Quadrature Amplitude Modulation Patents (Class 375/261)
  • Patent number: 8718205
    Abstract: Low complexity methods for hard and soft bit level demapping in a receiver of QAM signals with non-square, Gray coded constellations created as per U.S. Pat. No. 8,422,579 B1. In these methods the received signal is equalized to remove channel distortion, demodulated into in-phase and quadrature phase related symbols, and these symbols converted into hard-bits or preliminary soft-bits bits via the application of bit decision rules. Further, if converted into preliminary soft-bits, they may be multiplied by a factor to account for the impact of the received signal's signal-to-noise ratio on bit reliability, thereby creating final-soft-bits.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: May 6, 2014
    Inventor: Douglas Howard Morais
  • Patent number: 8718212
    Abstract: Embodiments of the present invention provide a rate matching method and apparatus. The method includes: receiving bit data of a first, a second, and a third input subblock, inserting dummy data into bit data in each subblock to respectively form even-numbered rows and odd-numbered rows of a matrix to be buffered for each subblock; inputting bit data of the even-numbered rows in the even-numbered row buffer and bit data of the odd-numbered rows in the odd-numbered row buffer of each subblock to a second buffer, and forming a matrix by using the bit data of the even-numbered rows and the bit data of the odd-numbered rows; controlling the second buffer to send data at the specified address; selecting data sent by the second buffer; and deleting the dummy data from the selected data to obtain valid output data.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: May 6, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Xin Ma
  • Patent number: 8711904
    Abstract: A method of determining non-ideality characteristics introduced on a signal by a transceiver is disclosed. The transceiver has an up-conversion transmitter and a down-conversion receiver. In one aspect, the method includes: a) generating a signal comprising at least one known training symbol, b) up-converting this signal with a first frequency to a first signal in the transmitter, c) transferring the first signal from the transmitter to the receiver, d) down-converting with a second frequency this transferred first signal to a second signal in the receiver, the second frequency being different from but linked to the first frequency, e) detecting at least one of the training symbols in the second signal; and f) separating, in the frequency domain, at least one of the components of at least one of the detected training symbols for determining the non-ideality characteristics.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: April 29, 2014
    Assignees: IMEC, Samsung Electronics Co., Ltd.
    Inventor: Björn Debaillie
  • Patent number: 8705668
    Abstract: A node comprising a receiver for i) receiving at least two signals streams comprising bit sequences and ii) evaluating which bit sequence that is most likely to have been received for a certain sent symbol for each signal stream. The receiver for calculating metrics indicative of which bit sequence that initially is most likely to correspond to a certain sent symbol, the metrics being used a soft value calculation where the receiver is arranged for addition of metric data for a certain signal stream corresponding to an added bit sequence for each case where the available metrics are incomplete for performing the estimation. The missing bit is inserted in the added bit sequence and chosen such that it corresponds to a symbol with the shortest Euclidian distance to the symbol with the said corresponding bit sequence initially being indicated as most likely to correspond to a certain sent symbol.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: April 22, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: Henrik Sahlin
  • Patent number: 8699598
    Abstract: A method and device for graphically representing the I and/or Q components of digitally modulated high frequency signal are described, in which the I or Q components measured in a temporally successive manner are graphically represented side-by-side on a display device.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: April 15, 2014
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventor: Christoph Balz
  • Patent number: 8699429
    Abstract: There is provided a MIMO wireless communication system, which comprises at least one base station having plural transmitting antennas and at least one user equipment having at least one receiving antennas, the base station being capable of accommodating plural user equipments by precoding based on a codebook, wherein, each of the plural user equipments comprises: a channel estimation unit for conducting a channel estimation based on a pilot signal transmitted from the base station, to obtain a channel information; a codeword determination unit for determining a first codeword that results in the maximum signal-noise-ratio, and at least one second codeword that results in the minimum signal-noise-ratio, based on the channel information; and a transmission unit for feedbacking the first codeword and the second codeword(s) to the base station, the base station is configured to schedule the user equipments based on the first codeword and the second codeword so that a predetermined system performance metric is opt
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: April 15, 2014
    Assignee: Fujitsu Limited
    Inventors: Hua Zhou, Jie Zhang
  • Patent number: 8699599
    Abstract: A low complexity method for determining a search sequence of nodes for an efficient soft-decision sphere decoding algorithm for use in receivers for quadrature amplitude modulation (QAM) communication signals is achieved by determining a first member of the search sequence by rounding a received symbol (z) to a first constellation symbol (xc) of the QAM constellation, classifying the remaining constellation symbols (xi) of the QAM constellation into a plurality of sub-sets of constellation symbols having the same distance metric relative to said first constellation point (xc) according to a metric dsequ(n)=2a·n=max{|real(xc?xi)|,|imag(xc?xi)|}, a being a scaling factor of the constellation grid, and ordering said sub-sets of constellation symbols in ascending order of their distance metric relative to the first constellation symbol (xc), and ordering the members of each sub-set of constellation symbols that are defined by the same distance metric according to their Euclidean distances.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: April 15, 2014
    Assignee: Intel Mobile Communications Technology Dresden GmbH
    Inventor: Sebastian Eckert
  • Patent number: 8699316
    Abstract: Systems and methods are provided for transmitting and receiving an uplink state flag (USF) in a cellular network. A base station may transmit the USF to plurality of mobile stations that share the same frequency channel, and each mobile station can use the USF to determine whether that mobile station can transmit data in an upcoming uplink time period. The base station can encode the USF bits into a plurality of encoded USF symbols, where the encoded USF symbols may be selected from corner signal points in a QAM signal constellation set or from signal points adjacent to the corners of a QAM signal constellation set. The base station can interleave the encoded USF symbols and modulate the encoded USF symbols for transmission using the signal constellation set. A mobile station that can communication with the base station can include a corresponding receiver, de-interleaver, and decoder.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: April 15, 2014
    Assignee: Marvell World Trade Ltd.
    Inventor: Paul S. Spencer
  • Patent number: 8693564
    Abstract: The present invention relates to a Multi-Input Multi-Output (MIMO) communication system and more particularly, to a method for Correlation matrix feedback in a multi-cell wireless communication system. A method for transmitting correlation matrix feedback information of a mobile station considering adaptive feedback mode in a multi-cell wireless communication system according to one embodiment of the present invention comprises measuring a channel between the mobile station and a serving base station using a signal received from the serving base station; determining a first matrix indicating channel state information and a first precoder using the measured channel; generating a second matrix using a Fourier matrix and the first matrix; and transmitting feedback information including at least one of information of the first precoder and diagonal values of the second matrix.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: April 8, 2014
    Assignee: LG Electornics Inc.
    Inventors: Jian Xu, Ja Ho Koo, Bin Chul Ihm, Wook Bong Lee
  • Patent number: 8693575
    Abstract: Various wireless precoding systems and methods are presented. In some embodiments, a wireless transmitter comprises an antenna precoding block, a transform block, and multiple transmit antennas. The antenna precoding block receives frequency coefficients from multiple data streams and distributes the frequency coefficients across multiple transmit signals in accordance with frequency-dependent matrices. The transform block transforms the precoded frequency coefficients into multiple time domain transmit signals to be transmitted by the multiple antennas. The frequency coefficients from multiple data streams may be partitioned into tone groups, and all the frequency coefficients from a given tone group may be redistributed in accordance with a single matrix for that tone group. In some implementations, the frequency coefficients within a tone group for a given data stream may also be precoded. In some alternative embodiments, tone group precoding may be employed in a single channel system.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: April 8, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Anand G. Dabak, Eko N. Onggosanusi
  • Patent number: 8693559
    Abstract: A method and a system for communication are presented. In one example embodiment, the method includes the step of receiving a first frame of a communication signal. The first frame includes a first plurality of constituents. One or more constituents of the first plurality of constituents of the first frame form a symbol of the first frame. The method includes the step obtaining a second frame. The second frame includes the first plurality of constituents. One or more constituents of the first plurality of constituents of the second frame form a symbol of the second frame. The symbols of the second frame are obtained by creating redundancies of the constituents of the first plurality of one or more symbols of the first frame. The first frame includes a second plurality of constituents. One or more constituents of the second plurality of the first frame form a preamble field of the first frame.
    Type: Grant
    Filed: July 28, 2007
    Date of Patent: April 8, 2014
    Assignee: Ittiam Systems (P) Ltd.
    Inventors: Amit Shaw, Satyam Srivastava
  • Patent number: 8687677
    Abstract: In a multivalue modulation type with one pilot symbol inserted for every 3 or more symbols, signal points of each one symbol immediately before and after a pilot symbol are modulated using a modulation type different from that for pilot symbols. In this way, it is possible to suppress deterioration of the accuracy in estimating the reference phase and amount of frequency offset by pilot symbols and improve the bit error rate characteristic in the signal to noise ratio in quasi-coherent detection with symbols whose symbol synchronization is not completely established.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: April 1, 2014
    Assignee: Harris Corporation
    Inventors: Yutaka Murakami, Shinichiro Takabayashi, Masayuki Orihashi, Akihiko Matsuoka
  • Patent number: 8687724
    Abstract: A method for performing a fast multiple-subcarrier-joint-modulation (MSJM) precoding. The method comprises grouping input information bits into bit blocks; converting the bit blocks into bit vectors; mapping a first group of bits of each bit vector to a real dimension of symbols in a symbol vector; mapping a second group of bits of each bit vector to an imaginary dimension of symbols in the symbol vector, wherein the mapping of the real dimension and the mapping of imaginary dimension are performed simultaneously; and modulating symbol vectors into data subcarriers.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: April 1, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Dong Wang, Yue Shang
  • Patent number: 8687678
    Abstract: One aspect of the teachings herein relates to signaling codebook restrictions, to restrict the precoder recommendations being fed back from a remote transceiver, so that precoder selections made by the remote receiver are restricted to permitted subsets of overall precoders within a defined set of overall precoders, or to permitted subsets within larger sets of conversion precoders and tuning precoders, for the case where the overall precoders are represented in factorized form by conversion and tuning precoders. As a non-limiting example, these teachings advantageously provide for precoder restrictions in LTE or LTE-Advanced networks, where ongoing development targets the use of larger, richer sets of precoders, and where the disclosed mechanisms for determining, signaling, and responding to subset restrictions provide significant operational advantages.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: April 1, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventors: David Hammarwall, George Jöngren
  • Patent number: 8675754
    Abstract: Transmitting information between stations in a network includes: modulating first main information and auxiliary information onto a first portion of a signal according to a predetermined constellation having multiple regions and the same sub-constellation within each region having multiple points, with the first main information being modulated using a first selected region of the constellation, and the auxiliary information being modulated using a first selected point of the sub-constellation within the first selected region; modulating second main information and a copy of the auxiliary information onto a second portion of the signal according to the constellation, with the second main information being modulated using a second selected region of the constellation, and the copy of the auxiliary information being modulated using a second selected point of the sub-constellation within the second selected region, where the second selected point occurs at a different portion of the sub-constellation than the fi
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: March 18, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Lawrence Winston Yonge, III, Harper Brent Mashburn, Srinivas Katar, Arun Avudainayagam
  • Patent number: 8675762
    Abstract: The present invention provides a method of transforming pre-coded signals for transmission over an air interface in a MIMO wireless communication system. Embodiments of the method may include applying, at a transmitter, a transform matrix and a pre-coding matrix to a signal prior to transmitting the signal using a plurality of antennas deployed in a first antenna configuration. The pre-coding matrix is selected from a codebook defined for a second antenna configuration deployed in a non-scattering environment. The transform matrix is defined based on the first antenna configuration and a scattering environment associated with the transmitter.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: March 18, 2014
    Assignee: Alcatel Lucent
    Inventors: Fang-Chen Cheng, Matthew P. J. Baker
  • Patent number: 8670494
    Abstract: The present invention relates to method of transmitting and receiving signals and a corresponding apparatus. One aspect of the present invention relates to an efficient layer 1 (L1) processing method for a transmitter and a receiver using data slices.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: March 11, 2014
    Assignee: LG Electronics Inc.
    Inventors: Woo Suk Ko, Sang Chul Moon
  • Patent number: 8665126
    Abstract: A sigma-delta (??) difference-of-squares LOG-RMS to digital converter” by merging a traditional ?? modulator with an analog LOG-RMS to DC converter based on a difference-of-squares concept. Two basic architectures include one based on two squaring cells in the feedforward and feedback paths and a second based on a single squaring cell in the forward path. High-order ?? LOG-RMS can be implemented with a loop filter containing multiple integrators and feedforward and/or feedback paths for frequency compensation. The embodiments as described allow the implementations of ?? difference-of-squares LOG-RMS to DC converters with a natural digital output and a logarithmically compressed dynamic range.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: March 4, 2014
    Assignee: National Semiconductor Corporation
    Inventors: Paulo Gustavo Raymundo Silva, Michael Hendrikus Laurentius Kouwenhoven
  • Patent number: 8666000
    Abstract: A receiver may be operable to receive an inter-symbol correlated (ISC) signal, and generate a plurality of soft decisions as to information carried in the ISC signal. The soft decisions may be generated using a reduced-state sequence estimation (RSSE) process. The RSSE process may be such that the number of symbol survivors retained after each iteration of the RSSE process is less than the maximum likelihood state space. The plurality of soft decisions may comprise a plurality of log likelihood ratios (LLRs). Each of the plurality of LLRs may correspond to a respective one of a plurality of subwords of a forward error correction (FEC) codeword.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: March 4, 2014
    Assignee: MagnaCom Ltd.
    Inventors: Amir Eliaz, Ilan Reuven
  • Patent number: 8665977
    Abstract: A MIMO detection method for a receiver in a MIMO system using N-QAM for modulation, the MIMO detection method including generating a plurality of symbol vector sets and a plurality of search radiuses, selecting a candidate symbol vector set corresponding to a highest level of a multilevel structure of N-QAM constellation, generating a search space corresponding to a lower level of the multilevel structure of N-QAM constellation according to the selected candidate symbol vector set, confirming which level the search space corresponds to, and generating a detection signal according to the search space when the level of the search space is the lowest level of the multilevel structure of the N-QAM constellation.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: March 4, 2014
    Assignee: Realtek Semiconductor Corp.
    Inventors: Shau-Yu Cheng, Cheng-Yuan Lee, Wei-Chi Lai, Terng-Yin Hsu
  • Patent number: 8660208
    Abstract: Apparatus and methods for QAM modulation are disclosed using dual polar modulation. QAM modulation of a signal is accomplished by translating a QAM signal into two phasors having the same or constant amplitude and then phase shifting one of the phasor by 180 degrees for a differential load. The phasors are then polar modulated such that, when differentially combined in the load through summation or superposition, a QAM modulated symbol results. The use of constant amplitude phasors when power amplified for transmission of QAM modulated signals allows amplifiers to be operated in a saturation mode with greater efficiency than conventional amplifiers used in QAM modulation, which operate in a less efficient linear mode to effect amplitude modulation. Additionally, differential combining of the phasors affords relaxation of the turns of a transformer used in amplifying the phasors.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: February 25, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Avigdor Brillant, David Pezo, Haim M. Weissman, Jeremy M. Stein
  • Patent number: 8660199
    Abstract: To demodulate a quadrature amplitude modulation (QAM) signal, a reception point is determined corresponding to a symbol in the QAM signal that is received where the symbol is mapped to one reference point of a plurality of reference points in a rotated constellation and the plurality of reference points are represented by an in-phase (I) coordinate and a quadrature-phase (Q) coordinate. A plurality of candidate points corresponding to a portion of the plurality of reference points are selected based on distances between the reception point and the respective reference points. The reception point is demapped by calculating a plurality of log-likelihood ratios based on the plurality of candidate points, the plurality of log-likelihood ratios corresponding to bits of data represented by the reception point.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: February 25, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Myeong-Cheol Shin
  • Patent number: 8659456
    Abstract: An embodiment of the invention provides an electronic device. The electronic device includes a digital-to-analog converter (DAC), a transmitter front-end (TX FE), an amplifier, an analog-to-digital converter (ADC), and a swap circuitry. The TX FE has a first and a second input end coupled to a first and a second output end of the DAC, respectively. The ADC has a first and a second input end coupled to a first and a second output end of the amplifier, respectively. The swap circuitry is configured to couple the first and second output ends of the DAC to a first and a second input end of the amplifier in a normal state, respectively, and couple the first and second output ends of the DAC to the second and first input ends of the amplifier in a swapped state, respectively.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: February 25, 2014
    Assignee: Mediatek Inc.
    Inventors: Hsiang-Hui Chang, Hsin-Hung Chen, Chi-Yun Wang, Chih-Jung Chen
  • Patent number: 8660167
    Abstract: A device for decoding code symbols which are interfered with a distortion during a predetermined distortion time interval includes a reliability information generator to provide reliability information based on the code symbols and a decoder to decode the code symbols into code words. The decoder is configured to decode the code symbols based on weighted reliability information, wherein the weighted reliability information is generated from the reliability information by applying a first weight during times not coinciding with the distortion time interval, and by applying a second weight different from the first weight during times coinciding with the distortion time interval.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: February 25, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventor: Joachim Wehinger
  • Patent number: 8654867
    Abstract: A method for generating an amplified radio frequency (RF) signal is provided. In-phase (I) and quadrature (Q) signals are received and interleaved so as to generate a time-interleaved signal. Delayed time-interleaved signals are then generated from the time interleaved signal, and each of the delayed time-interleaved signals is amplified so as to generate a plurality of amplified signals. The amplified signals are then combined with a transformer, where the delayed time-interleaved signals are arranged to generate a filter response with the transformer.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: February 18, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Rahmi Hezar, Lei Ding, Joonhoi Hur, Baher S. Haroun
  • Patent number: 8654892
    Abstract: An arrangement of interleavers allocates bits from an input symbol across sub-symbols transmitted via sub-carriers of multiple orthogonal frequency division multiplex (OFDM) carriers. The input bits are allocated in a fashion to provide separation across subcarriers, and rotation of sub-symbols across the OFDM carriers provides additional robustness in the present of signal path impairments.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: February 18, 2014
    Assignee: Broadcom Corporation
    Inventors: Carlos H. Aldana, Amit G. Bagchi, Min Chuin Hoo
  • Patent number: 8654689
    Abstract: An interference canceller comprises a composite interference vector (CIV) generator configured to produce a CIV by combining soft and/or hard estimates of interference, an interference-cancelling operator configured for generating a soft projection operator, and a soft-projection canceller configured for performing a soft projection of the received baseband signal to output an interference-cancelled signal. Weights used in the soft-projection operator are selected to maximize a post-processing SINR.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: February 18, 2014
    Assignee: Rambus Inc.
    Inventors: Michael L. McCloud, Vijay Nagarajan
  • Patent number: 8655396
    Abstract: A method for a wireless communication includes receiving or storing a peak to average (PAR) back off value; and applying the PAR back off value to determine the transmission power and rate for SIMO and MIMO transmissions. In one aspect, the PAR back off value is at least partially based on modulation type. In another aspect, the PAR back off value is more for higher order QAM than for QPSK. The power allocation algorithm for different UL MIMO schemes is described as follows. For MIMO without antenna permutation (e.g. per antenna rate control), different PAR back off values are considered for different data streams. For MIMO with antenna permutation or other unitary transformation such as virtual antenna mapping or precoding, the PAR back off are determined based on combined channel. The transmission data rate depends on power and also the receiver algorithms such as a MMSE receiver or MMSE-SIC receiver.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: February 18, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Durga Prasad Malladi, Hao Xu
  • Patent number: 8649429
    Abstract: Digital television broadcasting signals employ parallel concatenated convolutional coding, commonly called “turbo coding”, to improve reception by receivers in motor vehicles. Turbo coded Reed-Solomon codewords are transversally disposed in the payload fields of encapsulating MPEG-2-compliant packets to improve the capability of the Reed-Solomon coding to overcome deep fades. Turbo codewords are transmitted more than once in so-called “staggercasting”. Reception of DTV signals is improved by combining soft decisions concerning repeated transmissions of turbo codewords before turbo decoding. Only the data components of turbo codewords are transmitted twice in “punctured” staggercasting of turbo codewords, with parity components being transmitted only once, so code rate is reduced by a smaller factor than two.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: February 11, 2014
    Inventor: Allen LeRoy Limberg
  • Patent number: 8649469
    Abstract: A method of receiving a demodulated waveform according to a protocol in which the waveform represents a block of transmitted bits comprising a first group of bits and a second group of bits, the second group of bits being a function of the first group of bits, the method comprising: sampling the demodulated waveform to recover a first group of sample values corresponding to the first group of transmitted bits and a second group of sample values corresponding to the second group of transmitted bits; assigning bit values to reliable sample values of the first group of sample values; generating a set of candidates for a block of bits corresponding to the demodulated waveform, each candidate comprising a first group of candidate bits and a second group of candidate bits, the first group of candidate bits being generated using the assigned bit values and a combination of bit values unique to that candidate in the set of candidates, and the second group of candidate bits being generated by applying the said functio
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: February 11, 2014
    Assignee: Cambridge Silicon Radio Limited
    Inventors: Chunyang Yu, Andrei Popescu
  • Patent number: 8644406
    Abstract: The present invention relates to a method of transmitting and receiving signals and a corresponding apparatus. One aspect of the present invention relates to a method of extracting PLP from data slices.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: February 4, 2014
    Assignee: LG Electronics Inc.
    Inventors: Woo Suk Ko, Sang Chul Moon
  • Publication number: 20140029682
    Abstract: A transceiver, receiver, and transmitter are provided. The transceiver may also include a programmable matching block configured to implement impedance-matching between an antenna and the receiver and/or between the antenna and the transmitter. The programmable matching block may implement the impedance-matching through a shared matching circuit block. The programmable matching block may include at least one of a programmable inductor and a programmable capacitor.
    Type: Application
    Filed: February 25, 2013
    Publication date: January 30, 2014
    Inventors: MOHAMMAD-REZA NEZHAD-AHMADI, Gareth Pryce Weale
  • Patent number: 8638880
    Abstract: Embodiments herein include a method in a user equipment (UE) for transmitting uplink control information in time slots of a subframe over a radio channel to a radio base station. The uplink control information is comprised in a block of bits. The UE maps the block of bits to a sequence of complex valued modulation symbols. The UE block spreads the sequence across Discrete Fourier Transform Spread-Orthogonal Frequency Division Multiplexing (DFTS-OFDM) symbols. This is performed by applying a spreading sequence to the sequence of complex valued modulation symbols, to achieve a block spread sequence of complex valued modulation symbols. The UE further transforms the block-spread sequence, per DFTS-OFDM symbol. This is performed by applying a matrix that depends on a DFTS-OFDM symbol index and/or slot index to the block-spread sequence. The UE also transmits the block spread sequence, as transformed, over the radio channel to the radio base station.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: January 28, 2014
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Robert Baldemair, David Astely, Dirk Gerstenberger, Daniel Larsson, Stefan Parkvall
  • Patent number: 8638732
    Abstract: A method and an apparatus for allocating a resource in a broadband wireless communication system are provided. In the method, a Modulation and Coding Scheme (MCS) level set and a burst size set to generate a codebook is determined. The codebook is generated using the MCS level set and the burst size set. Resource allocation information is one of generated and read according to the codebook.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: January 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-Sung Lim, Ho-Kyu Choi, Taori Rakesh, Jae-Weon Cho, Se-Ho Kim
  • Patent number: 8634490
    Abstract: A receiver of a multiple-input multiple-output (MIMO) system performs QR decomposition of the channel matrix to enable detection of a transmitted vector in a layered manner. In each layer, a sub-vector of the transmitted vector is estimated. A reactive tabu search is performed if an estimated symbol differs from a nearest symbol in the alphabet by a predetermined value. The receiver may order the entries of the channel matrix prior to QR decomposition to enable estimation in an optimum order. In another embodiment, a receiver performs multiple reactive tabu searches to estimate a transmitted vector. The receiver employs a fixed threshold or a variable threshold for a cost function used in the multiple reactive tabu searches depending on whether the MIMO system is under-determined or not. The techniques enable low bit-error rate (BER) performance in MIMO systems with large number of antennas and when higher-order modulation techniques are used.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: January 21, 2014
    Assignee: Indian Institute of Science
    Inventors: Ananthanarayanan Chockalingam, Balaji Sundar Rajan, Srinidhi Nagaraja, Tanumay Datta
  • Patent number: 8634445
    Abstract: In a wireless communications system, such as a multiband Ultra Wideband communications system, data is transmitted by means of the phases of pulses in multiple frequency bands. A signal is transmitted with a predetermined phase in at least one of the frequency bands for at least a part of the time, and can be used to allow accurate detection of the phases of the signals transmitted in the other frequency bands. One of the frequency bands can be designated as a reference band, and pulses can be transmitted with constant phase in the reference band. More generally, pulses can be transmitted in the other frequency bands with phases which have a known relationship with the phases of the pulses in the reference band.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: January 21, 2014
    Assignee: NXP B.V.
    Inventors: Derk Reefman, Raf L. J. Roovers
  • Patent number: 8630364
    Abstract: Various example embodiments are disclosed herein. According to an example embodiment, an apparatus may include a multiple modulation index continuous phase encoder (CPE) configured to perform continuous phase encoding on one or more received symbols and to output CPE encoded symbols, the CPE being configured to a known initial state prior to receiving a data block of one or more symbols, and a termination symbol (TS) generator coupled to the CPE, the TS generator configured to generate one or more termination symbols to be appended to the received data block, wherein an ending state of the CPE after receiving the one or more termination symbols is the same as the known initial state of the CPE.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: January 14, 2014
    Assignee: Nokia Siemens Networks Oy
    Inventor: Marilynn P. Green
  • Patent number: 8630371
    Abstract: Systems and methods are provided for channel estimation using linear phase estimation. These systems and methods enable improved channel estimation by estimating a linear channel phase between received pilot subcarrier signals. The estimated linear phase can then be removed from the received pilot subcarrier signals. After the estimated linear phase is removed from the received pilot subcarrier signals, a channel response can be estimated. A final estimated channel response can be generated by multiplying the results of the linear channel estimation by the estimated linear phase.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: January 14, 2014
    Assignee: Marvell International Ltd.
    Inventors: Jungwon Lee, Raj M. Misra, Adina Matache, Konstantinos Sarrigeorgidis
  • Patent number: 8630362
    Abstract: This invention discloses a new Co-State Maximum A-Posterior (MAP) trellis algorithm for implementing Quadrature Layered Modulation (QLM) demodulation over multiple layered channels. This MAP trellis algorithm has been demonstrated to provide performance which is at least as good as the current Maximum Likelihood (ML) trellis algorithm and to support a considerable reduction in the number of trellis paths to reduce the computational complexity. Computational complexity prevents ML trellis demodulation of higher order data symbol metrics over multiple layered channels since there is no viable means to support fewer trellis paths. MAP algorithms for reduction of trellis paths are disclosed for data symbol waveforms representative of OFDM, SC-OFDM, satellite, media, wire, and optical communications.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: January 14, 2014
    Inventor: Urbain Alfred von der Embse
  • Patent number: 8630363
    Abstract: The system (900), transmitter (700), receiver (800.a 800.b), and method of the present invention provide a technique to code data bits into symbols using TCM, MLCM or BIMLCM before the symbols are placed in an SCBT block. Generally, TCM, MLCM, and BIMLCM do not have good performance over the frequency selective channels. However, since the frequency domain equalization of SCBT will flatten the channel, the use of TCM, MLCM and BIMLCM can provide significant gain. Furthermore, since some of the bits are left uncoded, the speed requirements on the encoder and decoder can be relaxed. This feature is especially important for the very high data rate systems.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: January 14, 2014
    Assignee: Koninklike Philips N.V.
    Inventors: Seyed-Alireza Seyedi-Esfahani, Dagnachew Birru
  • Patent number: 8625694
    Abstract: Systems and techniques relating to wireless communications are described. A described technique includes receiving a signal that represents concurrent wireless data communications, where the signal is based on superimposed signals modulated using different respective constellations; detecting a first signal from the received signal over a first combined constellation, the combined constellation being based on the respective constellations; modifying the received signal based on the first detected signal to remove a signal contribution associated with the first detected signal; and detecting a second signal from the modified received signal over a second constellation. The second constellation can be based on the respective constellations absent a constellation of the respective constellations that is associated with the first detected signal.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: January 7, 2014
    Assignee: Marvell International Ltd.
    Inventors: Jungwon Lee, Jihwan P. Choi
  • Patent number: 8619893
    Abstract: A receiving apparatus includes an inverse matrix multiplying portion which multiplies first and second receiving signal points corresponding to first and second receiving signals by an inverse matrix of a channel matrix based on known signals included in the first and second receiving signals, a first arithmetic portion which determines one or more first sending signal candidate points based on the multiplied first receiving signal points, a second arithmetic portion which determines one or more second sending signal candidate points based on the multiplied second receiving signal points, a determining portion which determines first and second sending signal points, corresponding to first and second sending signals from among the first and second sending signal candidate points so that a total distance based on at least a first distance regarding the first sending signal candidate point and a second distance regarding the second sending signal candidate point satisfies a given condition.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: December 31, 2013
    Assignee: Fujitsu Limited
    Inventor: Akira Ito
  • Patent number: 8619896
    Abstract: A method, an apparatus and a system for transmitting information bits are provided. The method for transmitting information bits includes: dividing the information bits to be transmitted into at least two groups; encoding the information bits to be transmitted in each group; modulating the coded bits obtained by the encoding to obtain modulation symbols, in which each modulation symbol is obtained by the modulation of the coded bits in the same group; and mapping and transmitting the modulation symbols. In this way, the receiving end easily reduces the algorithm complexity, thereby ensuring the performance of the receiving end.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: December 31, 2013
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Xiaofeng Chen, Yongxia Lv, Yan Cheng
  • Patent number: 8619894
    Abstract: Systems and techniques for beamforming are disclosed. Codebook antenna ports, such as ports defined by the 8 transmit antenna LTE codebook, are mapped to sub-elements of an antenna array arranged to form a plurality of elevation and azimuth ports, such as 4 elevation and 2 azimuth ports or 2 elevation and 4 azimuth ports. The mapping is chosen so as to optimize performance. Phasing values may also be applied to signal components provided as inputs to the sub-elements, with the values chosen to maximize performance, such as rank 1 gain or rank 2 or higher performance.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: December 31, 2013
    Assignee: Nokia Siemens Networks Oy
    Inventors: Timothy A. Thomas, Frederick Vook, Eugene Visotsky
  • Patent number: 8611444
    Abstract: A signal receiving method of a receiver includes the following steps. A time-domain received signal is transformed into a frequency-domain received signal, which includes multiple pilot symbols and multiple data symbols. Multiple channel impulse responses corresponding to the pilot symbols are estimated. Multiple inter-carrier interference and inter-block interference (ICIIBI) values corresponding to the pilot symbols are estimated based on the pilot symbols and the corresponding channel impulse responses. Multiple ICIIBI values corresponding to the data symbols are obtained via an interpolation operation according to the ICIIBI values corresponding to the pilot symbols. The estimated corresponding ICIIBI values are cancelled from the data symbols. The interference-cancelled data symbols are demapped to obtain soft-decision or hard-decision bits.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: December 17, 2013
    Assignee: Infomax Communication Co., Ltd.
    Inventor: Shih-Yi Shih
  • Patent number: 8611475
    Abstract: A channel estimation method for use with a received signal by a receiver is disclosed. The received signal comprises multiple data bursts which are transmitted to the receiver via multiple path channels, with each of the data bursts having a plurality of preamble symbols which are decoded. The channel estimation method includes the following steps: firstly, at least one correlation pattern is generated according to the decoded preamble symbols. Then, a cross correlation of the correlation pattern with the received signal is performed to yield at least one correlation result of channel impulse response (CIR). Wherein, the symbol boundary of the received signal is decided according to the correlation result.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: December 17, 2013
    Assignee: Himax Media Solutions, Inc.
    Inventors: Pei-Jun Shih, Ching-Sheng Ni, Shin-Shiuan Cheng
  • Patent number: 8610514
    Abstract: A full spectrum modulator processes a plurality of CATV channels from separate paths. Each path has (i) a first filter for pulse shaping an input channel signal and upsampling a channel frequency thereof, (ii) an interpolator for interpolating the output of the first filter to a common sample rate, and (iii) a decimator for centering the output of the interpolator on a predetermined channel bandwidth. An IDFT processor receives channel signal outputs from the decimators. A polyphase filter bank receives IDFT processed parallel channel signals from the IDFT processor. A commutator converts the processed parallel channel signals from the polyphase filter bank to a single stream of data. A second filter upsamples the single stream of data to a fixed output sampling rate and low pass filters alias signals therefrom. Both standard and harmonically related carrier CATV channel frequency plans are accommodated.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: December 17, 2013
    Assignee: RGB Networks, Inc.
    Inventor: Kennan Laudel
  • Patent number: 8611445
    Abstract: A wireless transceiver includes a receiver and a transmitter, the receiver and transmitter implemented to have multiple receive and transmit channels respectively, to provide multiple-input multiple-output (MIMO) capability. In an embodiment, the transceiver is implemented to include two transmit channels and two receive channels. Some blocks/circuitry of each of the receive and transmit channels are implemented with reduced area and current consumption, with a corresponding increase in noise. In a single-input single-output (SISO) mode of operation, the receiver combines the output of both the receive channels to compensate for the increase in noise due to the implementation with smaller area and lower current consumption. Similarly, the transmitter combines the output of both the transmit channels to compensate for the increase in noise. The transceiver operates with no signal degradation in SISO mode, and with a small degradation in signal quality in the MIMO mode.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: December 17, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Gireesh Rajendran, Anand Kannan, Krishnaswamy Thiagarajan
  • Patent number: 8611833
    Abstract: A method and apparatus for providing adaptive bearer configuration for MBMS delivery is disclosed. A first aspect of the present disclosure is a method of operating a wireless infrastructure entity (103) wherein a common radio resource (303) is allocated for receiving a response from at least one mobile station (109). A request message, similar to a request for counting, is broadcast to all mobile stations (109) within a coverage area (105). If at least one mobile station (109) responds to the request, PTM transmission mode will be used for MBMS delivery within the given coverage area (105). If more than one mobile station (109) within the coverage area (105) responds to the request, then all the responses will be over the common radio resource (303). The total number of responses to the request message may be limited by providing a probability factor within the request message.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: December 17, 2013
    Assignee: Motorola Mobility LLC
    Inventors: Zhijun Cai, Mansoor Ahmed, Robert M Harrison
  • Publication number: 20130329819
    Abstract: The present invention relates to clipping thresholds adjustment for Crest Factor Reduction CFR in a radio unit, wherein the radio unit comprises one or more clipping stages that apply respective clipping thresholds to clip input signals, comprising: determining a target threshold for the clipping stages based on a target PAR and the amplitudes or powers of the input signals, estimating the direction in which original PAR of the input signals changes by comparing amplitudes of the clipped signals from the clipping stages with the target threshold, and adjusting the clipping thresholds based on the estimated direction. The present invention also relates to dynamic stage control. With the present invention, clipping thresholds and clipping stages are adaptively changes with dynamic original PAR of input signals and the efficiency of power amplifier is increased with a low implementation cost.
    Type: Application
    Filed: February 17, 2011
    Publication date: December 12, 2013
    Applicant: TELEFONAKTIEBOLAGET L M ERICSSON (PUBL)
    Inventor: Tao Gu