Thermal Testing Of A Nonthermal Quantity Patents (Class 374/45)
  • Patent number: 7883266
    Abstract: Method and apparatus are provided for detecting a defect in a cold plate, configured for cooling an electronics component. The method includes: establishing a first fluid flow through the cold plate, the first fluid flow being at a first temperature; impinging a second fluid flow onto the interface surface, the second fluid flow being at a second temperature, the first temperature and the second temperature being different temperatures; obtaining an isotherm mapping of the interface surface of the cold plate while the first fluid flow passes through the cold plate and the second fluid flow impinges onto the interface surface; and using the isotherm mapping to determine whether the cold plate has a defect. In one embodiment, an infrared-transparent manifold is employed in impinging the second fluid flow onto the interface surface, and the isotherm mapping of the interface surface is obtained through the infrared-transparent manifold.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: February 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Michael J. Domitrovits, Michael J. Ellsworth, Jr., Prabjit Singh
  • Publication number: 20110012631
    Abstract: A storage device transporter is provided for transporting a storage device and for mounting a storage device within a test slot. The storage device transporter includes a frame that is configured to receive and support a storage device. The storage device transporter also includes a conductive heating assembly that is associated with the frame. The conductive heating assembly is arranged to heat a storage device supported by the frame by way of thermal conduction.
    Type: Application
    Filed: July 15, 2009
    Publication date: January 20, 2011
    Inventors: Brian S. Merrow, Larry W. Akers
  • Patent number: 7862227
    Abstract: An apparatus (A) for testing an associated construction material sample includes a housing (20) having an internal chamber (22) divided by a wall portion (30) into first and second portions (24, 26). A support in the housing is dimensioned to mount an associated construction material sample therein. A first burner (60) communicates with first portion of the housing for supplying a flame thereto. A second burner (80) communicates with the second portion of the housing for preheating the first portion. The testing method of an associated construction material sample includes installing the sample in the housing, preheating the housing, introducing a flame toward the sample, monitoring the flame as combustion progresses longitudinally along the sample, and recording data regarding the flame progression.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: January 4, 2011
    Inventors: Richard A. West, Michael R. Rosecrans
  • Patent number: 7857507
    Abstract: A patch having an infrared (IR) target is placed proximate to the surface of a mammal. The patch may include an insulator for protecting the target from exterior, ambient IR and may include bar codes or other indicia uniquely associated with either the patch or the mammal. The patch may also include a bio-reactive agent for indicating characteristics such as the pH of the mammal's skin. The patch may also include a thermometer for sensing the level of IR radiation from the IR target and may include a display of the temperature associated with such a level. The patch may also include a transmitter for wirelessly communicating information about such level to a remote location. A method of using the patch is also disclosed.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: December 28, 2010
    Assignee: Welch Allyn, Inc.
    Inventors: David E. Quinn, Scott A. Martin, John A. Lane, Clare L. Corcoran, Craig M. Meyerson
  • Patent number: 7857506
    Abstract: Disposable, pre-sterilized, and pre-calibrated, pre-validated conductivity sensors are provided. These sensors are designed to store sensor-specific information, such as calibration and production information, in a non-volatile memory chip on the sensor. The sensors are calibrated using 0.100 molar potassium chloride (KCl) solutions at 25 degrees Celsius. These sensors may be utilize with in-line systems, closed fluid circuits, bioprocessing systems, or systems which require an aseptic environment while avoiding or reducing cleaning procedures and quality assurance variances.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: December 28, 2010
    Assignee: SenCal LLC
    Inventors: Karl G. Schick, David Uhen
  • Publication number: 20100323059
    Abstract: The specification discloses brewing apparatus and a method for testing for end of fermentation of a fermenting brew. It has been determined that, once fermentation is complete, the temperature of a brew (such as beer) shows a tendency to stratify in horizontal layers. However, the activity of fermentation disrupts the tendency of the brew to stratify. Accordingly, the brewing apparatus comprises at least two temperature sensors positioned to measure a temperature difference between the temperature at a first height of the brew and the temperature at a second height of the brew. End of fermentation is identified if the temperature difference is greater than a threshold difference.
    Type: Application
    Filed: February 22, 2008
    Publication date: December 23, 2010
    Applicant: COOPERS BREWERY LIMITED
    Inventor: Allan K. Wallace
  • Publication number: 20100319460
    Abstract: A method and an apparatus for determining a pressure (PProbe) of a fluid (Fprobe), comprising the steps of: a) providing a vacuum tight welded housing (10, 12); b) providing within the housing (10, 12) a first membrane (16) enclosing a part of a first inner volume; said first membrane (16) having a first contact area (18) associated with a first temperature sensor (20) and a heater (22); c) further providing within the housing (10, 12) a second membrane (14) enclosing also a part of the first inner volume; said second membrane (14) having a second contact area (24) associated with a second temperature sensor (26) and being disposed opposite to said first contact area (18), wherein one of said first membrane (16) and said second membrane (14) being elastic at least in part of the area around its respective contact area (18, 24), d) providing an access (6) of said first inner volume to the fluid (FProbe); e) designing the first and second membrane (14, 16) in a way that they hermetically seal a second inner vol
    Type: Application
    Filed: December 18, 2008
    Publication date: December 23, 2010
    Applicant: PAUL SCHERRER INSTITUT
    Inventor: Knud Thomsen
  • Publication number: 20100309949
    Abstract: There are provided an electrically-conductive connecting plate that connects electrode terminals of a plurality of battery cells; a fastening member that fastens the connecting plate and each of the electrode terminals together; temperature-detecting means that is placed near a fastened portion between the connecting plate and the corresponding electrode terminal which are fastened together with the fastening member, and detects temperature around the fastened portion; and abnormality-judging means that judges abnormality in the battery cells or the fastening member on the basis of temperature detected by the temperature-detecting means.
    Type: Application
    Filed: May 12, 2010
    Publication date: December 9, 2010
    Inventors: Takayuki AKABOSHI, Nobuyuki Kawai, Toshihide Tanaka, Toshiya Shimpo, Shoji Narita
  • Publication number: 20100309950
    Abstract: A temperature detector has: an infrared sensor located so as not to be in contact with a measured object; an infrared transmission filter which is located between the infrared sensor and the measured object so as to block the infrared sensor from the measured object, and through which infrared rays emitted from the measured object pass; and a distance changer for changing a distance between the measured object and the infrared transmission filter, wherein the infrared sensor is provided so as to detect the infrared rays, which have passed through the infrared transmission filter, to detect a temperature of the measured object even when the distance is changed by the distance changer.
    Type: Application
    Filed: June 7, 2010
    Publication date: December 9, 2010
    Applicant: KONICA MINOLTA BUSINESS TECHNOLOGIES, INC.
    Inventor: Yutaka OTSUKA
  • Patent number: 7845848
    Abstract: A thermometer and extensometer for cables and conductors is described. The travel time of one or more acoustic signals along a conductor is used to determine the temperature along the conductor and the length of the conductor. The acoustic frequency is selected to minimize temporal dispersion of the propagating acoustic energy. The technique can be used to measure the temperature of the conductor in a buried, undersea or submerged electrical power cable.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: December 7, 2010
    Assignee: FieldMetrics, Inc.
    Inventors: Christopher Yakymyshyn, Michael Allen Brubaker, Pamela Jane Hamilton
  • Patent number: 7845847
    Abstract: A thermometer and extensometer for cables and conductors is described. The travel time of one or more acoustic signals along a conductor is used to determine the temperature along the conductor and the length of the conductor. The acoustic frequency is selected to minimize temporal dispersion of the propagating acoustic energy. The technique can be used to measure the temperature of the windings in a transformer or other electrical apparatus.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: December 7, 2010
    Assignee: FieldMetrics, Inc.
    Inventors: Christopher Yakymyshyn, Michael Allen Brubaker, Pamela Jane Hamilton
  • Patent number: 7828476
    Abstract: An infrared inspection and reporting process and system obtains inspection data on site via a portable computer. An actual temperature of a component derived from an infrared image and a temperature delta between the temperature of the component and the maximum temperature for the component is calculated to determine if there is a problem. A criticality level is assigned for each problem component from a plurality of criticality levels each having a predetermined range for the temperature delta. The criticality level provides an accurate and consistent assessment of component conditions. The inspection data is up linked to a home server from the portable computer and is made available to the customer via an interactive, on-line web application. The customer can interact with the inspection dating including an interactive prediction of energy savings if the problem component is repaired.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: November 9, 2010
    Assignee: Predictive Services, LLC
    Inventors: Donald Frankel, Joseph Cobb, Shawn Goertzen
  • Patent number: 7815366
    Abstract: In the present invention, a heating plate is divided into a plurality of regions. Integrated values of temperature fluctuations in each of the regions when a substrate is mounted on the heating plate in a normal state without extraneous matter are collected. A Mahalanobis reference space in the discriminant analysis method is formed based on the integrated values at normal time. During actual heat processing, an integrated value of temperature fluctuation of each of the regions when the substrate is mounted on the heating plate is then detected, so that a Mahalanobis distance about the integrated value during the processing is calculated based on the integrated value during the processing and the Mahalanobis reference space obtained in advance. Whether or not there is extraneous matter on the heating plate is determined by comparing the calculated Mahalanobis distance to a predetermined threshold value.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: October 19, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Kouji Okamura, Hiroshi Tomita, Shuji Iwanaga, Shinichiro Araki
  • Publication number: 20100238969
    Abstract: The present invention provides a method for quantifying a peptide compound having a phenylalanine residue at the N-terminal, comprising measuring the content of heat generated by mixing 1) a peptide compound having a phenylalanine residue at the N-terminal, 2) cucurbit[7]uril, and 3) a metal ion in a solution.
    Type: Application
    Filed: October 23, 2007
    Publication date: September 23, 2010
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Yoshihisa Inoue, Mikhail Rekharsky, Kimoon Kim, Yong Ho Ko, Narayanan Selvapalam
  • Patent number: 7785001
    Abstract: An apparatus for sensing a change in environmental conditions is disclosed. The apparatus includes a coating or a wire between two surfaces that has a mechanical property changed as a result of a change in the environmental conditions. The change in the mechanical property of the coating or wire results in a change in a vibration characteristic of the apparatus, such as the frequency, phase, amplitude or quality factor. The change in the vibration characteristic can be used to determine the change in the environmental condition.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: August 31, 2010
    Assignee: Arizona Board of Regents
    Inventors: Nongjian Tao, Francis Tsow
  • Patent number: 7780343
    Abstract: A device with micromachined (a.k.a. MEMS, Micro Electro Mechanical Systems) silicon sensor to measure gas or liquid concentration in a binary mixture formality is disclosed in the present invention. A process for fabricating the said MEMS silicon concentration sensor, which thereby can greatly reduce the sensor fabrication cost by a batch production, is revealed as well. This MEMS process can mass-produce the sensors on silicon substrate in the ways of small size, low power, and high reliability. In addition to the gas or liquid concentration measurement, the present invention further discloses that the said sensor can also readily measure gas or liquid mass flow rate while record the concentration data, which is not viable by other related working principle.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: August 24, 2010
    Assignee: Siargo Ltd.
    Inventors: Chih-Chang Chen, Yahong Yao, Gaofeng Wang, Liji Huang
  • Publication number: 20100208766
    Abstract: A technique that is usable with a well includes changing the temperature of a local environment of a distributed temperature sensor, which is deployed in a region of the well and using the sensor to acquire measurements of a temperature versus depth profile. The region contains at least two different well fluid layers, and the technique includes determining the depth of a boundary of at least one of the well fluid layers based at least in part on a response of the temperature versus depth profile to the changing of the temperature.
    Type: Application
    Filed: April 27, 2010
    Publication date: August 19, 2010
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Maxwell Richard Hadley, Dylan H. Davies
  • Publication number: 20100177800
    Abstract: In a process temperature transmitter, a method for providing a process temperature output is described. The method includes providing a measurement current through a circuit including a reference resistor and a resistance temperature device (RTD). A first voltage across the reference resistor is measured while the measurement current flows through it. A first voltage across the RTD is also measured while the measurement current flows through it. A first resistance of the RTD is calculated based on the measured voltage across the reference resistor and the measured first voltage. A first process temperature output is provided based on the first resistance of the RTD. A second voltage is subsequently measured across the RTD while a measurement current flows through it. A second voltage across the reference resistor is then estimated based on the measured second voltage across the RTD and the measured first voltage across the reference resistor.
    Type: Application
    Filed: January 7, 2010
    Publication date: July 15, 2010
    Applicant: Rosemount Inc.
    Inventors: Jason H. Rud, Loren M. Engelstad
  • Patent number: 7740402
    Abstract: A detector and a method for determining the presence of a fluid are disclosed. The detector comprises a probe having a thermistor with the probe being arranged to be exposed to a fluid and to allow thermal flow between the thermistor and the fluid, a temperature sensor for measuring the temperature of the thermistor and a controller. The controller is arranged to supply electrical power to the thermistor when it is below a predetermined temperature to heat it up and to turn off the supply of electrical power to the thermistor when it is at or above the predetermined temperature. The presence or identity of a fluid exposed to the probe is determined based on the proportion of time that power is supplied to the thermistor to maintain it substantially at the predetermined temperature.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: June 22, 2010
    Assignee: General Electric Company
    Inventor: Philip George Camp
  • Publication number: 20100147418
    Abstract: An apparatus for marking plastic containers, comprising a marking device which applies a marking to the containers and a checking device which checks for the presence of the marking on the container. According to the invention, the checking device comprises a temperature-sensitive sensor.
    Type: Application
    Filed: June 9, 2009
    Publication date: June 17, 2010
    Inventor: Stefan Piana
  • Publication number: 20100150203
    Abstract: The invention relates to a tempering apparatus for the execution of a tempering program for at least one sample, in particular PCR-sample, comprising: at least one tempering block, which is configured for the reception of at least one sample, at least one tempering device, which is arranged for tempering said at least one tempering block, at least one temperature measurement device, which is assigned to said tempering device, at least one control loop for the regulation of a temperature, to which at least one tempering device and at least one temperature measurement device, which is assigned to said at least one tempering device, are assigned to, at least one control device, which is configured for the control of the tempering of the at least one tempering block, wherein the tempering apparatus comprises at least two temperature measurement devices, which are assigned to at least one control loop, and that to the tempering apparatus a testing device for performing a test method is assigned to, wherein said te
    Type: Application
    Filed: August 3, 2009
    Publication date: June 17, 2010
    Applicant: Eppendorf AG
    Inventors: Lutz TIMMANN, Vinh Duong, Stefan Roth, Thomas Uschkureit, Jürgen Koeppel, Thomas Buck, Michael Wild
  • Publication number: 20100145271
    Abstract: An implantable drug infusion pump for delivering drug therapy is made more reliable and its performance improved by monitoring drug pump temperature. Monitoring pump temperature can also provide for temperature-related drug therapy modification. A pump temperature sensor is read by the infusion pump's microprocessor. Pump temperature data is stored in pump memory for later access by a remote controller. A simple thermistor or semiconductor temperature sensor can provide fast and reliable temperature monitoring of the pump and/or of a patient by reading the temperature sensor's value and calculating a temperature therefrom.
    Type: Application
    Filed: February 15, 2010
    Publication date: June 10, 2010
    Applicant: Medtronic, Inc.
    Inventors: Jerome T. Hartlaub, James M. Olsen
  • Publication number: 20100135352
    Abstract: A stirring determining device that determines whether stirring by a stirrer, which stirs liquid contained in a vessel using sound wave generated by a sound-wave generating unit that is attached to the vessel, is successful or unsuccessful. The stirring determining device includes a temperature sensor that measures a temperature of the liquid; and a determining unit that determines whether stirring of the liquid contained in the vessel is successful or unsuccessful depending on the temperature of the liquid measured at least before and after the stirring by the temperature sensor.
    Type: Application
    Filed: January 14, 2010
    Publication date: June 3, 2010
    Applicant: Beckman Coulter, Inc.
    Inventor: Nobuyoshi Tsuda
  • Patent number: 7722813
    Abstract: A urea concentration identification device comprising a concentration identification sensor unit (2) and a support unit (4) attached at the bottom end thereof with this sensor unit and provided at the top end thereof with a mounting unit (4a) to a urea solution tank opening. The concentration identification sensor unit (2) has an indirectly-heated concentration detector and liquid temperature detector provided with metal fins (21c),(22c), respectively, for heat-exchanging with urea solution. The concentration identification sensor unit (2) is provided with a cover member (2d) that forms an opposite-ends-opened urea solution induction passage so as to surround the metal fins (21c), (22c).
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: May 25, 2010
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Shinichi Inoue, Akiko Kubota, Takayuki Takahata
  • Patent number: 7716987
    Abstract: A non-contact thermo-elastic property measurement and imaging system and method thereof are described. Acoustic energy is incident on a first surface of a specimen under test. The acoustic energy is converted partially into heat by the specimen, causing a slight increase in the temperature in a region of interaction. The temperature increase is imaged using a high sensitivity infrared camera. Presence of defects (surface and subsurface) in the material modifies the distribution of temperature. An image of temperature distribution can be used for nondestructive testing and evaluation of materials. The temperature change in the specimen caused by acoustic excitation is related to thermal and elastic properties of the material. A measurement of the change in the temperature as a function of the amplitude of incident excitation can be used for direct measurement of thermo-elastic property of the specimen.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: May 18, 2010
    Assignee: University of Dayton
    Inventors: Shamachary Sathish, Richard Reibel, John T. Welter, Charles Buynak
  • Publication number: 20100116061
    Abstract: The invention is directed to a method and a system for using a thermal measurement method to determine the gas pressure in a vacuum element or in an evacuated body having an envelope and comprising on its exterior a flap delimited by two film faces that are joined together in the region of the free edge of the flap; the system according to the invention is characterized, on the one hand, by the fact that the space between the two film faces of the flap communicates with the space inside the envelope of the vacuum element and is at least partially filled with an open-pored, thin material layer, and, on the other hand, by a device for measuring the gas-pressure-dependent heat exchange coefficient of the flap at the location of the material layer; the invention also relates to the manner of operation of this measuring device.
    Type: Application
    Filed: September 26, 2007
    Publication date: May 13, 2010
    Inventor: Roland Caps
  • Patent number: 7681407
    Abstract: A method and a device for detecting flash gas in a vapor-compression refrigeration or heat pump system comprising a compressor, a condenser, an expansion device, and an evaporator interconnected by conduits providing a flow path for a refrigerant, by determining a first rate of heat flow of a heat exchange fluid flow across a heat exchanger of the system and a second rate of heat flow of the refrigerant across the heat exchanger, and using the rates of heat flow for establishing an energy balance from which a parameter for monitoring the refrigerant flow is derived, to thereby provide early detection of flash gas with a minimum number of false alarms.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: March 23, 2010
    Assignee: Danfoss A/S
    Inventors: Claus Thybo, Bjarne Dindler Rasmussen, Steen Lauridsen, Vagn Helberg
  • Publication number: 20100049467
    Abstract: The invention relates to the field of micro- and nanotechnologies. In these techniques, it is sometimes necessary to glue several structures face to face and it is important to be able to check the alignment of the structures. A new method for measuring alignment, which comprises the following operations, is proposed for this purpose: activation of a heating element placed on the surface of the first structure, generation of electronic signals representative of a distribution of temperatures, on the basis of an array of temperature sensitive elements placed on the surface of the second structure, determination of a relative position of the heating element with respect to the array of sensitive elements, therefore of the first structure with respect to the second, on the basis of the distribution of temperatures, in a calculation circuit receiving the electronic signals engendered in the array of sensitive elements.
    Type: Application
    Filed: August 21, 2009
    Publication date: February 25, 2010
    Applicant: Commissariat a L'Energie Atomique
    Inventor: François De Crecy
  • Patent number: 7661877
    Abstract: A thermal flow detecting apparatus detects fluid flow in a main flow passage. A bypass passage portion is provided through which some fluid bypasses the main flow passage. A detecting element is provided in the bypass passage portion and arranged at a location eccentrically displaced from the center of a cross section of the bypass passage portion. A throttle portion is provided upstream of the eccentric detecting element in the bypass passage portion for throttling the cross section partially on a side of the detecting element.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: February 16, 2010
    Assignee: Denso Corporation
    Inventor: Noboru Kitahara
  • Publication number: 20100034236
    Abstract: A thermocouple vacuum sensor is provided, the thermocouple being surrounded by a gas or mixture of gases the pressure of which is to be measured. Cyclically the thermocouple is heated until its temperature reaches an upper temperature threshold. The thermocouple is subsequently cooled until its temperature reaches a lower temperature threshold. The heating time required to heat the thermocouple from the lower to the upper temperature threshold is measured. The cooling time required to cool the thermocouple from the upper temperature threshold to the lower temperature threshold may also be measured. The pressure surrounding the thermocouple may then be determined as a function of either the heating time, or the cooling time, or both.
    Type: Application
    Filed: August 6, 2008
    Publication date: February 11, 2010
    Inventor: Heinz Ploechinger
  • Patent number: 7651262
    Abstract: A discriminating apparatus of liquid reducing agent is disclosed, in which, based on concentration of liquid reducing agent which is measured at each predetermined time after starting of engine, discrimination is processed whether the storage tank is filled with dissimilar aqueous solution, the storage tank is normally filled with the liquid reducing agent, or the storage tank is empty. When the empty discrimination or the dissimilar aqueous solution discrimination is performed, it is judged whether or not the discrimination is adequate according to the liquid condition in the storage tank. When the empty or the dissimilar aqueous solution discrimination is adequate, the empty discrimination frequency or the dissimilar aqueous solution discrimination frequency is counted up. When the empty discrimination frequency and the dissimilar aqueous solution discrimination frequency become equal to or larger than the first predetermined frequency, the discrimination is upheld.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: January 26, 2010
    Assignee: Nissan Diesel Motor Co., Ltd.
    Inventors: Mitsuhiro Nishina, Hideki Matsunaga
  • Patent number: 7653503
    Abstract: A temperature compensating fluid flow sensing system is provided that comprises a resistance-based sensor element that is included in a constant voltage anemometer circuit configured to establish and maintain a command voltage across the first sensor element and to provide a constant voltage anemometer (CVA) output voltage corresponding to the resistance change in the first sensor element due to heat transfer between the first sensor element and the fluid. A controller is configured to establish the command voltage based on a desired overheat across the sensor and an actual overheat across the first sensor element. A power dissipation (PDR) module is configured to determine at least one fluid flow parameter and an actual overheat value based at least in part on the CVA output voltage and to transmit to the controller the actual overheat for use by the controller in updating the command voltage.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: January 26, 2010
    Assignee: Tao of Systems Integration, Inc.
    Inventors: Arun S. Mangalam, Siva M. Mangalam
  • Publication number: 20100001744
    Abstract: [Problem] To precisely measure a standing wave to be an indication for comprehending a guide wavelength ?g or the like in a waveguide. [Means for Solving] A distribution of temperatures is detected in a conductive member forming at least a part of pipe walls of a waveguide with respect to a longitudinal direction of a waveguide which propagates an electromagnetic wave, and a standing wave generated in the waveguide is measured based on the temperature distribution. The temperature distribution in the conductive member with respect to the longitudinal direction of the waveguide can be measured precisely with a plurality of temperature sensors disposed along the longitudinal direction of the waveguide, a temperature sensor which moves along the longitudinal direction of the waveguide, or an infrared camera.
    Type: Application
    Filed: July 18, 2007
    Publication date: January 7, 2010
    Applicants: Tokyo Electron Limited, Tohoku University
    Inventors: Masaki Hirayama, Tadahiro Ohmi
  • Patent number: 7641387
    Abstract: The combination of a temperature sensor and an inclination sensor or the combination of a temperature sensor and a tension monitor properly positioned in conjunction with an energized electrical conductor produces outputs that are dependent on the conductor's average temperature in real time. A transmitter is used to communicate this information in real time to a central location such that up to optimal or maximum power transmission is feasible through the conductor while maintaining a safe clearance to the ground. This allows for close monitoring of thermal expansion resulting from increased load as well as varying environmental conditions.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: January 5, 2010
    Assignee: Underground Systems, Inc.
    Inventors: John Engelhardt, Larry Fish
  • Patent number: 7641382
    Abstract: In a deposited-film formation apparatus or process having the means or steps of evacuating the inside of an inside-evacuatable chamber through an evacuation piping by an evacuation means, feeding a material gas into the chamber while evacuating the inside of the chamber, and applying a high-frequency power to form a deposited film on a substrate disposed inside the chamber, a leak is detected on the basis of a measured value of a temperature sensor which detects the heat of reaction that is generated when the material gas fed into the chamber reacts with oxygen contained in air having entered from the outside, so as to be able to stop the material gas feeding. In deposited-film formation apparatus or processes making use of spontaneously ignitable gases, the leak can quickly be detected when air enters the chamber because of any unexpected accident such as a break of piping.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: January 5, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroshi Izawa, Hiroshi Echizen, Hirokazu Ohtoshi, Masatoshi Tanaka
  • Publication number: 20090323757
    Abstract: A method for fabricating thermal effect standards includes providing an oven, placing at least one temperature sensor at measurement location in the oven, operating the oven, monitoring a temperature output of the at least one temperature sensor, providing at least one composite material specimen, placing the at least one composite material specimen at the measurement location in the oven and heat treating the at least one composite material specimen as at least one thermal effect standard by operating the oven according to the temperature output of the at least one temperature sensor. A method of determining a physical property of a composite material is also disclosed.
    Type: Application
    Filed: June 28, 2008
    Publication date: December 31, 2009
    Inventors: Greg Werner, Paul Shelley, Paul Vahey, Wes Quigley
  • Patent number: 7637652
    Abstract: A system and method for detecting glass breakage using thermal imaging is provided. The system includes an infrared image detector for acquiring an infrared image of a monitored area, and a signal processor for processing the acquired images to determine removal of a glass door or window based on a comparison of the thermal signature of the acquired image against the thermal signature of a reference image. Specifically, signal processor subtracts the reference image data from the acquired image data, which results in a substantially uniform image when the acquired image matches the reference image. On the other hand, the image resulting from the subtraction exhibits significant non-uniformity when the acquired image does not match the reference image, as would be the case if the pane of glass of a door or window were broken, removed or opened.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: December 29, 2009
    Assignee: Honeywell International Inc.
    Inventor: Kevin M Pelletier
  • Publication number: 20090316137
    Abstract: A device for measuring the concentration of a biological constituent based on infrared radiation emitted by a subject's eardrum with the influence of the eardrum's thickness taken into account is provided. The biological constituent concentration measuring device includes: a detecting section for detecting infrared radiation emitted by an eardrum; an acquisition section for acquiring thickness information about the thickness of the eardrum; and a computing section for figuring out the concentration of the biological constituent based on the infrared radiation detected and the thickness information acquired. The infrared radiation emitted by the eardrum is subject to the influence of the subject's eardrum thickness. Therefore, by calculating the biological constituent concentration based on not only the infrared radiation detected but also the eardrum thickness information, the biological constituent concentration can be measured highly accurately.
    Type: Application
    Filed: March 8, 2007
    Publication date: December 24, 2009
    Inventor: Masahiko Shioi
  • Publication number: 20090316747
    Abstract: A method of detecting energetic materials, such as explosives, includes energizing a sample area that contains particles of energetic materials. In the method, temperature characteristics from the sample area are monitored, and a temperature released from exothermic decomposition of the particles is detected. The method further includes analyzing the detected temperature to determine the presence of the exothermic compound which caused the decomposition.
    Type: Application
    Filed: July 27, 2006
    Publication date: December 24, 2009
    Applicant: L-3 Communications CyTerra Corporation
    Inventors: David H. Fine, Herbert Duvoisin, III, Edward E. A. Bromberg, Steven Bullock, David P. Lieb, C. Andrew Helm, Sean C. Christiansen, Eric Moy
  • Patent number: 7628533
    Abstract: Systems and methods for detecting corrosion are provided. In one embodiment, a luminescent material coupled to a cladding of an optical fiber may be altered when exposed to corrosion. The backscatter emission of the luminescent material, which includes the altered optical properties, may be used to determine properties of the corrosion including, for example, thickness, or location of the corrosion.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: December 8, 2009
    Assignee: SensorTran, Inc
    Inventors: Chung E. Lee, William Hallidy
  • Publication number: 20090277065
    Abstract: Processes and systems for detecting a shot by a projectile weapon are disclosed. Data is obtained along at least two different axes for use in determining whether a shot has taken place based on an evaluation by a processor. In certain embodiments, multiple detection systems are positioned on a weapons platform mounting multiple projectile weapons, and each is configured to detect only a shot by a respective one of the projectile weapons.
    Type: Application
    Filed: January 14, 2009
    Publication date: November 12, 2009
    Inventors: Robert Bernard Iredale Clark, David Gessel, Paul Andrew Leitner-Wise
  • Patent number: 7614716
    Abstract: A method of discriminating a type of recording medium and a discriminating apparatus in which the type of recording medium is discriminated based on a temperature change of the recording medium when the recording medium is heated. A type of recording medium is discriminated based on a phase difference between a pulse signal input to a heating device and a pulse signal output by a detecting device detecting a temperature of a recording medium.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: November 10, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventor: Taku Higashiyama
  • Patent number: 7607823
    Abstract: A system and method for detecting leaks includes a sensing circuit including a first thermistor device adapted to detected a leak upon contact with a liquid, and, a second thermistor device functioning as a reference device. The first and second thermistor devices are driven with a current such that both devices operate in self-heated mode at a temperature above an ambient temperature. A control system controls a drive circuit for maintaining a constant application of power through both devices in response to a voltage monitored at a reference point in the sensing circuit including the reference thermistor. The voltage at a reference point in a portion of the sensing circuit including the first thermistor device is additionally monitored and compared with the voltage at the reference point in the sensing circuit including the second thermistor device. A leak condition is determined on the basis of a comparison result of the ambient temperature.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: October 27, 2009
    Assignee: Waters Technologies Corporation
    Inventor: Richard Kent
  • Patent number: 7597016
    Abstract: A method of using an exhaust flow simulation system to test the effects of exhaust system conditions on various materials. A typical exhaust flow simulator is a burner-based system, in which exhaust from burner combustion is exhausted through an exhaust line. A “test coupon” of the material may be placed at an appropriate location in the flow line, and tested to determine how it is affected by the exhaust resulting from various fuels and additives.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: October 6, 2009
    Assignee: Southwest Research Institute
    Inventors: Suzanne A. Timmons, Scott F. Timmons
  • Publication number: 20090245322
    Abstract: In one aspect, the present invention provides techniques and apparatus for optical characterization of photonic devices and/or circuits. By way of example, the techniques can be used to identify damaged devices in photonic integrated circuits. In some embodiments, thermal imaging is employed as a diagnostic tool for characterizing the devices/circuits under investigation. For example, in one embodiment, integrated cascaded semiconductor amplifiers can be characterized using amplified spontaneous emission from one amplifier as a thermal modulation input to another amplifier. A thermoreflectance image of the second amplifier can reveal flaws, if present. Further, in some embodiments, thermal imaging in conjunction with a total energy model can be employed to characterize the elements of photonic circuits optically and/or to map the optical power distribution throughout the circuits.
    Type: Application
    Filed: May 5, 2008
    Publication date: October 1, 2009
    Applicants: MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT), MOUNT HOLYOKE COLLEGE
    Inventors: Janice A. Hudgings, Rajeev J. Ram, Maryam Farzaneh
  • Patent number: 7591583
    Abstract: The invention provides an apparatus and method for detecting flaws in an object. The method includes the step of heating a portion of a surface of an object wherein the surface is defined by a plurality of individual surface elements. The method also includes the step of recording a plurality of thermal images of the portion over time with a thermal imaging device. Each of the plurality of thermal images is defined by a plurality of pixels. Each of the plurality of pixels has an individual pixel address and corresponds to one of the plurality of individual surface elements. The method also includes the step of determining a pixel intensity for each of the plurality pixels in each of the plurality of thermal images. The method also includes the step of integrating the pixel intensity of each of the plurality of pixels having the same individual address from respective thermal images to establish elements within an array of integrated pixel intensity.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: September 22, 2009
    Assignee: Federal-Mogul World Wide, Inc.
    Inventors: Scott Foes, Hamid Yazdi
  • Patent number: 7581875
    Abstract: A method for measuring a metal film thickness is provided. The method initiates with heating a region of interest of a metal film with a defined amount of heat energy. Then, a temperature of the metal film is measured. Next, a thickness of the metal film is calculated based upon the temperature and the defined amount of heat energy. A chemical mechanical planarization system capable of detecting a thin metal film through the detection of heat transfer dynamics is also provided.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: September 1, 2009
    Assignee: Lam Research Corporation
    Inventors: Yehiel Gotkis, Mikhail Korolik
  • Patent number: 7581874
    Abstract: Heat transfer test assemblies for monitoring and recording fouling of aqueous systems are disclosed. The heat transfer test assemblies include an outer tube member, a heating rod positioned within the outer tube member, a ribbed tube sleeve fitted over the heating rod and thermocouples for sensing the wall temperature of heating rod. The disclosed heat transfer test assemblies enable improved monitoring of systems employing enhanced heat exchanger tubes. Monitoring and recording apparatuses including the heat transfer test assemblies are also disclosed.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: September 1, 2009
    Inventors: George F. Hays, Eric P. Hoernle
  • Patent number: 7581876
    Abstract: An instrument and associated method are disclosed for the loss-on-drying determination of the volatile content of a wide variety of samples.
    Type: Grant
    Filed: July 15, 2006
    Date of Patent: September 1, 2009
    Assignee: CEM Corporation
    Inventors: Robert N. Revesz, Michael J. Collins, Sr.
  • Patent number: 7575371
    Abstract: A thermometer and extensometer for cables and conductors is described. The travel time of one or more acoustic signals along a conductor is used to determine the temperature along the conductor and the length of the conductor. The acoustic frequency is selected to minimize temporal dispersion of the propagating acoustic energy. The technique can be used to measure the temperature and sag of an overhead power line, the temperature of the windings in a transformer, or the temperature of the central conductor in a coaxial power cable.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: August 18, 2009
    Assignee: FieldMetrics, Inc
    Inventors: Christopher Paul Yakymyshyn, Michael Allen Brubaker, Pamela Jane Hamilton