Angle Modulation Patents (Class 375/302)
  • Patent number: 10411935
    Abstract: A method for reducing a peak to average power ratio (PAPR) of an orthogonal frequency division multiplexing (OFDM) signal. A first signal in the frequency domain is processed to generate a second signal by performing a modular permutation on the first signal according to a modular permutation index, and/or by performing a cyclic shift on the first signal according to a cyclic shift parameter. The second signal is then mapped to a number of tones, and transformed into a time-domain signal for transmission. The modular permutation index and/or the cyclic shift parameter are selected so that the signal for transmission has a PAPR that satisfies a predefined PAPR criteria.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: September 10, 2019
    Assignee: Futurewei Technologies, Inc.
    Inventors: Qian Cheng, Weimin Xiao, Jialing Liu
  • Patent number: 10412718
    Abstract: Methods, apparatuses, and computer readable media for resource allocation signaling in a high efficiency wireless local area network (WLAN) are disclosed. A receiver may receive, at a first station, a transmission frame that includes a WLAN signaling field decodable by a plurality of stations. The receiver may identify, in a station-specific portion of the WLAN signaling field, an order for a plurality of station-specific information blocks associated with the plurality of stations. The receiver may determine a number of spatial streams allocated to the first station based at least in part on the identified order for the plurality of station-specific information blocks.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: September 10, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Arjun Bharadwaj, Bin Tian, Lochan Verma, Sameer Vermani
  • Patent number: 10411943
    Abstract: The present disclosure relates to a polar phased-array transmitter and a mobile terminal. One example mobile terminal includes a baseband chip, the polar phased-array transmitter, and an antenna array. The baseband chip is configured to generate a quadrature digital baseband signal. The polar phased-array transmitter is configured to perform quadrature-to-polar conversion on the quadrature digital baseband signal to generate n amplitude signals and n phase signals, separately perform phase modulation and phase shifting on the n phase signals by using a local oscillator signal to obtain n phase modulation signals, and perform amplitude modulation and power amplification on the n phase modulation signals by using the amplitude signals to obtain n radio frequency signals. n is a natural number greater than 1. The antenna array is configured to obtain the n radio frequency signals from the polar phased-array transmitter, and transmit the n radio frequency signals.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: September 10, 2019
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Huizhen Qian, Xun Luo
  • Patent number: 10326471
    Abstract: A bit interleaver, a bit-interleaved coded modulation (BICM) device and a bit interleaving method are disclosed herein. The bit interleaver includes a first memory, a processor, and a second memory. The first memory stores a low-density parity check (LDPC) codeword having a length of 16200 and a code rate of 3/15. The processor generates an interleaved codeword by interleaving the LDPC codeword on a bit group basis. The size of the bit group corresponds to a parallel factor of the LDPC codeword. The second memory provides the interleaved codeword to a modulator for quadrature phase shift keying (QPSK) modulation.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: June 18, 2019
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sung-Ik Park, Sun-Hyoung Kwon, Bo-Mi Lim, Jae-Young Lee, Heung-Mook Kim, Nam-Ho Hur
  • Patent number: 10200232
    Abstract: A digital quadrature architecture is presented that employs switched current digital power amplifiers and uses a digital class-B input code profile in combination with non-overlapping LO signals to overcome the low efficiency problems of conventional quadrature architectures. By employing digital class-B signals, the number of I/Q cells is reduced to half and the need for extra processing of the sign bits is eliminated in the transmitters, thereby improving the efficiency.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: February 5, 2019
    Assignee: The Regents of The University of Michigan
    Inventors: David D. Wentzloff, Hun-Seok Kim, Avish Kosari
  • Patent number: 10128795
    Abstract: This disclosure relates to an apparatus, system, and method for generating uplink transmissions using a polar architecture including a phase locked loop with potential for two point injection. According to some embodiments, frequency resources allocated for a transmission may be determined. A cartesian baseband signal may be generated for the uplink transmission. The cartesian baseband signal may be converted to a polar baseband signal, including a baseband phase signal and an amplitude signal. Modulation parameters, potentially including whether to use one point injection or two point injection with a phase locked loop, may be determined. The baseband phase signal may be upconverted to an RF phase signal according to the determined modulation parameters. The RF phase signal may be amplified according to the amplitude signal to produce an RF signal. The RF signal may be transmitted.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: November 13, 2018
    Assignee: Apple Inc.
    Inventors: Lydi Smaini, Tarik Tabet, Moustafa M. Elsayed
  • Patent number: 10103697
    Abstract: A multiphase transmitter including a reactive combiner for combining amplified pulse modulated signals generated by multiple power amplifiers of the transmitter. In some embodiments, the reactive combiner is configured to inhibit odd order harmonics of the amplified pulse modulated signals in a power efficient manner.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: October 16, 2018
    Assignee: NXP USA, INC.
    Inventors: Chun-Wei Chang, Joseph Staudinger
  • Patent number: 10063343
    Abstract: Apparatus and methods for transmit power control in wireless communication systems are provided. In one aspect, a wireless communication system includes a transmit chain that generates a transmit signal based on a data signal having a time-varying signal envelope, a power amplifier that amplifies the transmit signal, and a transmit chain controller that generates a first power control signal and a second power control signal that control an adjustable power level of the transmit chain. The transmit chain controller includes an error extractor that generates an error signal based on comparing an output signal power of the power amplifier to the time-varying signal envelope. The transmit chain controller further includes a control signal generator that generates the first power control signal and an adjustment signal based on estimating the error signal, and that generates the second power control signal based on the error signal and the adjustment signal.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: August 28, 2018
    Assignee: Skyworks Solutions, Inc.
    Inventors: Dmitriy Rozenblit, Rajasekhar Pullela, Jaleh Komaili, Masoud Kahrizi, Shahrzad Tadjpour
  • Patent number: 9839028
    Abstract: A carrier aggregation controller for providing an aggregated baseband signal from a plurality of baseband signals is provided. The controller comprises an accumulating memory, a selector and a time domain transformer. The selector is configured to add at least a first list of frequency domain samples obtained for the first baseband signal to first consecutive locations in the accumulating memory centered at a first preset location associated with the first baseband signal, and a second list of frequency domain samples obtained for the second baseband signal to second consecutive locations in the accumulating memory centered at a second preset location associated with the second baseband signal. The time domain transformer is configured to apply at least an inverse discrete Fourier transform to the frequency domain samples accumulated in the accumulating memory, obtaining the aggregated baseband signal.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: December 5, 2017
    Assignee: NXP USA, Inc.
    Inventors: Amit Bar-Or, Guy Drory, Gideon Kutz, Ran Zamir
  • Patent number: 9693245
    Abstract: Disclosed in the present disclosure are a method and system for measuring interference signals in carrier signals. The method comprises: receiving multiple valid samples of the carrier signals; based on the multiple valid samples of the carrier signals, gaining value of constant part and mean square error of zero mean part in the interference signals through iterative calculation; calculating the total power value of the interference signals. Since considering the constant part in the interference signals, the measurement method is suitable in the case that the interference signals in the carrier signals is non-zero mean value, and the obtained measurement result of the interference signals will be more accurate than the result through the existing method.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: June 27, 2017
    Assignee: China Telecom Corporation Limited
    Inventors: Lei Cao, Ye Zhao, Xiaodong Chen, Shangkun Xiong, Henghua Lin
  • Patent number: 9509451
    Abstract: Hybrid ARQ is employed in a multi-carrier communication system for retransmission of erroneous packets by taking advantage of time/frequency/space diversity and by combining ARQ functions at physical layer and MAC layers, making the multi-carrier system more robust in a high packet-error environment.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: November 29, 2016
    Assignee: Neocific, Inc.
    Inventors: Xiaodong Li, Haiming Huang, Titus Lo, Kemin Li
  • Patent number: 9258099
    Abstract: Embodiments are provided herein for implementing a user cooperation protocol for interference alignment (IA) in wireless local area network (WLAN) or a Wi-Fi hotspot. The embodiments allow collecting knowledge of the channels from user stations (STAs) and sending this information to the corresponding access points (APs) in the network. This information is then used by the APs to pre-code their signals such as to remove interfering signals to non-intended STAs. An AP transmits to the STAs a group identifier (GrpID) indicating an order of STAs for transmitting channel state information (CSI) and an AP index indicating an order of STA groups of the APs for transmitting the CSI. When a STA detects a CSI transmission from another STA preceding the STA in the order of transmission as indicated by the AP index and GrpID, the STA transmits its CSI.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: February 9, 2016
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Osama Aboul-Magd, Jung Hoon Suh, Kwok Shum Au
  • Patent number: 9160379
    Abstract: A transmitter according to the present invention includes a level detector that detects the level value of an input signal, from among a predetermined number of level values; an upstream-side signal adjusting unit that amplifies the input signal and shifts the input signal for an offset amount based on an output signal of the level detector; a digital-sigma modulator having a quantizer that quantizes an output signal of the upstream-side signal adjusting unit with a predetermined number of bits, and a downstream-side signal adjusting unit that amplifies an output signal of the delta-sigma modulator and shifts the output signal of the delta-sigma modulator for an offset amount based on the output signal of the level detector.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: October 13, 2015
    Assignee: NEC CORPORATION
    Inventor: Shinichi Hori
  • Patent number: 9148089
    Abstract: A transmitting apparatus and transmission method are capable of easily and correctly mixing an in-phase component and a quadrature-phase component in a quadrature modulator. A local signal with a duty ratio of 25% or smaller is generated without using frequency which is a multiple of frequency of the local signal. Without providing switches in series to the outputs of I and Q amplifiers, a duty ratio of 25% or less is obtained. for the local signal, and class-D unit amplifiers are operated such that one of the I amplifier and the Q amplifier is connected to the output side in any state regardless of whether an output power control signal is at an on-level or an off-level. In producing the 25% duty ratio, a local signal with a 50% duty ratio is converted so as to have a duty ratio of 25% by I and Q duty converters.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: September 29, 2015
    Assignee: Panasonic Corporation
    Inventors: Masakatsu Maeda, Masahiro Kumagawa, Hisashi Adachi, Akinori Daimo, Kenichi Mori
  • Patent number: 9119144
    Abstract: Various aspects of an approach for generating a large number of balanced weight sequences such as balanced Hamming weight preamble sequences are described herein. The approach provides for the generation of balanced weigh sequences that need to satisfy requirements such as minimal cross-correlation with delayed versions of itself and other sequences in the allowed set. The approach includes creating a set of symbol groups that include balanced properties from which a sequence may be generated by selecting therefrom.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: August 25, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Gene Wesley Marsh, Arumugam Chendamarai Kannan
  • Patent number: 9088472
    Abstract: A system for reducing in-phase and quadrature-phase (I/Q) impairments includes first, second, third, and fourth programmable registers for storing respective first, second, third, and fourth values, first and second finite impulse response (FIR) filters having respective first and second sets of filter taps, and first and second adders. The first FIR filter receives an I input signal and generates first and second intermediate output signals based on the first and second values for I and Q channels, respectively. The second FIR filter receives a Q input signal and generates third and fourth intermediate output signals based on the third and fourth values for the I and Q channels, respectively. The first and second adders receive the first and second, and the third and fourth intermediate output signals, respectively, and generate compensated I and Q output signals for the I and Q channels.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: July 21, 2015
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Nikhil Jain, Arvind Kaushik, Peter Z. Rashev, Amrit P. Singh
  • Patent number: 9042486
    Abstract: In an angle modulated radio transmitter, the total power is the same when modulated or unmodulated. Angle modulation produces multiple sideband pairs. The power in the sidebands is derived from the carrier. When a complex modulating waveform is used, the power (and therefore the amplitude) of the carrier varies. A system and method is provided for dramatically minimizing, to nearly zero, the bandwidth needed to transmit digital information using sideband suppression of angle modulated signals. The systems described use various techniques to suppress sideband pairs, leaving the carrier signal. The amplitude variations of the carrier are used to convey information. In some examples, techniques are used to filter and/or phase out one or more sideband pairs, leaving the carrier signal.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: May 26, 2015
    Assignee: ZBW LLC
    Inventor: Sam Cowan
  • Patent number: 9031164
    Abstract: Embodiments of a circuit are described. In this circuit, a modulation circuit provides a first modulated electrical signal and a second modulated electrical signal, where a given modulated electrical signal, which can be either the first modulated electrical signal or the second modulated electrical signal, includes minimum-shift keying (MSK) modulated data. Moreover, a first phase-adjustment element, which is coupled to the modulation circuit, sets a relative phase between the first modulated electrical signal and the second modulated electrical signal based on a phase value of the first phase-adjustment element. Additionally, an output interface, which is coupled to the first phase-adjustment element, is coupled to one or more antenna elements which output signals. These signals include a quadrature phase-shift-keying (QPSK) signal corresponding to the first modulated electrical signal and the second modulated electrical signal.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: May 12, 2015
    Assignee: Silicon Image, Inc.
    Inventors: Aliazam Abbasfar, Farshid Aryanfar
  • Publication number: 20150124906
    Abstract: A method for improving communication sensitivity by a wireless communication device is described. The method includes obtaining a string of bits. The method also includes mapping each bit in the string of bits to a pre-allocated bit pattern to create a series of concatenated pre-allocated bit patterns. The method further includes generating a modulated signal based on the series. The method additionally includes transmitting the modulated signal.
    Type: Application
    Filed: May 30, 2014
    Publication date: May 7, 2015
    Applicant: QUALCOMM Incorporated
    Inventors: RaviKiran Gopalan, Le Nguyen Luong
  • Patent number: 9025679
    Abstract: An adaptive coding and modulation (ACM) apparatus and method for a forward link in satellite communication is provided. The ACM apparatus may include a receiving unit to receive a signal-to-noise ratio (SNR) of a received signal, a determination unit to determine whether the SNR of the received signal is less than or equal to a threshold value, and a processing unit to execute a channel prediction algorithm when the SNR of the received signal is determined to be less than or equal to the threshold value.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: May 5, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Joon Gyu Ryu, Do Huy Wang, Deock Gil Oh
  • Patent number: 9025699
    Abstract: For use in a transmitter in a wireless network, a transmitter apparatus is configured for digital multi-level outphasing. The apparatus includes a bandwidth reduction (BWR) modulator block configured to receive a phase modulated carrier and reduce a bandwidth of the phase modulated carrier using amplitude modulation. The apparatus also includes an outphasing modulator block configured to receive the reduced-bandwidth phase modulated carrier and an amplitude modulated signal, and convert the reduced-bandwidth phase modulated carrier into a plurality of phase modulated signals. The apparatus further includes an amplification stage comprising a plurality of power transistors configured to amplify the phase modulated signals.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: May 5, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Ernesto G. Jeckeln
  • Patent number: 9025700
    Abstract: A digital polar modulator (DPM) for transforming a baseband signal into a modulated digital modulator output signal comprises an input unit and two low-pass delta-sigma modulators, a first one being connected downstream from the first input part and configured to provide at its output a first pulse train in dependence on an amplitude- modulating baseband signal component, and a second one being connected downstream from the second input part and configured to provide at its output a multilevel quantized signal in dependence on a phase modulating baseband signal component; a multiphase generator, which is configured to provide a set of square-wave carrier signals having a common carrier frequency and exhibiting discrete phase shifts with respect to each other; a multiplexer, which is configured to provide a multiplexer output signal that is formed by switching, in dependence on a signal received at a select input as a function of time, between selected ones of the carrier signals; and a combiner unit.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: May 5, 2015
    Assignees: Electronics and Telecommunications Research Institute, IHP GmbH—Innovations for High Performance Microelectronics/Leibniz-Institut für innovative Mikroelektronik
    Inventors: Pylyp Ostrovskyy, Johann Christoph Scheytt, Jae Ho Jung, Bong Hyuk Park, Sung Jun Lee
  • Publication number: 20150117569
    Abstract: Phase rotation for preambles within multiple user, multiple access, and/or MIMO wireless communications. An appropriately designed phase rotation vector and/or appropriately designed cyclic shift delays (CSDs) are applied to respective sub-band components of the preamble. With appropriately designed CSDs, certain fields within the preamble are not modified. For example, a legacy short training field (L-STF) of the preamble is not changed when using appropriately designed CSDs. The respective CSDs may be implemented as integer multiples of a common CSD (e.g., 0×CSD, 1×CSD, 2×CSD, etc. such that one of the values of such a CSD vector may be zero [0], another may be the common CSD itself, etc.). Also, by employing an appropriately designed phase rotation vector and integer multiples of a CSD to a preamble, the respective peak to average power ratio (PAPR) between different respective fields within the preamble may be minimized.
    Type: Application
    Filed: December 30, 2014
    Publication date: April 30, 2015
    Applicant: BROADCOM CORPORATION
    Inventors: Jun Zheng, Min Chuin Hoo, Vinko Erceg
  • Patent number: 9020072
    Abstract: The present invention provides a method for modulating a navigation signal, comprising: multiplying a data channel difference signal between upper and lower sidebands by a sine binary subcarrier to obtain an odd timeslot baseband signal of a branch Q, and multiplying a data channel sum signal of the upper and lower sidebands by a cosine binary subcarrier to obtain an odd timeslot baseband signal of a branch I of the data channel; multiplying a pilot channel difference signal between the upper and lower sidebands by the sine binary subcarrier to obtain an even timeslot baseband signal of the branch Q, and multiplying a pilot channel sum signal of the upper and lower sidebands by the cosine binary subcarrier to obtain an even timeslot baseband signal of the branch I; and performing QPSK modulation on the baseband signals of the branch I and branch Q to obtain a TD-AltBOC modulation signal.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: April 28, 2015
    Assignee: Huazhong University of Science and Technology
    Inventors: Zuping Tang, Jiaolong Wei, Tao Yan
  • Patent number: 9014289
    Abstract: Disclosed is a method of transmitting dual digital signals through a single antenna. The method includes receiving, by a transmitter, a first data stream and a second data stream which use the same carrier frequency, modulating, by the transmitter, each of the first data stream and the second data stream, lowering, by the transmitter, a power level of the modulated second data stream, combining, by the transmitter, the modulated first data stream and the second data stream with the lowered power level, and transmitting, by the transmitter, the added first data stream and second data stream to a single antenna in the same channel.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: April 21, 2015
    Assignee: GCT Semiconductor, Inc.
    Inventors: Eal Wan Lee, Dae Hong Kim, Jeong Min Kim
  • Patent number: 9000858
    Abstract: An ultra-wide band frequency modulator is disclosed. The frequency modulator includes a direct modulation phase lock loop that receives a small component. The frequency modulator also includes a delay module that produces a plurality of delay lines. The frequency modulator further includes an edge selector that receives a large component and the plurality of delay lines.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: April 7, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Bo Sun, Alexander Dorosenco
  • Patent number: 8995844
    Abstract: An optical homodyne communication system and method in which a side carrier is transmitted along with data bands in an optical data signal, and upon reception, the side carrier is boosted, shifted to the center of the data bands, and its polarization state is matched to the polarization state of the respective data bands to compensate for polarization mode dispersion during transmission. By shifting a boosted side carrier to the center of the data bands, and by simultaneously compensating for the effects of polarization mode dispersion, the provided system and method simulate the advantages of homodyne reception using a local oscillator. The deleterious effects of chromatic dispersion on the data signals within the data bands are also compensated for by applying a corrective function to the data signals which precisely counteracts the effects of chromatic dispersion.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: March 31, 2015
    Assignee: Teradvance Communications LLC
    Inventors: Marcel F. C. Schemmann, Zoran Maricevic, Antonije R. Djordjevic, Darby Racey
  • Patent number: 8989310
    Abstract: A method, device and system for complex carrier modulation are provided in the disclosure, wherein e?i?t or ei?t is used as a carrier frequency to perform carrier modulation on a to-be-carried signal. The modulated signal transmitted in a medium is a rotating complex signal. The method can enable right and left frequency bands to carry independent information. Therefore the spectrum utility ratio is improved. Employing the method for complex carrier modulation provided in the disclosure can use the right and left frequency spectrum resources adequately, and the loss of signal energy is small, therefore the capacity of a channel is improved greatly.
    Type: Grant
    Filed: May 30, 2011
    Date of Patent: March 24, 2015
    Assignee: ZTE Corporation
    Inventors: Fanping Du, Junyi Yang
  • Patent number: 8976901
    Abstract: A phase shift keying transmitter circuit that includes: a variable frequency conversion stage adapted to receive a first data signal, wherein the variable frequency conversion stage comprises a plurality of frequency modulating elements, wherein the first data signal controls the number of the plurality of frequency modulating elements that are operated so as to control an operating frequency of the variable frequency conversion stage; and an output stage configured to switch between one of two possible outputs, the signals provided by one of the two possible outputs having an opposite polarity to the other, wherein the output stage is configured to receive a second data signal to control the switching between the two possible outputs, wherein the output stage is coupled to the variable frequency conversion stage and wherein the switching between the two possible outputs changes the phase of a signal from the variable frequency conversion stage by 180°.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: March 10, 2015
    Assignee: Agency for Science, Technology and Research
    Inventors: Shengxi Diao, Yuan Gao, Yuanjin Zheng
  • Patent number: 8971399
    Abstract: An apparatus for transmitting a high efficiency variable power includes a pulse generating unit configured to generate a pulse signal comprising a pulse having a duration corresponding to an amount of power transmitted; a pulse stream generating unit configured to convert the pulse signal to a pulse stream having pulse shape corresponding to the duration of the pulse and data to be transmitted; and a high frequency modulating unit configured to output a variable power by modulating a high frequency signal having a constant amplitude on a time axis by repeatedly outputting and not outputting the high frequency signal based on the pulse stream.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: March 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang Wook Kwon, Jin Sung Choi, Ki Young Kim, Nam Yun Kim, Dong Zo Kim, Yun Kwon Park, Eun Seok Park, Young Ho Ryu, Chang Wook Yoon, Young Tack Hong
  • Patent number: 8971823
    Abstract: Techniques to enhance the performance in a wireless communication system using segments called subbands and using precoding are shown. According to one aspect, the bandwidth for transmission to an access terminal is constrained to a preferred bandwidth which is less than the bandwidth available for transmission to an access terminal and precoding information related to the subcarriers within the constrained bandwidth is provided to a transmitter. The precoding information related to the subcarriers within a constrained bandwidth provides feedback about the forward link channel properties relative to different subbands and may be fed back on a channel associated with the bandwidth.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: March 3, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Dhananjay Ashok Gore, Hemanth Sampath, Jibing Wang, Tamer Kadous, Gwendolyn D. Barriac
  • Patent number: 8964896
    Abstract: An approach is provided for an improved coding approach for efficient header signaling in broadband communications networks, to provide support of expanded modulation and coding scheme sets that facilitate an expansion of the operational ranges of user terminals within such networks and finer granularity within such operational ranges. A mode indicator field of a frame header identifies a modulation/coding mode applied to a data payload of the data frame. The modulation/coding mode is one of either a first or second set of modulation/coding modes. The mode indicator field is encoded and modulated. When the modulation/coding mode is one of the first set, the modulation of the encoded mode indicator field is applied in a first mode, and when the modulation/coding mode is one of the second set, the modulation of the encoded mode indicator field is applied in a second mode.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: February 24, 2015
    Assignee: Hughes Network Systems, LLC
    Inventors: Lin-Nan Lee, Mustafa Eroz, Neal Becker
  • Patent number: 8958498
    Abstract: Provided is a method of generating a driving signal for driving a dual mode supply modulator for a power amplifier. The method includes obtaining an envelope of a complex baseband signal to be transmitted, comparing the envelope of the complex signal with a preset threshold value, when a current envelope of the complex signal is the preset threshold value or greater or when there is a result having the preset threshold value or greater in previous N comparisons, outputting a digital board output signal configured with a first logic level through a digital-to-analog converter; and when the current envelope of the complex signal is smaller than the preset threshold value and when there is no result having the preset threshold value or greater in the previous N comparisons, outputting a digital board output signal configured with a second logic level through the digital-to-analog converter.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: February 17, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sung Jun Lee, Jae Ho Jung, Kwangchun Lee
  • Patent number: 8952763
    Abstract: A frequency modulator includes a digitally-controlled oscillator (DCO) arranged for producing a frequency deviation in response to a modulation tuning word and a phase-locked loop (PLL) tuning word. In addition, another frequency modulator includes a DCO and a DCO interface circuit. The DCO is arranged for producing a frequency deviation in response to an integer tuning word and a fractional tuning word. The DCO interface circuit is arranged for generating the integer tuning word and the fractional tuning word to the DCO, wherein the fractional tuning word is obtained through asynchronous sampling of a fixed-point tuning word.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: February 10, 2015
    Assignee: Mediatek Inc.
    Inventors: Robert Bogdan Staszewski, Chi-Hsueh Wang
  • Patent number: 8953663
    Abstract: Apparatuses, systems, and methods for calibration of quadrature imbalance in direct conversion transceivers are contemplated. A transceiver controller may perform a self-calibration to address quadrature imbalance. The controller may isolate the transmitter and receiver from any antennas, couple the radio frequency (RF) section of the transmitter to the RF section of the receiver via a loopback path, and inject a calibration signal into the transmitter. In the loopback path, the controller may phase-shift the signal that propagates through the transmitter using two different phase angles to produce two different signals that propagate into the receiver. By measuring the two different signals that exit the receiver, the controller may be able to calculate correction coefficients, or parameters, which may be used to adjust elements that address or correct the quadrature imbalance for both the transmitter and receiver.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: February 10, 2015
    Assignee: Intel Corporation
    Inventor: Lior Kravitz
  • Patent number: 8948292
    Abstract: In determining an angle for a phase modulation scheme, a key is generated from a prescribed set of bits contained in a symbol. The symbols have an in-phase (I) data word and a quadrature phase (Q) data word that identify coordinates of the symbols in a complex number plane. An angle is retrieved from a memory table from a storage location identified by the key. Each angle in the memory table is established in accordance with constraints under which the memory table was populated so as to be mapped to a phase angle identifying other coordinates in the complex number plane that are within a specified neighborhood about the coordinates of each of the symbols. A signal is generated to convey the symbols as phase differentials at each sample time between a reference phase and the phase angle.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 3, 2015
    Assignee: Exelis Inc.
    Inventor: William J. Taft
  • Patent number: 8948308
    Abstract: An apparatus and a method of transmitting hierarchically modulated signals are provided. The present invention includes: a basic layer symbol generator generating a first layer signal; an enhancement layer symbol generator generating a second layer signal synchronized with the first layer signal and having different signal power; and a hierarchical modulator hierarchically modulating the first layer signal and the second layer signal, wherein the enhancement layer symbol generator performs constellation rotation rotating bundles configured as constellation points formed by the second layer signal based on constellation points of the first layer signal by a predetermined angle. According to the exemplary embodiment of the present invention, it is possible to improve the receiving performance of the second layer signals by applying the constellation rotation technology to the second layer signals in regards of the signal transmission system using the hierarchical modulation technology.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: February 3, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyoung Soo Lim, Tae Jin Jung
  • Patent number: 8942308
    Abstract: A multi-level coding and iterative decoding scheme using sparse space codes as the inner-code and codes amenable to belief propagation decoding methods (such as low-density parity-check (LDPC) codes, turbo codes, and trellis codes) as the outer-code is proposed for MIMO communication channels.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: January 27, 2015
    Assignee: BlackBerry Limited
    Inventors: Sagar Dhakal, Thomas Aloysius Sexton, Alireza Bayesteh, Steve Hranilovic
  • Patent number: 8942315
    Abstract: Systems, methods, and devices are disclosed for implementing frequency calibration circuits. The devices may include a data source configured to generate a first data signal based on a first data value and a second data signal based on a second data value. The devices may include a gain control circuit configured to receive the first and second data signals from the data source, and generate a first modified data signal and a second modified data signal. The devices may include an oscillator circuit configured to generate a first output signal and a second output signal based, at least in part, on the first and second modified data signals. The devices may include a calibration circuit configured to determine an adjustment value based on the first and second output signals, and further configured to change a gain of the gain control circuit based on the determined adjustment value.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: January 27, 2015
    Assignee: Cypress Semiconductor Corporation
    Inventors: Marshall Wang, Miaoxing Xie
  • Patent number: 8929484
    Abstract: A communications transmitter includes a baseband processor configured to generate amplitude, angle, in-phase and quadrature baseband signals and a combination modulator that is configurable to modulate in the polar domain and, alternatively, in the quadrature domain. The combination modulator includes a quadrature modulator and a separate and distinct angle modulator that is configured to serve as a local oscillator for the quadrature modulator. In one embodiment of the invention the combination modulator is configured to modulate in the quadrature domain when the transmitter is operating according to a first communications condition (e.g., first transmit power level or first modulation scheme) and is configured to modulate in the polar domain when the transmitter is operating according to a second communications condition (e.g., second transmit power level or second modulation scheme).
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: January 6, 2015
    Inventor: Earl W. McCune, Jr.
  • Patent number: 8929480
    Abstract: There is provided a transmitter with a small area and low noise. A direct RF modulation transmitter is constituted by an N-number of input signal delay-attached direct RF converters to which an I digital baseband signal is input, an M-number of input signal delay circuit-attached direct RF converters (DDRCs) to which a Q digital baseband signal is input, a Divide-by-2 divider for generating a differential local signal differing in phase by 90 degrees, an output matching circuit, and a delay control circuit for controlling an input data delay amount for the DDRCs. This transmitter sets delay amounts for the DDRCs using the delay control circuit independently. Particularly when N is set to equal M and the same amount of delay is set for N-number of converters corresponding to the I digital baseband signal and the Q digital baseband signal, noise reduction effect in a predetermined frequency band is heightened.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: January 6, 2015
    Assignee: Asahi Kasei Microdevices Corporation
    Inventor: Shuichi Fukuda
  • Patent number: 8923454
    Abstract: A method, an apparatus and a system for eliminating aliasing noise in a multi-carrier modulation system are disclosed. The method includes: acquiring a first power spectrum density template; acquiring information of in-band subcarriers whose aliasing noise is greater than background noise, and acquiring a difference between the aliasing noise and the background noise of the in-band subcarriers; adjusting the first power spectrum density template according to the information of the in-band subcarriers and the corresponding difference to obtain a second power spectrum density template; and sending signals according to the second power spectrum density template. The method, the apparatus, and the system disclosed herein eliminate the aliasing crosstalk noise, improve the performance and stability of in-band services without involving upgrade or modification of the Customer Premises Equipment (CPE), and are easy to implement.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: December 30, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Huijian Bo, Tao Wu, Yongjun Zhang
  • Patent number: 8923437
    Abstract: Embodiments of a non-contiguous spectral-band modulator and method for non-contiguous spectral-band modulation are generally described herein. In some embodiments, an input symbol tuple may be mapped to a sequence of phase values. Each value of the sequence of phase values may represent an instantaneous frequency of a waveform for a signal with a power spectral density that is substantially constrained to the two or more subbands of a non-contiguous spectrum. The values of the sequence of phase values may be accumulated and a phase-sample sequence representing phase samples of a transmit waveform may be generated. An exponentiation may be performed on the phase-sample sequence to generate a constant modulus signal sequence. An output signal sequence is generated that is constrained to a region in the complex plane, such as an annulus, when the signal is in a subband. The output signal sequence may be shaped to constrain spectral energy during transitions between subbands.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: December 30, 2014
    Assignee: Raytheon BBN Technologies Corp.
    Inventor: Michael Joseph Geile
  • Patent number: 8923436
    Abstract: An RF signal generator divides an input radio signal into an amplitude signal and a phase signal and outputs the amplitude signal and the phase signal. A switching amplifier amplifies the radio signal with the amplitude signal and the phase signal. The switching amplifier includes at least one variable current source that is controlled by the amplitude signal and supplies a current to the switching amplifier. The switching amplifier includes at least one switching elements that connects the variable current source to one of a terminal connected a ground potential and an output terminal of the switching amplifier according to the phase signal.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: December 30, 2014
    Assignee: Nec Corporation
    Inventor: Shinichi Hori
  • Publication number: 20140369444
    Abstract: A transmitter is configured to transmit a radio frequency (RF) signal to a receiver. The receiver is configured to receive the RF signal and decode data. Furthermore, a method of wireless communication is provided between the transmitter and the receiver, in which the transmitter transmits to the receiver the RF signal. A carrier phase of the RF signal is randomly converted. The receiver detects an envelope of the RF signal, and extracts data from the RF signal.
    Type: Application
    Filed: March 11, 2014
    Publication date: December 18, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Chang Soon PARK, Young Jun HONG, Joon Seong KANG
  • Publication number: 20140369442
    Abstract: The present invention provides a receiver, a transmitter, a transmitter feedback device, and corresponding methods. The feedback device includes: a multi-channel frequency selection band-pass circuit, configured to receive a multi-frequency band feedback signal, and output a feedback signal of each frequency band in a time-division manner; a feedback local oscillator, configured to provide feedback local oscillation corresponding to each frequency band in a time-division manner; a mixer, configured to mix the feedback signal of each frequency band from the multi-channel frequency selection band-pass circuit and the feedback local oscillation corresponding to each frequency band from the feedback local oscillator, and output an intermediate frequency signal of each frequency band in a time-division manner. A solution in which only one set of signal processing channels is used to process the signals of multiple frequency bands in the uplink, the downlink or both the uplink and downlink is provided.
    Type: Application
    Filed: September 2, 2014
    Publication date: December 18, 2014
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventor: Baoping HUANG
  • Patent number: 8913693
    Abstract: A method of balancing a quadrature modulator includes exciting an in-phase input of the quadrature module and sweeping a phase of an injection signal through a range of degrees, and determining a plurality of in-phase DC components. The method further includes exciting a quadrature input of the quadrature module and sweeping a phase of the injection signal through the range of degrees, and determining a plurality of quadrature DC components. An in-phase sinusoidal equivalent of the plurality of in-phase DC components and a quadrature sinusoidal equivalent of the plurality of quadrature DC components may be determined. At least one correction factor that balances the quadrature modulator may be determined based on a comparison between the in-phase sinusoidal equivalent and the quadrature sinusoidal equivalent.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: December 16, 2014
    Assignees: Raytheon Company, Purdue Research Foundation
    Inventors: Robert J. Smith, Abdullah Eroglu
  • Patent number: 8913694
    Abstract: A direct conversion transmitter has a mixer stage to up-convert an input signal to the frequency of a local oscillator (LO). A DC offset circuit is coupled to an input signal port to apply a set of DC offset signal values. A processor determines a set of optimal DC offset signal values by no more than three differential spectral measurements made at the transmitter output port with a test signal applied at the input port. Optimal DC offset signal values are those that, when applied to the input signal at the input port of the transmitter, minimize an LO leakage component of the transmit signal at the output signal port of the transmitter. The optimal DC offset values are stored in memory and retrieved and applied to information bearing signals provided as the input signal once those optimal DC offset values have been determined.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: December 16, 2014
    Assignee: MStar Semiconductor, Inc.
    Inventors: Wael Al-Qaq, Dennis Mahoney
  • Patent number: 8908804
    Abstract: A phase interpolator is provided. The phase interpolator includes a plurality of capacitors, a first input for a clock signal, a second input for a phase shift clock signal and an output. The phase interpolator is configured to provide an interpolated, modulated phase information signal by switching, dependent on a modulation information, a first number of the capacitors between the first input and the output and a second number of the capacitors between the second input and the output.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: December 9, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventor: Franz Kuttner
  • Patent number: 8908803
    Abstract: The present application relates to a near field communications (NFC) transmitter (10) that is configured to modulate a carrier signal with a data signal using a quadrature modulator (12). A delay is introduced into the data signal, and this delayed version of the data signal is input to the input ports of the quadrature modulator (12). The resulting I and Q signals are combined to generate an output signal that is modulated in both amplitude and phase. An NFC receiver receiving the signal transmitted by the transmitter (10) is able to recover the data signal even when the amplitude of the received signal is greatly compressed, as the phase modulation of the transmitted signal is unaffected by the compression associated with power harvesting.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: December 9, 2014
    Assignee: Cambridge Silicon Radio Limited
    Inventor: Anthony McFarthing