K over a bandwidth range of approximately 3 Hz or more. If a low noise thermal sensor has NETD no greater than 50 ?K over such a bandwidth range, a low noise output circuitry connected to its thermistor can provide an electrical output signal that includes information about input thermal signal peaks with amplitude of approximately 100 ?K.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: January 6, 2009
    Assignee: Palo Alto Research Center, Incorporated
    Inventors: Michal V. Wolkin, Dirk De Bruyker, Eric Peeters, Alan Bell
  • Patent number: 7470057
    Abstract: A sensor for a heat flux differential scanning calorimeter in which the differential temperatures are measured between locations external to the regions of heat exchange between the sensor and sample containers. The measured differential temperatures respond to the magnitude of the heat flow rate between the sensor and the sample and reference containers and are rendered insensitive to variations in the magnitude and distribution of thermal contact resistance between the sensor and the containers.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: December 30, 2008
    Assignee: Waters Investments Limited
    Inventor: Robert L. Danley
  • Patent number: 7455449
    Abstract: There is provided a differential scanning calorimeter possessing an accommodation chamber accommodating a sample to be measured and a reference material, a heater heating the accommodation chamber, a differential heat flow detector outputting a temperature difference between the sample to be measured and the reference material as a heat flow difference signal, a cooling block cooling-controlled to a predetermined temperature, a heat resistor which mechanically connects the cooling block and the accommodation chamber and forms a heat flow path between both, a first fixation means which fixes the heat resistor to the cooling block by pressing the former while being biased by a constant elastic force, and a second fixation means which fixes the accommodation chamber to the heat resistor by pressing the former while being biased by a constant elastic force.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: November 25, 2008
    Assignee: SII NanoTechnology Inc.
    Inventor: Shinya Nishimura
  • Publication number: 20080181281
    Abstract: A thermal analysis apparatus includes: a sample temperature control device for surrounding a sample placed on a measurement position and controlling the temperature of the sample; a balance beam for supporting the sample and capable of tilting about a pivot point; and a sample moving device that allows the balance beam to slide between a first position at which the sample is situated at the measurement position and a second position at which the sample is situated at a distant position which is a position outside the sample temperature control unit. The distant position is a position which is deviated laterally from a line trajectory extending from the measurement position to the outside of the sample temperature control device. When the sample is at the measurement position, the balance beam is allowed to linearly slide and subsequently to rotationally slide about an axial line, to thereby transport the sample from the measurement position to the distant position.
    Type: Application
    Filed: September 26, 2007
    Publication date: July 31, 2008
    Applicant: RIGAKU CORPORATION
    Inventor: Nobuhiro TANAKA
  • Publication number: 20080063026
    Abstract: Washers partially coated with a thermochromic material are incorporated into bolted electrical connections to monitor or record temperature changes undergone by the electrical connections as indications of the performance or integrity of the electrical connections. For monitoring ongoing performance, the color changes undergone by the thermochromic coated washers can be compared to each other within a common field of view or to a common datum, such as a nearby thermochromic coated washer mounted in a bolted non-electrical connection. Irreversible thermochromic materials can be used to record elevated temperature events such as approaching or reaching a design temperature limit or a fault condition. Different thermochromic materials can be combined within the same washers to monitor different ranges of temperature or to record multiple threshold events.
    Type: Application
    Filed: September 12, 2006
    Publication date: March 13, 2008
    Inventor: Richard M. Roche
  • Patent number: 7338640
    Abstract: A method of manufacturing a sensor is provided. The method includes disposing a sacrificial layer on a substrate, disposing a low-thermal-conductivity layer on the sacrificial layer, and disposing a first set of conductive arms and a second set of conductive arms on the low-thermal-conductivity layer to form a plurality of thermal junctions. The plurality of thermal junctions is adapted to form a plurality of hot junctions and a plurality of cold junctions when subjected to a difference in temperature. The method also includes removing the sacrificial layer and a portion of the low-thermal-conductivity layer to form a cavity therein. The cavity is configured to provide insulation for the plurality of hot junctions. A thermopile sensor is also provided, and a calorimetric gas sensor implementing the thermopile sensor is provided.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: March 4, 2008
    Assignee: General Electric Company
    Inventors: Sunil Srinivasa Murthy, Anis Zribi, Shankar Chandrasekaran
  • Patent number: 7234861
    Abstract: A thermal analyzer has a heat sink for storing therein a specimen, a heater for heating the heat sink and the specimen, at superheating temperatures, and a cooling mechanism thermally connected to the heat sink for cooling the heat sink and the specimen. The cooling mechanism is comprised of a tubular member having an inlet port for introducing a cooling gas into the tubular member and an outlet port for discharging the cooling gas from the tubular member. A tubular extension is thermaly connected to and extends from the tubular member. An electric cooling device has a cooling head connected to the tubular extension for cooling the cooling mechanism.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: June 26, 2007
    Assignee: SII NanoTechnology Inc.
    Inventor: Shinya Nishimura
  • Patent number: 7097352
    Abstract: A holder for materials for use in a measuring instrument includes a three-piece housing consisting of an upper housing member, an intermediate housing member and a lower housing member, the three-piece housing defining a first closed cavity and a second closed cavity. A first winding assembly is disposed within the first closed cavity, and a second winding assembly is disposed within the second closed cavity.
    Type: Grant
    Filed: October 5, 2004
    Date of Patent: August 29, 2006
    Assignee: PerkinElmer LAS, Inc.
    Inventor: Donald L. Groeschner
  • Patent number: 7056038
    Abstract: A printer is provided with a buffer to receive document data. Document data is read from the buffer by a control system and information is printed by one or more printhead assemblies in accordance with document data read by the control system from the buffer. The printer operates to print a first set of document data whilst simultaneously receiving second document data. Thus different documents may be printed without pausing.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: June 6, 2006
    Assignee: Silverbrook Research Pty Ltd
    Inventors: Kia Silverbrook, Simon Robert Walmsley
  • Patent number: 6935776
    Abstract: A sample holder for differential thermal analysis has a substrate with a planar surface provided with a sample position for a sample material and a reference position for reference material. The substrate allows heat flow between a heat source thermally coupled to the sample holder and the sample and reference positions. A first thermoelement arrangement in the area of the sample and reference positions is provided for supplying a thermoelectric signal corresponding to a differential between the temperatures at the sample and reference positions. First connectors are formed on the substrate for tapping the thermoelectric signal corresponding to the temperature differential. A second thermoelement arrangement provides a thermoelectric signal corresponding to an absolute temperature of the sample and reference positions. Second connectors are provided on the substrate for tapping the thermoelectric signal corresponding to the absolute temperature.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: August 30, 2005
    Assignee: Mettler-Toledo GmbH
    Inventor: Thomas Hütter
  • Patent number: 6860632
    Abstract: A housing for a material holder includes an intermediate housing member having a generally horizontal member, an upper recess and a lower recess, an upper housing member having a generally horizontal member and a wall defining a material holding chamber, the upper housing member being seated within the upper recess of the intermediate housing member, and a lower housing member having a generally horizontal member, the lower housing member being seated within the lower recess of the intermediate housing member. The upper recess, the generally horizontal member of the intermediate housing member and the generally horizontal member of the upper housing member define a first cavity adapted to receive a first winding assembly, and the lower recess, the generally horizontal member of the intermediate housing member and the generally horizontal member of the lower housing member define a second cavity adapted to receive a second winding assembly.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: March 1, 2005
    Assignee: PerkinElmer Instruments LLC
    Inventor: Donald L. Groeschner
  • Patent number: 6843596
    Abstract: A device for thermal sensing is based on only one thermopile. The junctions of the thermopile are coupled thermally to a first region which includes a first substance while the hot junctions of the thermopile are coupled thermally to a second region which includes a second substance. The first and second regions are separated and thermally isolated from each other. The device can further include a membrane to thermally and electrically isolate the thermopile and to mechanically support the thermopile.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: January 18, 2005
    Assignee: Vivactis NV
    Inventor: Katarina Verhaegen
  • Publication number: 20030231693
    Abstract: A sample holder for differential thermal analysis has a substrate with a planar surface provided with a sample position for a sample material and a reference position for reference material. The substrate allows heat flow between a heat source thermally coupled to the sample holder and the sample and reference positions. A first thermoelement arrangement in the area of the sample and reference positions is provided for supplying a thermoelectric signal corresponding to a differential between the temperatures at the sample and reference positions. First connectors are formed on the substrate for tapping the thermoelectric signal corresponding to the temperature differential. A second thermoelement arrangement provides a thermoelectric signal corresponding to an absolute temperature of the sample and reference positions. Second connectors are provided on the substrate for tapping the thermoelectric signal corresponding to the absolute temperature.
    Type: Application
    Filed: June 9, 2003
    Publication date: December 18, 2003
    Applicant: Mettler-Toledo GmbH
    Inventor: Thomas Hutter
  • Patent number: 6586258
    Abstract: In accordance with the invention, a liquid sample for thermal analysis is disposed within a receptacle having a bottom surface and side walls. The top edges of the side walls are bent towards the center of the receptacle. A sheet of flexible, transparent material substantially impermeable to the sample is disposed across the top edges of the side walls, and an open lid compresses an o-ring onto the sheet material, sealing it against the bent top edges of the receptacle. The bottom surface of the receptacle is advantageously coated with a a material not wetted by the sample such as a fluorcarbon.
    Type: Grant
    Filed: May 10, 2000
    Date of Patent: July 1, 2003
    Assignee: Lucent Technologies Inc.
    Inventors: Harvey Edward Bair, Arturo Hale, Stephen Reid Popielarski
  • Patent number: 6523998
    Abstract: An improved differential thermal analysis/differential scanning calorimetry (collectively, DSC) assembly with a furnace block assembly having a measurement chamber and a furnace heater. The measurement chamber has a sensor assembly for receiving a sample material and a reference material. The furnace block assembly is coupled to a generally cylindrical cooling flange through a distributed thermal resistor that allows a constrained heat flow between the furnace assembly and cooling flange. The thermal resistor can also withstand the mechanical stresses associated with the differential expansion and contraction of the furnace assembly and cooling flange without permanent deformation of the thermal resistor. The cooling flange can be coupled to various cooling devices, permitting operation of the overall DSC instrument in a variety of temperature regimes for a variety of applications.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: February 25, 2003
    Assignee: TA Instruments, Inc.
    Inventors: Robert L. Danley, John W. Schaefer
  • Patent number: 6513969
    Abstract: A calorimeter that includes a sample cell, a reference cell, a pressure system that applies a variable pressure to the sample cell, and a pressure controller that controls the pressure applied by the pressure system to the sample sell. By applying identical pressure perturbations to both the sample and reference cells over a range of temperature, the calorimeter can be used to accurately calculate both the thermal coefficient of expansion of various substances, and the volume change of molecules undergoing a structural transition.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: February 4, 2003
    Assignee: Microcal, LLC
    Inventors: Valerian V. Plotnikov, John F. Brandts, J. Michael Brandts
  • Patent number: 6508585
    Abstract: An insulating substrate provided with two types of metallic or alloy circuit patterns for detecting temperature difference between a sample side and a reference side, and also a metallic resistance circuit pattern, is fixed to a heat sink, and the heat sink is temperature controlled. If a temperature difference between the sample and the reference is detected, electrical power supplied to a compensation heater using metallic resistors is adjusted by a differential heat compensation circuit so that the temperature difference is immediately returned to zero, and a difference in supplied power is output as a differential heat flow.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: January 21, 2003
    Assignee: Seiko Instruments Inc.
    Inventors: Nobutaka Nakamura, Ryoichi Kinoshita
  • Patent number: 6436346
    Abstract: A method and apparatus are provided for detecting and monitoring micro-volumetric enthalpic changes caused by molecular reactions. Micro-machining techniques are used to create very small thermally isolated masses incorporating temperature-sensitive circuitry. The thermally isolated masses are provided with a molecular layer or coating, and the temperature-sensitive circuitry provides an indication when the molecules of the coating are involved in an enthalpic reaction. The thermally isolated masses may be provided singly or in arrays and, in the latter case, the molecular coatings may differ to provide qualitative and/or quantitative assays of a substance.
    Type: Grant
    Filed: September 14, 1999
    Date of Patent: August 20, 2002
    Assignee: U T Battelle, LLC
    Inventors: Mitchel J. Doktycz, Charles L. Britton, Jr., Stephen F. Smith, Patrick I. Oden, William L. Bryan, James A. Moore, Thomas G. Thundat, Robert J. Warmack
  • Publication number: 20020085615
    Abstract: An insulating substrate provided with two types of metallic or alloy circuit patterns for detecting temperature difference between a sample side and a reference side, and also a metallic resistance circuit pattern, is fixed to a heat sink, and the heat sink is temperature controlled. If a temperature difference between the sample and the reference is detected, electrical power supplied to a compensation heater using metallic resistors is adjusted by a differential heat compensation circuit so that the temperature difference is immediately returned to zero, and a difference in supplied power is output as a differential heat flow.
    Type: Application
    Filed: November 30, 2001
    Publication date: July 4, 2002
    Inventors: Nobutaka Nakamura, Ryoichi Kinoshita
  • Patent number: 6390669
    Abstract: A heat flux type differential scanning calorimeter has a heat reservoir made of a thermal conducting material. A thermally conductive plate is disposed in the heat reservoir for supporting an unknown sample and a reference sample symmetrically with respect to a center of the reservoir. A thermally conductive support member is disposed in contact with the thermally conductive plate and supports the thermally conductive plate in the heat reservoir. A heat buffer plate is disposed between the thermally conductive support member and the heat reservoir so that the thermally conductive support member and the heat reservoir are contacted only through the heat buffer plate.
    Type: Grant
    Filed: July 12, 1999
    Date of Patent: May 21, 2002
    Assignee: Seiko Instruments Inc.
    Inventors: Nobutaka Nakamura, Ryoichi Kinoshita
  • Patent number: 6375349
    Abstract: An instrument for determining thermophysical properties of a solid sample of uniform thickness is disclosed. The instrument comprises a furnace, an elliptical mirror outside the furnace, a light source at one focus of the elliptical mirror that is closest to the elliptical mirror, a beam guide having one end at the other focus of the elliptical mirror and the other end inside the furnace, a sample holder inside the furnace capable of holding at least two diffusivity samples with the front and back surface of a sample exposed, an indexing system for moving the sample holder so as to place samples held by the sample holder in the path of light leaving the beam guide, and an infrared detector for quantifying changes in the temperature of the back surface of a sample that is in the path of the light. Methods for determining the thermal diffusivity, specific heat capacity, thermal conductivity, coefficient of thermal expansion, density, and temperature of a sample using this instrument are also disclosed.
    Type: Grant
    Filed: August 5, 1999
    Date of Patent: April 23, 2002
    Assignee: Anter Corporation
    Inventors: Peter S. Gaal, Silviu P. Apostolescu
  • Publication number: 20020018509
    Abstract: A cooling system for thermal analysis equipment provides rapid cool down and steady state operation of a differential scanning calorimeter (DSC) at any predetermined temperature between a minimal temperature and room temperature using a throttle-cycle cooler based on a single stage compressor. The cooling system operates with a mixed refrigerant that includes some liquid fraction at the inlet to a cryostat that houses the key cold elements for the cooling system. A temperature actuated automatic throttle valve in the cooling system increases refrigerant mass flow rate when the differential scanning calorimeter increases the heat load (and vice-versa) that is generally provided by a heater. At the same time, the valve design provides a high mass flow during cool down and automatic flow rate reduction at an intermediate temperature as the overall system approaches an operating condition during cool down.
    Type: Application
    Filed: July 12, 2001
    Publication date: February 14, 2002
    Inventor: Mikhail Boiarski
  • Publication number: 20020012379
    Abstract: A differential thermal analyzer/differential scanning calorimeter has a sample holder supported by a temperature detector inside a heat sink. The sample holder has a bottom wall defining a mounting surface and a side wall. During a measurement, a sample is placed on the mounting surface in the sample holder and the sample holder is inclined so that the sample slides downwardly due to its own weight and contacts the sample holder side wall. A beam of electromagnetic radiation is then passed through the sample and through aligned radiation openings in the bottom wall of the sample holder and in the heat sink, and temperature measurements are taken by the temperature detector. Because the sample is in contact with both the side and bottom walls of the sample holder, heat escape is minimized during temperature measurements.
    Type: Application
    Filed: May 3, 2001
    Publication date: January 31, 2002
    Inventor: Ryoichi Kinoshita
  • Patent number: 6257757
    Abstract: A gas-tight container such as a glove box maintains a sample under a controlled atmosphere and has a sample chamber formed in a convex portion thereof. The temperature is controlled in the sample chamber by an externally disposed heater. A detector such as a weight detector is disposed in the gas-tight container and has a sample holder for holding a sample under analysis. The detector is movably supported by a movement mechanism so that the sample holder is movable between a first position at which a sample disposed on the sample holder is disposed within the sample chamber and a second position at which a sample disposed on the sample holder is disposed outside the sample chamber, such that the mounting of a sample on the sample holder may be accomplished while the sample holder is disposed outside the sample chamber and a thermal analysis of the sample may be performed while the sample is disposed inside the sample chamber.
    Type: Grant
    Filed: May 17, 1999
    Date of Patent: July 10, 2001
    Assignee: Seiko Instruments Inc.
    Inventor: Nobutaka Nakamura
  • Patent number: 6238085
    Abstract: A sensor having an active sensing material exposed to the substance to be detected and an active reference material that is shielded from the substance to be detected. Thermocouples having a set of junctions proximate to the active sensing material and another set of junctions to the active reference material for measuring the temperatures at the respective materials. The junctions are connected differentially in that a difference of the two temperatures is measured. A heater is proximate and common to the two materials. Heat pulses may be applied to the materials via the heater and the temperatures are measured. If ambient factors or substances affect the active sensing material, its thermal response will be different than that of the active reference material, and a differential pulse-like indication of temperature will be detected.
    Type: Grant
    Filed: December 31, 1998
    Date of Patent: May 29, 2001
    Assignee: Honeywell International Inc.
    Inventors: Robert E. Higashi, Barrett E. Cole
  • Patent number: 6095680
    Abstract: This invention presents an improved way to determine, nondestructively, the composition of an unknown material sample such as, for example, an alloy steel fastener or a carbon steel fastener of unknown standard grade. The procedure involves utilizing a pulse of heat from a focused laser or infrared heater to a spot at the end of a standard grade fastener of known length or applying a pulse of cold and then placing an infrared temperature detector a specific distance from the heat or cold source and measure the temperature-time transmission. Over an interval of time the nature of the transmitted pulse and the time variation of temperature causes a pattern that allows the determination of the alloy content of the bolt. The temperature-time signature of the bolt, the decay curve after shut-off and the slopes of the curves can be used to detect inferior or mismatched bolts in a laboratory, in a plant or production floor environment or in situ testing in installed equipment.
    Type: Grant
    Filed: May 5, 1997
    Date of Patent: August 1, 2000
    Inventor: Francis I. Baratta
  • Patent number: 6079873
    Abstract: A differential scanning microcalorimeter produced on a silicon chip enables microscopic scanning calorimetry measurements of small samples and thin films. The chip may be fabricated using standard CMOS processes. The microcalorimeter includes a reference zone and a sample zone. The reference and sample zones may be at opposite ends of a suspended platform or may reside on separate platforms. An integrated polysilicon heater provides heat to each zone. A thermopile consisting of a succession of thermocouple junctions generates a voltage representing the temperature difference between the reference and sample zones. Temperature differences between the zones provide information about the chemical reactions and phase transitions that occur in a sample placed in the sample zone.
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: June 27, 2000
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Richard E. Cavicchi, Gregory Ernest Poirier, John S. Suehle, Michael Gaitan, Nim H. Tea
  • Patent number: 6062727
    Abstract: A measuring instrument for the thermal and/or reactive properties of one or several samples of a solid, liquid or gaseous substance, comprising a measuring cell constituted by an electronic component suitable to detect a temperature difference between two regions on it's surface. The instrument includes a thermal inertia block defining an inner chamber in which is contained the measuring cell and which block is provided with an opening above the measuring cell and a skirt surrounding the chamber. The skirt extends vertically downwardly to an essentially horizontal bearing surface.
    Type: Grant
    Filed: February 25, 1998
    Date of Patent: May 16, 2000
    Assignee: Setaram - Societe d'Etudes d'Automatisation de Regulation et d'Appareils de Mesures
    Inventors: Pierre le Parlouer, Jean-Louis Daudon