Phase Shift Keying Patents (Class 375/279)
  • Patent number: 10284325
    Abstract: An apparatus for orbital angular momentum (OAM) mode combination and an antenna apparatus for multi-mode generation are provided. The apparatus for OAM mode combination includes three input ports configured to receive independent OAM mode signals, four output ports configured to output OAM mode signals with the same or different phase delays; and a circuit element configured to simultaneously combine or distribute the OAM mode signals by controlling phases of output signals output through the four output ports to be different depending on the OAM mode signals received through the input ports.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: May 7, 2019
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Min Soo Kang, Kwang Seon Kim, Myung Sun Song, Woo Jin Byun, Bong Su Kim
  • Patent number: 10158382
    Abstract: Apparatuses and methods for power amplification and signal transmission using complex delta-sigma modulation are disclosed. In one embodiment, a complex delta sigma modulator unit comprising a complex polar quantizer within an integrator loop is disclosed. The complex polar quantizer quantizes the envelope of a complex integrated signal and produces a complex quantized output signal of substantially constant envelope. The complex quantized output signal is used in deriving a complex feedback signal within the integrator loop of the complex DSM. The complex quantized output signal may be used in driving a power amplifier substantially at saturation. In some embodiments, an adjacent channel power ratio (ACPR) enhancement technique is used to reduce the quantization noise in the complex quantized output signal.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: December 18, 2018
    Assignee: Telefonaktiebolaget LM Ericsson (Publ)
    Inventors: Mojtaba Ebrahimi, Mohamed Helaoui, Fadhel Ghannouchi, Fahmi Elsayed, Bradley John Morris
  • Patent number: 10050747
    Abstract: In one aspect, a wireless device receives a first data transmission from a base station in a first subframe interval and transmits HARQ feedback and/or CSI to the base station in a subsequent subframe interval, within a duration that is less than a maximum transmission duration that is possible within the subsequent subframe interval. In another aspect, a base station transmits a first data transmission to a wireless device in a first subframe interval and receives HARQ feedback and/or CSI from the wireless device in a subsequent subframe interval, within a duration that is less than a maximum transmission duration that is possible within the subsequent subframe interval.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: August 14, 2018
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Helka-Liina Määttanen, Mattias Andersson, Stefan Parkvall, Per Synnergren, Stefan Wager, Hanzhi Zhang
  • Patent number: 10031547
    Abstract: Methods, apparatus, and computer program products are described, which provide a mechanism that enables data to be written into registers of a slave device without a free-running clock, while facilitating an efficient sleep and wakeup mechanism for slave devices. A receiver device may receive a plurality of symbols over a shared bus, extract a receive clock signal embedded in symbol-to-symbol transitions of the plurality of symbols, convert the plurality of symbols into a transition number, convert the transition number into data bits, and store at least a portion of the data bits into one or more registers using only the receive clock signal. The receiver device may start a down counter upon detection of a first cycle of the clock signal, trigger a marker when the down counter reaches a pre-defined value, and use the marker to store at least a portion of the data bits into registers.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: July 24, 2018
    Assignee: QUALCOMM Incorporated
    Inventor: Shoichiro Sengoku
  • Patent number: 9860785
    Abstract: Systems, methods, and devices for communicating frames having a plurality of types are described herein. In some aspects, the frames include a compressed frame, such as a compressed management frame or a compressed control frame. In some aspects, a method of communicating in a wireless network includes generating a control frame including an identifier, the identifier comprising a portion of a frame check sequence and a service field of a frame that elicited the control frame. The method further includes transmitting the control frame.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: January 2, 2018
    Assignee: QUALCOMM, Incorporated
    Inventors: Alfred Asterjadhi, Simone Merlin, Maarten Menzo Wentink, Santosh Paul Abraham
  • Patent number: 9838069
    Abstract: A radio frequency front end module is provided for a high power capability and a high signal band selectivity. The front end module includes an external filter and an integrated circuit coupled with the external filter via two external filter leads. The integrated circuit includes a transmit-receive switch, a power amplifier and a low noise amplifier. The transmit-receive switch alternates between coupling an antenna port to a transmit port and coupling the antenna port to a receive port. The power amplifier amplifies a modulated radio frequency signal. The low noise amplifier amplifies a received radio frequency signal when the antenna port is coupled to the receive port. The external filter can be replaced to adapt to various requirements of signal frequency bands, without the need of modifying the layout of the integrated circuit.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: December 5, 2017
    Assignee: NETGEAR, INC.
    Inventor: Joseph Amalan Arul Emmanuel
  • Patent number: 9699727
    Abstract: Methods, apparatuses, and computer readable media are disclosed to signal a packet configuration. A HEW device to signal a packet configuration may include circuitry. The circuitry may be configured to generate a HE packet comprising a legacy signal field (L-SIG) followed by one or more HE signal fields and include in the L-SIG the packet configuration of the HE packet to signal to a second HEW device. The circuitry may configure a length field of the L-SIG to be a one or two modulo of three (MOD 3) to indicate the HE packet. The length field of the L-SIG may indicate that the HE packet includes a portion that has a one-quarter size subcarrier. The circuitry may set the length field of the L-SIG to be 1 mod 3 to indicate a first type of HE packet and to be 2 mod 3 to indicate a second type of HE packet.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: July 4, 2017
    Assignee: Intel IP Corporation
    Inventors: Thomas J. Kenney, Robert J. Stacey, Eldad Perahia, Shahrnaz Azizi
  • Patent number: 9665421
    Abstract: A bit storage device, integrated circuit, and method are provided. The bit storage device comprises registers to store an actual value, an inverse value, a differential actual value, and a differential inverse value, a validation circuit including validation inputs coupled to outputs of the registers and including a validity output to provide a validity indication, and a write circuit including write circuit inputs coupled to the registers, the write circuit configured to cause, at a first clock edge, the first register to store the actual value and either the second register to store the inverse value or the fourth register to store the differential inverse value, and, at a second clock edge, the third register to store the differential actual value and the other of the second register and the fourth register to store to store the inverse value or the differential inverse value, respectively.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: May 30, 2017
    Assignee: NXP USA, Inc.
    Inventors: Michael Rohleder, Stefan Doll, Peter Limmer
  • Patent number: 9614484
    Abstract: Embodiments of the present invention include a method and system for control of a multiple-input-single output (MISO) device. For example, the method includes partitioning a waveform constellation space into a plurality of regions, where each region of the plurality of regions is associated with one or more control functions of the MISO device. The method also includes transitioning the MISO device between a plurality of classes of operation based on the one or more control functions.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: April 4, 2017
    Assignee: PARKERVISION, INC.
    Inventors: David F. Sorrells, Gregory S. Rawlins
  • Patent number: 9565038
    Abstract: An electronic receiver may generate a differential detection sequence based on a received symbol sequence and based on a m-symbol delayed version of the received symbol sequence, where m is an integer greater than 1. The particular differential detection sequence may be a result of an element-by-element multiplication of the particular received symbol sequence and the conjugate of an m-symbol delayed version of the particular received symbol sequence. The receiver may calculate differential decision metrics based on the differential detection sequence and based on a set of differential symbol sequences generated from the set of possible transmitted symbol sequences. The receiver may generate a decision as to which of a set of possible transmitted symbol sequences resulted in the received symbol sequence, where the decision is based on the differential decision metrics and the set of possible transmitted symbols sequences.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: February 7, 2017
    Assignee: MAXLINEAR, INC.
    Inventors: Ioannis Spyropoulos, Anand Anandakumar
  • Patent number: 9334723
    Abstract: Disclosed is an apparatus, method, and program product for steering a drill bit within a pay zone in a lateral well. The method includes receiving acoustic signature data from an acoustic signal analyzing apparatus. The acoustic signature data includes an amplitude spectrum and one or more acoustic characteristics evaluated from an acoustic signal provided by a sensor attached to at least one of a drive shaft and a packing box of a drill rig, and generated in real-time as a result of rotational contact of the drill bit with encountered rock in the lateral well during drilling. The method further includes comparing the received real-time acoustic signature data to predetermined acoustic signatures determined for a plurality of rock samples, and identifying a lithology type of the rock being encountered by the drill bit based on the comparison.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: May 10, 2016
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventor: Yunlai Yang
  • Patent number: 9325175
    Abstract: A phase angle drift method for loss of mains/grid protection is disclosed. According to one aspect, an accumulated electrical phase angle drift derived from the difference between the current measured local frequency and the estimated frequency using historical data is compared to an angle threshold. An estimated grid frequency may be calculated based on the historical delay, and the window, over which the estimated frequency is calculated. An addition/subtraction of a phase angle offset value is calculated for a half cycle is performed when the frequency difference between the estimated frequency fnest and the measured frequency fn is greater or equal to a first determined value.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: April 26, 2016
    Assignees: Alstom Technology Ltd., Schneider Electric Energy UK Ltd.
    Inventors: Ryan M. Tumilty, Adam Dysko, Graeme Burt
  • Patent number: 9122293
    Abstract: A transient response accelerated (TRA) low dropout (LDO) regulator has an error amplifier having a feedback input, and a reference input configured to receive a reference voltage, and an output that controls a pass gate. The pass gate output voltage is applied to the feedback input. A transient response accelerator (TRA) circuit detects a rapid voltage drop on the pass gate output and, in response, applies a pulse control that rapidly lowers the resistance of the pass gate.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: September 1, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Burt L. Price, Dhaval R. Shah, Yeshwant Nagaraj Kolla
  • Patent number: 9059790
    Abstract: The present invention provides an ultra-wide band (UWB) system and method. In one embodiment, a transmitter of a low duty cycled ultra wide band (UWB) system includes a differential spreading encoder for encoding a phase of a bit sequence based on a reference bit sequence. The transmitter also includes a pulse generator for generating a number of pulses associated the bit sequence using the encoded phase of the bit sequence, where the number of pulses is equal to a length of the bit sequence. Moreover, the transmitter includes a DMPSK modulator for generating a modulated signal through modulating the number of pulses using a phase of a differential data symbol.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: June 16, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kiran Bynam, Giriraj Goyal, Thenmozhi Arunan
  • Publication number: 20150146815
    Abstract: A device for generating Orbital Angular Momentum (OAM) modes for radio communications. The device is designed to receive one or more input digital signals, each of which has a respective sampling period which is a respective multiple of a given sampling period, and occupies a frequency bandwidth which is a respective fraction of a given available frequency bandwidth. The device is operable to apply, to each input digital signal, a respective space modulation associated with a respective OAM mode having a respective topological charge to generate a corresponding digital signal carrying the respective OAM mode. The device is configured to apply, to each input digital signal, the respective space modulation by interpolating said input digital signal and phase-modulating the interpolated input digital signal so as to generate a corresponding phase-modulated digital signal carrying the respective OAM mode, having the given sampling period, and occupying the given available frequency bandwidth.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 28, 2015
    Applicant: EUTELSAT SA
    Inventors: Giuliano Berretta, Jacques Dutronc
  • Patent number: 9019030
    Abstract: A memristor-based emulator including a memristor circuit for use in digital modulation that includes a first current feedback operational amplifier (CFOA) having multiple terminals in communication with a capacitor Cd and in further communication with a resistor Ri. A second CFOA having multiple terminals is in communication with the first CFOA and is adapted to be in further communication with a voltage vM to provide an input current iM for integration by a capacitor Ci. A nonlinear resistor is in communication with the second CFOA. A third CFOA having multiple terminals is in communication with the nonlinear resistor and is in further communication with the first CFOA and a resistor Rd. The third CFOA and the resistor Rd act as an inverting amplifier associated with the nonlinear resistor to increase a current gain to increase a difference between ON and OFF values of a resistance of a realized memristor.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: April 28, 2015
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Muhammad Taher Abuelma'atti, Zainualbideen Jamal Khalifa
  • Patent number: 9008245
    Abstract: Techniques are provided for detecting a coded signal in the presence of non-Gaussian interference. In an embodiment, a primary transmitter corresponds to a desired transmitter, and one or more secondary transmitters correspond to interfering transmitters. In an embodiment, received symbols, which include non-Gaussian interference and additive noise, are decoded to determine a set of message bits. In an embodiment, an estimate of the set of message bits may be determined using a minimum-distance detector or an optimal-ML detector, for example, depending on the signal-to-noise and/or signal-to-interference ratios at a receiver.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: April 14, 2015
    Assignee: Marvell International Ltd.
    Inventor: Jungwon Lee
  • Patent number: 9008212
    Abstract: A high data rate millimeter wave radio adapted to receive an binary input data at an input data rate in excess of 3.5 Gbps and to transmit at a transmit data rate in excess of 3.5 Gbps utilizing encoded three-bit data symbols on a millimeter carrier wave at a millimeter wave nominal carrier frequency, defining a carrier wavelength and period, in excess of 70 GHz with differential phase-shift keying utilizing eight separate phase shifts. Preferred embodiments of the invention can support many of the high data rate standards including the following group of protocols or standards: SONET OC-96 (4.976 Gbps); 4xGig-E (5.00 Gbps); 5xGig-E (6.25 Gbps); OBSAI RP3-01 (6.144 Gbps); 6xGig-E (7.50 Gbps); Fibre Channel 8GFC (8.5 Gbps); SONET OC-192 (9.952 Gbps); Fibre Channel 10GFC Serial (10.52 Gbps) and 10 GigaBit Ethernet.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: April 14, 2015
    Assignee: Trex Enterprises Corp.
    Inventors: John Lovberg, Richard Chedester
  • Patent number: 9001929
    Abstract: A method and an apparatus for a transmitter to transmit data in a wireless communication system are provided. This method includes: generating a first signal field including at least one symbol; generating a second signal field configured by repeating at least one symbol of the first signal field; and transmitting a frame including the first signal field, the second signal field, and a data field and a first symbol of the second signal field is modulated through binary phase shift keying (BPSK) and symbols from a second symbol of the second signal field are modulated through Q-BPSK. According to the present invention, a service filed can be extended while maintaining compatibility with a wireless communication system in the related art by transmitting a frame using symbol repetition.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: April 7, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Il Gu Lee, Heejung Yu, Hun Sik Kang, Sok Kyu Lee
  • Patent number: 8964902
    Abstract: The present invention provides a method and an apparatus for eliminating direct current offset.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: February 24, 2015
    Assignee: ST-Ericsson Semiconductor (Beijing) Co., Ltd
    Inventors: Jiangshan Chen, Zhenguo Ma, Liyong Yin
  • Patent number: 8948292
    Abstract: In determining an angle for a phase modulation scheme, a key is generated from a prescribed set of bits contained in a symbol. The symbols have an in-phase (I) data word and a quadrature phase (Q) data word that identify coordinates of the symbols in a complex number plane. An angle is retrieved from a memory table from a storage location identified by the key. Each angle in the memory table is established in accordance with constraints under which the memory table was populated so as to be mapped to a phase angle identifying other coordinates in the complex number plane that are within a specified neighborhood about the coordinates of each of the symbols. A signal is generated to convey the symbols as phase differentials at each sample time between a reference phase and the phase angle.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 3, 2015
    Assignee: Exelis Inc.
    Inventor: William J. Taft
  • Patent number: 8942327
    Abstract: The present invention employs hierarchical modulation to simultaneously transmit information on different modulation layers using a carrier RF signal. Initially, first data to be transmitted is assigned to a first modulation layer and second data is assigned to a second modulation layer. In one embodiment of the present invention, the first and second data are assigned based on reliability criteria. The first and second modulation layers are hierarchical modulation layers of the carrier RF signal. Once assigned, the first data is transmitted using the first modulation layer of the carrier RF signal and the second data is transmitted using the second modulation layer of the carrier RF signal. In one embodiment of the present invention, information may be transmitted to one end user using one modulation layer, and information may be transmitted to a different end user using a different modulation layer.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: January 27, 2015
    Assignee: Apple Inc.
    Inventors: Ming Jia, Jianglei Ma, Peiying Zhu, Wen Tong, Curt Dodd
  • Patent number: 8929431
    Abstract: Serial data are transmitted between transceivers via a communication path, each bit expressed by a dominant code or a recessive code which vary between dominant and recessive levels, the dominant code having a greater proportion of duration at the dominant level. A device (clock master) can continuously output successive recessive codes to the communication path, in which condition a transceiver can transmit a dominant code by producing an output drive signal which overwrites a part of a recessive code, currently being received from the communication path, to the dominant level. The output drive signal is shaped with a steeper edge slope at a transition from an inactive to an active level than from the active to the inactive level, enabling an increased data transmission rate without increased noise.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: January 6, 2015
    Assignee: Denso Corporation
    Inventors: Hideki Kashima, Tomohisa Kishigami, Naoji Kaneko
  • Patent number: 8923417
    Abstract: Embodiments disclosed herein relate to apparatus and methods of transceiver power noise reduction. One embodiment relates to a method of serial data communication. At a transmitter, data may be encoded by a communication protocol encoder, and the protocol-encoded data may be serialized. The serialized data may be encoded for power-delivery-network noise reduction (PNR) so as to generate PNR-encoded serial data, and the PNR-encoded serial data may be driven onto a communication channel. Other embodiments, aspects, and features are also disclosed.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: December 30, 2014
    Assignee: Altera Corporation
    Inventors: Zhe Li, Hong Shi
  • Patent number: 8923439
    Abstract: A method of performing complementary mixing may include performing an exclusive OR (XOR) function with respect to an I-channel symbol based on an oscillator signal to produce an I-channel output signal with bits that alternate between the I-channel symbol and a complement of the I-channel symbol in response to the oscillator signal rising and falling. The method may also include performing the XOR function with respect to a Q-channel symbol based on the oscillator signal to produce a Q-channel output signal with bits that alternate between the Q-channel symbol and a complement of the Q-channel symbol in response to the oscillator signal. Further, the method may include combining the I-channel output signal and the Q-channel output signal based on adding operations performed with respect to an I-channel extra bit signal, a Q-channel extra bit signal, the I-channel output signal, and the Q-channel output signal to generate a complementary mixed signal.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: December 30, 2014
    Assignee: Intel IP Corporation
    Inventors: Chuanzhao Yu, Mark Kirschenmann
  • Patent number: 8879661
    Abstract: A signal processing apparatus configured to correct a distortion introduced by a signal processing path into a processed signal comprising a transformer that transforms the processed signal into a transformed signal in frequency domain, a processor that determines a first correction function and a second correction function upon the basis of a transfer function of the signal processing path, a first multiplier that multiplies values of the transformed signal with coefficients of the first correction function to obtain a first corrected signal, a signal reverser that reverses an order of values in a copy of the transformed signal to obtain a reversed transformed signal, a second multiplier that multiplies values of the reversed transformed signal with coefficients of the second correction function to obtain a second corrected signal, and an adder that adds the first corrected signal and the second corrected signal to obtain a corrected output signal.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: November 4, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Nebojsa Stojanovic
  • Patent number: 8873658
    Abstract: An apparatus for receiving signals includes a receiver for receiving a time domain signal from a transmitter, wherein at least one first information bit is mapped, resulting in at least one first mapped symbol; at least one second information bit is mapped, resulting in at least one second mapped symbol; the at least one second mapped symbol is multiplied by at least one third information bit; and the time domain signal is generated from the at least one first mapped symbol and the at least one second mapped symbol.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: October 28, 2014
    Assignee: LG Electronics Inc.
    Inventors: Yeong Hyeon Kwon, Seung Hee Han, Min Seok Noh, Young Woo Yun
  • Patent number: 8873609
    Abstract: A communication apparatus including: a receiver to receive signals including reference signals at each of a plurality of different reception intervals; and a processor to estimate phase differences between the signals based on the reference signals, to determine a plurality of phase difference candidates for each of the reception intervals based on the phase differences, to select, from among a plurality of combinations of the phase difference candidates for the reception intervals, a combination of the phase difference candidates between the signals, and to estimate a frequency deviation of the signals based on the phase difference candidates included in the combination.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: October 28, 2014
    Assignee: Fujitsu Limited
    Inventors: Takato Ezaki, Dai Kimura
  • Patent number: 8867656
    Abstract: When a determination is made that communication by an SM scheme is suitable, a setting unit performs switching from a communication level by an STC scheme to the communication level by the SM scheme, between the communication level at a first level of MCS by the space-time coding scheme and the communication level at a second level of MCS by the SM scheme. When a determination is made that communication by the SM scheme is unsuitable, the setting unit performs switching from the communication level by the STC scheme to the communication level by the spatial multiplexing scheme, between the communication level at a third level of MCS, which is higher than the first level, by the space-time coding scheme and a fourth level of the modulation scheme and the coding rate, which is higher than the second level, by the SM scheme.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: October 21, 2014
    Assignee: KYOCERA Corporation
    Inventor: Takeo Miyata
  • Patent number: 8861636
    Abstract: A system is configured to receive a block of symbols, associated with a phase-modulated signal that includes data symbols that correspond to a payload associated with the signal, and control symbols; process the control symbols to identify an amount of phase noise associated with the control symbols; reset a phase, associated with each of the data symbols, based on the amount of phase noise and a reference phase; interleave the respective data samples, of each of the data symbols with other data samples, where the interleaved respective data samples cause errors, associated with the respective data samples, to be spread out among the other data samples and reduces an error rate relative to a prior data rate that existed before the interleaving; and perform forward error correction on the interleaved respective data samples.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: October 14, 2014
    Assignee: Infinera Corporation
    Inventors: Han Henry Sun, Kuang-Tsan Wu, Yuejian Wu, Sandy Thomson
  • Patent number: 8861644
    Abstract: The device with IQ mismatch compensation includes a transmitter oscillator, a transmitter module, and a loop-back module. The transmitter module is arranged to up-convert a transmitter signal with the oscillator signal to generate an RF signal. The loop-back module is arranged to down-convert the RF signal with the oscillator signal to determine a transmitter IQ mismatch parameter, and effects of IQ mismatch of the loop-back module are calibrated by inputting a test signal and the oscillator signal before the down-converting of the RF signal. The transmitter module is arranged to reduce effects of IQ mismatch of a transmitter path in the transmitter module according to the transmitter IQ mismatch parameter.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: October 14, 2014
    Assignee: Mediatek Inc.
    Inventors: Hsin-Hung Chen, Hsiang-Hui Chang
  • Patent number: 8824589
    Abstract: A method, an apparatus, and a system are provided in various embodiments of the present invention. According to embodiments of the present invention, the receiver samples the frequency signal from the transmitter to obtain sampling data and obtain the feedback IQ signal from the sampling data, and performs signal correction by using the feedback IQ signal. Sampling the received radio frequency signal does not need an additional component. The receiving channel installed in the receiver can be used to receive the radio frequency signal, which reduces the cost and power consumption.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: September 2, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Guixue Zhao
  • Patent number: 8804868
    Abstract: A constant-amplitude and continuous-phase modulation method for modulating digital data and for demodulating said modulated signal, said data taking the form of symbols a(n) that can take a number M of states at least equal to 2, the method including, in transmission, use of a voltage-controlled oscillator (VCO) for which the control is the sum of pulses he(a(n), t?n T), the form and the amplitude of which depends on the value of a(n); and, in reception, use of a single impulse response filter C0(t) regardless of the value of M in transmission, said functions he and C0 having a number of parameters that are optimized in the design of the system in order to obtain at the output of the filter C0 a constellation that is as close as possible to the theoretical constellation.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: August 12, 2014
    Assignee: Thales
    Inventor: Pierre-André Laurent
  • Patent number: 8792542
    Abstract: Apparatus for processing broadband impulses signals of low repetition rate includes a tuner for receiving broadband impulsive signals of low repetition rate and providing an output signal characteristic of the amplitude and spectral content of the received input signal. Resolution bandwidth filters coupled to the tuner output each have a different bandwidth that determines the measurement resolution and influences the sensitivity and transient response to low repetition rate impulsive signals. At least one radio frequency switch selects a resolution bandwidth filter for coupling to and associated one of at least a peak detector, an average detector and an envelope generator. A gate generator coupled to the peak detector, the average detector and the envelope generator furnishes a gating signal to each to provide a peak signal, an average signal and an envelope signal respectively during a selected gating interval. A microprocessor is coupled to the peak detector and the average detector.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: July 29, 2014
    Assignee: Doble Engineering Company
    Inventors: Scott McMeekin, Brian G. Stewart, Stephen Conner, Carlos Gamio, Alan Nesbitt
  • Patent number: 8774318
    Abstract: Certain aspects of the present disclosure relate to a method for modulating single carrier signals using constant envelope 2-CPM modulation and quasi-constant envelope filtered continuously rotated pseudo-PSK modulation in a wireless communication system.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: July 8, 2014
    Assignee: Adeptence, LLC
    Inventor: Ismail Lakkis
  • Patent number: 8750411
    Abstract: A method and apparatus mitigates spurious transmissions. An offset local oscillator signal is generated that is at a frequency that is offset from a nominal transmit channel carrier frequency by a spurious mitigation offset. An information signal is generated that comprises a series of modulation symbols and has a transmission bandwidth at baseband. A configured offset information signal is generated from the information signal, wherein the spectrum of the configured offset information signal is offset from DC by a channel configuration offset, and is further offset by a negative of the spurious mitigation offset. The offset local oscillator signal and the configured offset information signal are combined using a mixing technique. The spurious mitigation offset is zero when a spurious condition does not exist and is non-zero when the spurious condition does exist.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: June 10, 2014
    Assignee: Motorola Mobility LLC
    Inventors: Dale G. Schwent, Gregory W. Chance, Thomas D. Nagode
  • Patent number: 8737517
    Abstract: Aspects describe maximizing a Euclidean distance for an ACK transmission as a function of the number of bits in a HARQ-ACK and a modulation order. Encoding includes placing escape sequences in the HARQ-ACK, wherein the number of escape sequences is based on the number of bits and the modulation order. Multiple encoded ACK blocks are combined to obtain a vector sequence that is multiplexed with the encoded data and interleaved, such as on a “time-first” manner. Scrambling is performed as a function of the size and the modulation order. For a 1-bit ACK, the scrambling is performed to achieve any two corners in any constellation for transmission for the ACK. For a 2-bit ACK, the scrambling is performed to achieve any four corners in any constellation for transmission for the ACK.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: May 27, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Juan Montojo, Peter Gaal
  • Patent number: 8724744
    Abstract: The present invention discloses a method and apparatus for wide dynamic range phase conversion. In one embodiment, inphase and quadrature signal components of a complex input signal are collapsed into a single quadrant to produce a first signal representation. A scaling operation is subsequently performed on the first signal representation to produce a second signal representation. Lastly, the second signal representation is converted into the phase domain.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: May 13, 2014
    Assignee: General Instrument Corporation
    Inventors: David P. Gurney, Anthony R. Schooler
  • Patent number: 8718191
    Abstract: A method for transmitting, by a transmitting terminal, data to a receiving terminal in a wireless communication system includes: generating a first detection field including symbols modulated by using a BPSK data tone; generating a second detection field including symbols modulated such that an even numbered subcarrier and an odd numbered subcarrier have a phase difference of 90 degrees; generating a data packet including the first detection field, the second detection field, and the data; and transmitting the data packet.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: May 6, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Il-Gu Lee, In-Kyeong Choi, Yu-Ro Lee, Jong-Ee Oh, Eun-Young Choi, Sok-Kyu Lee
  • Patent number: 8705658
    Abstract: Modulating method and apparatus in a broadcasting and communication system are provided. The modulating apparatus includes: a first quadrature phase shift keying (QPSK) modulating unit QPSK-modulating first data including in-phase (I) data and quadrature (Q) data to generate a first signal; a phase rotating unit rotating a phase of the first signal by ? to generate a phase rotated signal; a second QPSK modulating unit QPSK-modulating second data different from the first data and including I? data and Q? data to generate a second signal; and a layer modulating unit modulating the phase rotated signal and the second signal to output a final signal.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: April 22, 2014
    Assignee: Intellectual Discovery Co., Ltd.
    Inventors: Jae Hyun Seo, Hyoungsoo Lim, Heung Mook Kim, Soo In Lee
  • Patent number: 8660210
    Abstract: Systems and methodologies are described that facilitate code rate and modulation order dependent selection of a suitable demodulator for a received data packet. According to various aspects, systems and/or methods are described that enable selection of an optimal demodulation scheme such that signal receiver complexity is not increased and optimal decoding throughput performance is achieved.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: February 25, 2014
    Assignee: QUALCOMM Incorporated
    Inventor: Byoung-Hoon Kim
  • Patent number: 8654822
    Abstract: A link adaptation system using a Doppler frequency is provided. The link adaptation system includes: a Doppler frequency estimation unit to estimate a Doppler frequency of a signal transmitted via a wireless channel; a Signal to Noise Ratio (SNR) measurement interval determination unit to determine an SNR measurement interval of the signal transmitted via the wireless channel based on the estimated Doppler frequency; and an SNR measurement unit to measure an SNR of the signal based on the determined SNR measurement interval.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: February 18, 2014
    Assignees: Samsung Electronics Co., Ltd., Seoul National University Industry Foundation
    Inventors: Young Soo Kim, Kyung Hun Jang, In Sun Lee, Jung Woo Lee, Hyo Sun Hwang, Hyun Gi Ahn, Chan Hong Kim
  • Patent number: 8634450
    Abstract: An efficient coding and modulation system for transmission of digital data over plastic optical fibers is disclosed. The digital signal is coded by a three-level coset coding. The spectral efficiency of the system is configurable by selecting the number of bits to be processed in each of the levels. The first level applies to the digital data a binary BCH coding and performs coset partitioning by constellation mapping and lattice transformations. Similarly, second level applies another binary BCH coding, which may be performed selectably in accordance with the desired configuration by two BCH codes with substantially the same coding rate, operating on codewords of different sizes. The third level is uncoded. The second and third levels undergo mapping and lattice transformation. After an addition of the levels, a second-stage lattice transformation is performed to obtain a zero-mean constellation. The symbols output from such three-level coset coder are then further modulated.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: January 21, 2014
    Assignee: Knowledge Development for POF, S.L.
    Inventors: Carlos Pardo Vidal, Rúben Pérez de Aranda Alonso
  • Patent number: 8619895
    Abstract: Disclosed are a method and an apparatus for transmitting and receiving broadcast data in a digital broadcasting system. The method for transmitting and receiving broadcast data in a digital broadcasting system includes receiving the main data encoded with symbols having a plurality of levels; deciding whether levels of main data symbols encoded with symbols having the plurality of levels belong to a first group; and mapping the main data symbols to extended levels by using modulation values of the additional data if it is decided that the levels of the main data symbols belong to the first group.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: December 31, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jae-Hyun Seo, Sung-Ik Park, Ho-Min Eum, Hyoung-Soo Lim, Heung-Mook Kim, Soo-In Lee
  • Patent number: 8605826
    Abstract: A receiver system and a demodulator system are configured to receive and demodulate, respectively, multi-gigabit millimeter wave signals being wirelessly transmitted in the unlicensed wireless band near 60 GHz.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: December 10, 2013
    Assignee: Georgia Tech Research Corporation
    Inventors: Eric Juntunen, Stephane Pinel, Joy Laskar, David Yeh, Saikat Sarkar
  • Patent number: 8599939
    Abstract: A data transmission method is disclosed, and the method comprises: encoding binary data to be transmitted with encoding principle as follows: encoding binary data x1 in the manner of no jumping at middle phase; encoding binary data x2 in the manner of jumping at middle phase; and after encoding two binary data x1 consecutively with high level of no jumping at middle phase, encoding the immediate following binary data x1 with low level of no jumping at middle phase; encoding binary data x1 with high level of no jumping at middle phase, wherein the binary data x1 follows binary data x1 encoded by using low level of no jumping at middle phase; and encoding binary data x1 immediately following binary data x2 by using high level of no jumping at middle phase; modulating the encoded data; and transmitting the modulated signal.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: December 3, 2013
    Assignee: ZTE Corporation
    Inventors: Chaoyang Liu, Yibiao Fu, Yanming Li
  • Patent number: 8576893
    Abstract: A high data rate UWB system implements a frame structure that uses a connected set of m-sequences comprising the lowest possible cross-correlation and perfect, or near perfect autocorrelation. Each m-sequence can be used to identify a different piconet A very efficient code matched filter can then be used to decode the frames and achieve synchronization with a piconets.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: November 5, 2013
    Assignee: QUALCOMM Incorporated
    Inventor: Ismail Lakkis
  • Patent number: 8576897
    Abstract: A method, apparatus and computer program product for a method of operating an analog-to-digital converter of a transceiver which includes a transmitter and a receiver, the receiver including the analog-to-digital converter. The method includes determining a maximum conversion rate of the analog-to-digital converter, wherein the determining step includes determining a temperature of the analog-to-digital converter, and selecting a conversion rate of the analog-to-digital converter, based on the determined maximum conversion rate and a frequency of an unwanted signal component of the receiver, such that the selected conversion rate places an alias response of the unwanted signal component to a frequency range which is substantially non-overlapping with a wanted signal component of the receiver.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: November 5, 2013
    Assignee: Renesas Mobile Corporation
    Inventor: Markus Nentwig
  • Patent number: 8576954
    Abstract: Briefly, a method and apparatus to calculate cross-correlation values of complex binary sequences are provided. The apparatus may include a transformation unit and a cross-correlator. The cross-correlator may include a cross-correlation controller to provide, based on a type bit and a sign bit, a real component and/or an imaginary component of signals of complex binary sequences to a real accumulator and/or to an imaginary accumulator.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: November 5, 2013
    Assignee: Marvell World Trade Ltd.
    Inventors: Kobby Pick, Yona Perets
  • Patent number: RE44927
    Abstract: A method is provided for specifying a transmission mode for each signal portion of a multi-carrier signal transmitted between a first and second device. The method includes defining an adaptive modulation and coding set divided into a plurality of subsets, each of the plurality of subsets including a plurality of transmission modes for transmitting a signal portion. The method further includes selecting a transmission mode subset from the plurality of subsets for transmission of the multi-carrier signal from a first to a second device, selecting a signal portion transmission mode for each signal portion from the plurality of transmission modes of the selected transmission mode subset, defining semantic bits that indicate the selected transmission mode subset, defining an indicator bit for each signal portion indicating the selected sub-carrier transmission mode, and transmitting the semantic bits and the indicator bit for each signal portion from a first to a second device.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: June 3, 2014
    Assignee: Nokia Corporation
    Inventors: Olav Tirkkonen, Paolo Priotti, Ulrico Celentano