Source Patents (Class 378/119)
  • Patent number: 11350512
    Abstract: A method for controlling an X-ray source configured to emit, from an X-ray spot on a target, X-ray radiation generated by an interaction between an electron beam and the target, wherein the X-ray spot is determined by the field of view of an X-ray optical system of the X-ray source. The method includes providing the target, providing the electron beam forming an electron spot on the target and interacting with the target to generate X-ray radiation, and adjusting a width and total power of the electron beam such that a maximum of the power density profile in the electron spot is below a predetermined limit, and such that a total power delivered to the target in the X-ray spot is increased.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: May 31, 2022
    Assignee: EXCILLUM AB
    Inventors: Per Takman, Ulf Lundström
  • Patent number: 11343899
    Abstract: The present disclosure is directed to a device having a nozzle for dispensing a liquid target material; one or more intermediary chamber(s), each intermediary chamber positioned to receive target material and formed with an exit aperture to output target material for downstream irradiation in a laser produced plasma (LPP) chamber. In some disclosed embodiments, control systems are included for controlling one or more of gas temperature, gas pressure and gas composition in one, some or all of a device's intermediary chamber(s). In one embodiment, an intermediary chamber having an adjustable length is disclosed.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: May 24, 2022
    Assignee: KLA Corporation
    Inventors: Brian Ahr, Alexander Bykanov, Rudy F. Garcia, Layton Hale, Oleg Khodykin
  • Patent number: 11335530
    Abstract: An electron emission structure according to embodiments of the inventive concept includes a cathode electrode and electron emission yarns each having a yarn shape and disposed in the cathode electrode. Here, the cathode electrode includes a plurality of first conductive panels spaced apart from each other in a first direction and at least one second conductive panel that crosses the first conductive panels in the first direction. Also, each of the first conductive panels includes at least one groove at an upper portion thereof. The second conductive panel is inserted to the groove of each of the first conductive panels. Each of the electron emission yarns is disposed between the first conductive panels. Each of the electron emission yarns contacts the second conductive panel. Each of the electron emission yarns is mechanically fixed and vertically aligned as well as arranged regularly by the second conductive panel and one pair of adjacent first conductive panels of the first conductive panels.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: May 17, 2022
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Sora Park
  • Patent number: 11330697
    Abstract: A laser-produced plasma X-ray system includes a liquid metal flow system enclosed within a low-pressure chamber, the flow system including a liquid metal, wherein in at least one location on the liquid metal forms a metal target beam, a circulation pump within the flow system for circulating the liquid metal, a laser pulse emitter configured to transmit a plurality of laser pulses into the chamber via a laser window, focusing optics, located between the emitter and the metal target beam, the focusing optics directing the laser pulses to strike the metal target beam at a target location to form X-ray pulses, and an X-ray window positioned within the chamber to allow the X-ray pulses to exit the chamber.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: May 10, 2022
    Assignees: Brown University, Research Instruments Corporation
    Inventor: Christoph Rose-Petruck
  • Patent number: 11324103
    Abstract: A modular laser-produced plasma X-ray system includes a liquid metal flow system enclosed within a low-pressure chamber, the flow system including a liquid metal, wherein in at least one location on the liquid metal forms a metal target directly illuminated by laser pulses, a circulation pump within the liquid metal flow system for circulating the liquid metal, a laser pulse emitter configured to transmit laser pulses into the chamber via a laser window, focusing optics, located between the emitter and the metal target, the focusing optics directing the laser pulses to strike the metal target at a target location to form X-ray pulses, and an X-ray window positioned within the chamber to enable the X-ray pulses to exit the chamber.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: May 3, 2022
    Assignees: Research Instruments Corporation, Brown University
    Inventors: Daniel John DeCiccio, Christoph Rose-Petruck
  • Patent number: 11293884
    Abstract: An x-ray source for a backscatter imager can include a first electron beam (e-beam) emitter for emitting a first e-beam and at least a second e-beam emitter for emitting at least a second e-beam. The first and second e-beam emitters can be powered by a at least one power supply, and can be configured to direct the first e-beam and the second e-beam toward an anode. An interaction of the anode with the first and second e-beams produces x-rays. The x-ray source is configured to output an amount of x-rays equivalent to a conventional x-ray source that includes a single e-beam emitter. However, because the x-ray source uses at least two e-beam emitters and a single anode, the power source required to power the e-beam emitters can operate at a lower wattage than a conventional power source powering the single e-beam emitter. The x-ray source is thus lighter in weight and outputs less radiation than conventional systems with a comparable x-ray output.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: April 5, 2022
    Assignee: THE BOEING COMPANY
    Inventor: Morteza Safai
  • Patent number: 11282805
    Abstract: A semiconductor device includes a silicon carbide layer, a metal carbide layer arranged over the silicon carbide layer, and a solder layer arranged over and in contact with the metal carbide layer.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: March 22, 2022
    Assignee: Infineon Technologies AG
    Inventors: Michael Roesner, Markus Menath, Gudrun Stranzl
  • Patent number: 11266377
    Abstract: A support apparatus comprises processing circuitry. The processing circuitry is configured to calculate, based on an irradiation plan with radiation on a target site of a subject, a recommendation degree of disposition of an ultrasonic probe configured to scan the target site at irradiation with the radiation, for each position in the subject. And the processing circuitry is configured to notify an operator of the recommendation degree in association with a position in the subject.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: March 8, 2022
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Satoru Ohishi, Takayuki Kuwahara
  • Patent number: 11266006
    Abstract: Embodiments of the disclosed system and method provide for generating a multiple-energy X-ray pulse. A beam of electrons is generated with an electron gun and modulated prior to injection into an accelerating structure to achieve at least a first and second specified beam current amplitude over the course of respective beam current temporal profiles. A radio frequency field is applied to the accelerating structure with a specified RF field amplitude and a specified RF temporal profile. The first and second specified beam current amplitudes are injected serially, each after a specified delay, in such a manner as to achieve at least two distinct energies of electrons accelerated within the accelerating structure during a course of a single RF-pulse. The beam of electrons is accelerated by the radio frequency field within the accelerating structure to produce accelerated electrons which impinge upon a target for generating Bremsstrahlung X-rays.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: March 1, 2022
    Assignee: American Science and Engineering, Inc.
    Inventor: Aleksandr Saverskiy
  • Patent number: 11213265
    Abstract: According to some aspects, a monochromatic x-ray source is provided. The monochromatic x-ray source comprises an electron source configured to generate electrons, a primary target arranged to receive electrons from the electron source to produce broadband x-ray radiation in response to electrons impinging on the primary target, and a secondary target comprising at least one layer of material capable of producing monochromatic x-ray radiation in response to incident broadband x-ray radiation emitted by the primary target.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: January 4, 2022
    Assignee: Imagine Scientific, Inc.
    Inventor: Eric H. Silver
  • Patent number: 11219115
    Abstract: An extreme ultra-violet (EUV) lithography system includes an EUV source and EUV scanner. A droplet generator provides a droplet stream in the EUV source. A gas shield is configured to surround the droplet stream. When a laser reacts a droplet in the stream EUV radiation and ionized particles are produced. The gas shield can reduce contamination resulting from the ionized particles by conveying the ionized particles to a droplet catcher. Components of the EUV source may be biased with a voltage to repel or attract ionized particles to reduce contamination from the ionized particles.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: January 4, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Fa Wu, Tzung-Chi Fu, Chun Che Lin, Po-Chung Cheng, Huai-Tei Yang
  • Patent number: 11201031
    Abstract: Some embodiments include a structure, comprising: an insulator forming at least a part of a wall of a vacuum chamber, the insulator having a first end and a second end wider than the first end; a first conductive structure disposed at the first end of the insulator; and a second conductive structure disposed at the second end of the insulator, contacting the insulator, and including at least a portion surrounded by the insulator; wherein: a portion of an outer surface of the insulator extends radially outward from a triple junction between the insulator, the second conductive structure, and a medium contacting the outer surface of the insulator.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: December 14, 2021
    Assignee: Varex Imaging Corporation
    Inventor: Wayne R. Hansen
  • Patent number: 11170965
    Abstract: A system for generating X-ray beams from a liquid target includes a vacuum chamber, a diamond window assembly, an electron source, a target material flow system, and an X-ray detector/imager. An electron beam from the electron source travels through the diamond window assembly and into a dynamic target material of the flow system. Preferably, the dynamic target material is lead bismuth eutectic in a liquid state. Upon colliding with the dynamic target material, X-rays are generated. The generated X-rays exit through an X-ray exit window to be captured by the X-ray detector/imager. Since the dynamic target material is constantly in fluid motion within a pipeline of the flow system, the electron beam always has a new target area which is at a controlled operational temperature and thus, prevents overheating issues. By providing a small focus area for the electron beams, the overall imaging resolution of the X-rays is also improved.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: November 9, 2021
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Jihad Al-Sadah, Jafar Albinmousa
  • Patent number: 11067907
    Abstract: A target supply device includes a vibrating element driven by a square wave electric signal and configured to generate a droplet of a target substance by vibrating the target substance to be output from a nozzle through a vibration propagating path; a temperature adjusting mechanism configured to adjust, to a specified temperature, a temperature of a vibration propagating path member including at least part of the vibration propagating path; a droplet detecting unit configured to output a signal containing information on a droplet detection interval indicating a time interval of droplets continuously generated; and a control unit configured to determine, based on the droplet detection interval, an operation specified temperature that is the specified temperature of the vibration propagating path member and an operation duty value that is a duty value of the electric signal used for driving the vibrating element when the droplet is irradiated with the laser beam.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: July 20, 2021
    Assignee: Gigaphoton Inc.
    Inventors: Masaki Nakano, Fumio Iwamoto
  • Patent number: 11051771
    Abstract: Intraoral three-dimensional (3D) tomosynthesis imaging systems, methods, and non-transitory computer readable media are used to generate one or more two-dimensional (2D) x-ray projection images and to reconstruct, using a computing platform, the one or more 2D x-ray projection images into one or more 3D images of an object, such as teeth of a patient, which can then be displayed on a monitor in order to enhance diagnostic accuracy of dental disease. The intraoral 3D tomosynthesis imaging system can include a wall-mountable control unit connected to one end of an articulating arm, the other end of which is connected to an x-ray source, which is configured to generate x-ray radiation that is acquired by an x-ray detector held at a desired position by an x-ray detector holder that is removably coupled to a collimator at an emission region of the x-ray source.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: July 6, 2021
    Inventors: Jianping Lu, Otto Z. Zhou, Andrew Tucker, Jing Shan, Brian Gonzales
  • Patent number: 11006908
    Abstract: The present disclosure relates to systems and methods for positioning an X-ray scanner. The systems may perform the methods to obtain an origin related to an X-ray scanner; determine a coordinate system based on the origin; determine coordinates of a second location of the X-ray scanner based on the origin and the coordinate system; obtain coordinates of a first location based on the origin and the coordinate system; and determine, based on the origin and the coordinates of the second location, positioning information of the X-ray scanner configured to cause the X-ray scanner to be positioned at the first location from the second location of the X-ray scanner.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: May 18, 2021
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventors: Qianqian Yu, Wenqiang Liu, Bing Tang, Shouyuan Jin
  • Patent number: 11004646
    Abstract: An X-ray tube includes: a vacuum housing configured to include an internal space which is vacuum; a target unit configured to be disposed in the internal space, and include a target that generates an X-ray by using an electron beam incident therein, and a target support unit that supports the target, the X-ray generated by the target being transmitted through the target support unit; and an X-ray emission window configured to be so provided as to face the target support unit, and seal an opening of the vacuum housing, the X-rays transmitted through the target support unit being transmitted through the X-ray emission window. At least a part of the X-ray emission window is in contact with the target support unit.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: May 11, 2021
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventor: Kazutaka Suzuki
  • Patent number: 11000245
    Abstract: Systems and methods for generating tunable x-ray emissions including a tunable x-ray source that includes a driver, such as a laser, configured to generate one or more driver pulses, such as one or more laser pulses, and a target source configured to emit a target material. The target source is arranged so that the emitted target material intersects a propagation axis of the driver pulse(s) and the target source may be configured so that the emitted target material has a tailored density profile along the propagation axis of the driver pulse(s), the tailored density profile along the propagation axis having a first density peak region followed by a lower density region followed by a second density peak region, e.g., in an “M” shape.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: May 11, 2021
    Assignee: NUtech Ventures
    Inventors: Matthias Fuchs, Ping Zhang
  • Patent number: 10955359
    Abstract: Embodiments of the present invention provide an improved method and system for assessing non-uniformity of features in the measurement area (within the beam spot) on a semiconductor structure, (e.g. wafer), such as a non-uniform film thickness. The scattering from non-uniform features is modeled. Post-processing the residual of theoretical and collected spectra is performed to assess a measure of non-uniformity from within an incident spot beam of a spectrum acquisition tool.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: March 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robin Hsin-Kuo Chao, Yunlin Zhang
  • Patent number: 10925567
    Abstract: A system and method for adaptive imaging include a shape sensing system (115, 117) coupled to an interventional device (102) to measure spatial characteristics of the interventional device in a subject. An image module (130) is configured to receive the spatial characteristics and generate one or more control signals in accordance with the spatial characteristics. An imaging device (110) is configured to image the subject in accordance with the control signals.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: February 23, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Raymond Chan, Jinnan Wang, Adrien Emmanuel Desjardins, Luis Felipe Gutierrez, Maya Ella Barley, Gert Wim 'T Hooft
  • Patent number: 10925556
    Abstract: The present invention relates to a modulation of X-ray radiation for the purposes of imaging an object of interest. For the modulation, the X-ray radiation provided by an X-ray source (12) is in part totally reflected by a mirror (20). Thus, an X-ray radiation at an object receiving space (16) is formed by an unreflected X-ray radiation (24) and a reflected X-ray radiation (26). The mirror (20) is displaceable by an actuator (28), such that the intensity of the reflected X-ray radiation (26) can be adjusted, in particular to a density of the object to be imaged.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: February 23, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Ewald Roessl, Stewart Young
  • Patent number: 10910191
    Abstract: An X-ray tube includes: a vacuum housing configured to include an internal space which is vacuum; a target unit configured to be disposed in the internal space, and include a target that generates an X-ray by using an electron beam incident therein, and a target support unit that supports the target, the X-ray generated by the target being transmitted through the target support unit; an X-ray emission window configured to be so provided as to face the target support unit, and seal an opening of the vacuum housing, the X-rays transmitted through the target support unit being transmitted through the X-ray emission window; an elastic member configured to press the target unit in such a direction as to approach the X-ray emission window; and a target shift unit configured to shift the target unit pressed by the elastic member in a direction crossing an incidence direction of the electron beam.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: February 2, 2021
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventor: Kazutaka Suzuki
  • Patent number: 10900777
    Abstract: A method for determining the geometry of a structure on an object at least by using a computer tomography sensor system comprising at least a radiation source, a mechanical axis of rotation, and a detector, preferably a planar detector, wherein surface measurement points are generated by the computer tomography sensor system, for example in the region of material transitions. In order to select the surface measurement points to be used for the determination of a geometry feature by using any target geometry, in particular without the availability of a CAD model being necessary, according to the invention, in order to determine the geometry features, surface measurement points are used which are associated with the geometry features to be determined on the basis of specifiable rules and the geometry features are determined from the associated surface measurement points.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: January 26, 2021
    Assignee: WERTH MESSTECHNIK GMBH
    Inventors: Ralf Christoph, Ingomar Schmidt
  • Patent number: 10880979
    Abstract: The present disclosure is directed to a device having a nozzle for dispensing a liquid target material; one or more intermediary chamber(s), each intermediary chamber positioned to receive target material and formed with an exit aperture to output target material for downstream irradiation in a laser produced plasma (LPP) chamber. In some disclosed embodiments, control systems are included for controlling one or more of gas temperature, gas pressure and gas composition in one, some or all of a device's intermediary chamber(s). In one embodiment, an intermediary chamber having an adjustable length is disclosed.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: December 29, 2020
    Assignee: KLA Corporation
    Inventors: Brian Ahr, Alexander Bykanov, Rudy F. Garcia, Layton Hale, Oleg Khodykin
  • Patent number: 10825640
    Abstract: An X-ray tube includes an electron gun, a target that generates X-rays, and a vacuum housing that accommodates the electron gun and the target. The vacuum housing has a metal portion having an X-ray emission window, and an insulation valve connected to the metal portion. The metal portion has a cylinder portion in which the X-ray emission window is provided and which surrounds a tube axis of the vacuum housing, and a tapered portion which is connected to an end portion of the cylinder portion, surrounds the tube axis, and protrudes such that a connection part between the metal portion and an insulation valve is covered. The tapered portion has a shape increased in diameter such that a separation distance between a distal end portion and the tube axis is longer than a separation distance between a base end portion and the tube axis.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: November 3, 2020
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Atsushi Ishii, Tutomu Inazuru
  • Patent number: 10791999
    Abstract: A support structure and an imaging component are provided in an imaging system. The imaging component comprises a port extension that frames an opening for x-ray emission. The support structure comprises a recess for receiving the port extension, the recess also framing an opening for x-ray transmission. The imaging system may be a computed tomography (CT) imaging system, x-ray diagnostic system, or other imaging system.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: October 6, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Brandon Smith, Edward Emaci
  • Patent number: 10728996
    Abstract: The circular X-ray tube for the irradiation of the object (1) by X-radiation comprising the circular body (2) and at least two friction elements that rub together whereby forming a triboluminescent source of X-radiation. The one friction element comprises at least one circumferential element (3) arranged on the external circumferential side of the circular body (2) of the X-ray tube and the other friction element comprises at least one pressure element (4) that is pressed against the circumferential element (3), where the pressure element (4) is adapted for dragging upon the circumferential element (3), and/or at least one circumferential element (3) is adapted for pulling through under the pressure element (4). The X-ray instrument utilizes the circular X-ray tube and the imaging detectors (7) of ionizing radiation.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: July 28, 2020
    Assignee: Radalytica s.r.o.
    Inventors: Richard Kaderabek, Josef Uher
  • Patent number: 10681794
    Abstract: In one embodiment, an x-ray tube 15 can be used closer to a sample. An angle A1 between an anode axis 02 and an electron-beam axis 01 can be ?10° and ?80° and an angle A2 between the anode axis 02 and an x-ray axis 03 can be ?10° and ?80°. In another embodiment, a cap 20 on an anode 12 can block x-rays emitted in undesired directions. The cap 20 can include an internal cavity 24, an electron-beam hole 21, an anode hole 22, and an x-ray hole 23. In another embodiment, an electrical connection between an x-ray tube 15 and a power supply 18 can be reliable and easy to manufacture. The anode 12 can include a hole 31 at an end of the anode 12 sized and shaped for insertion of an electrical connector 32.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: June 9, 2020
    Assignee: Moxtek, Inc.
    Inventors: Ricky B. Steck, Brad Harris
  • Patent number: 10672584
    Abstract: A X-ray generating device includes a chamber, a rotating body in the chamber, a starting material storage vessel for storing a target starting material in liquid form, and a starting material supply mechanism for applying the target starting material onto a surface of the rotating body. The X-ray generating device also includes an energy beam inlet window disposed at an opening of the chamber and configured to transmit an energy beam, which will be directed onto the target starting material on the surface of the rotating body and introduce the energy beam from the exterior of the chamber to the interior of the chamber, and an X-ray outlet window disposed at the opening of the chamber and configured to transmit the X-rays, which are generated upon irradiating the target starting material with the energy beam, and allow the X-rays to proceed to the exterior of the chamber.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: June 2, 2020
    Assignee: USHIO DENKI KABUSHIKI KAISHA
    Inventors: Yusuke Teramoto, Takahiro Shirai
  • Patent number: 10667376
    Abstract: A target supply device according to an aspect of the present disclosure includes a vibration element configured to generate a droplet by vibrating a target substance to be output from a nozzle 80, a droplet detection unit configured to detect the droplet, and a control unit 70. A first detection threshold and a second detection threshold to be compared with a detection signal from the droplet detection unit are set to the control unit 70. The first detection threshold is used to generate a light emission trigger for a laser beam. The second detection threshold has a smaller absolute value from a base line of the detection signal than the first detection threshold. The control unit 70 calculates an evaluation parameter for a satellite based on the detection signal and the second detection threshold, and determines a duty value of an electric signal suitable for operation of the vibration element based on the evaluation parameter.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: May 26, 2020
    Assignee: Gigaphoton Inc.
    Inventors: Yuta Takashima, Yoshifumi Ueno
  • Patent number: 10661102
    Abstract: A medical device includes: a base; a positioner coupled to the base; an accelerator coupled to the positioner, wherein the positioner is operable to rotate the accelerator relative to the base about at least two axes; and a power source coupled to the accelerator, the power source configured to provide microwave power for the accelerator, wherein a position of the power source relative to the base remains fixed during movement of the accelerator. A medical device includes: a base; a positioner coupled to the base; an accelerator coupled to the positioner; a power source configured to provide microwave power for the accelerator, wherein a position of the source relative to the base remains fixed during movement of the accelerator; and a waveguide for coupling the power source and the accelerator; wherein the waveguide has a first segment with a first cross section, the first cross section being a circular cross-section.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: May 26, 2020
    Assignee: Varian Medical Systems, Inc.
    Inventors: James E. Clayton, Mark E. Trail
  • Patent number: 10643816
    Abstract: The present invention provides an X-Ray emitting device that comprises a focusing electrode composed of a ceramic-based material, which can be manufactured by a simple process and is excellent in durability.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: May 5, 2020
    Assignee: aweXomeRay Co., Ltd.
    Inventors: Hong Soo Choi, Se Hoon Gihm, Keun Soo Jeong
  • Patent number: 10636610
    Abstract: An embodiment of an X-ray tube is described that comprises an outer cylinder; a window positioned on an end of the outer cylinder; an electron gun comprising an emission orifice, wherein the electron gun is coupled to a side of the outer cylinder at an angle that orients the emission orifice toward the window; and a rod centrally positioned within the outer cylinder, wherein the rod comprises a concave geometry at a distal end proximal to the electron gun and a target surface configured at an angle that orients the target surface towards the emission orifice, wherein the concave geometry is configured to position the target surface to have a focal spot size of an electron beam from the emission orifice in range of about 2-6 ?m.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: April 28, 2020
    Assignee: THERMO SCIENTIFIC PORTABLE ANALYTICAL INSTRUMENTS INC.
    Inventor: William Ferneau English, II
  • Patent number: 10631392
    Abstract: An extreme ultra-violet (EUV) lithography system includes an EUV source and EUV scanner. A droplet generator provides a droplet stream in the EUV source. A gas shield is configured to surround the droplet stream. When a laser reacts a droplet in the stream, EUV radiation and ionized particles are produced. The gas shield can reduce contamination resulting from the ionized particles by conveying the ionized particles to a droplet catcher. Components of the EUV source may be biased with a voltage to repel or attract ionized particles to reduce contamination from the ionized particles.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: April 21, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Fa Wu, Tzung-Chi Fu, Chun-Che Lin, Po-Chung Cheng, Huai-Tei Yang
  • Patent number: 10593068
    Abstract: Methods of investigating a specimen using tomographic imaging include directing a beam of radiation through a specimen and onto a detector, thereby generating an image of the specimen. The directing is repeated for different specimen orientations relative to the beam, thereby generating a corresponding set of images. An iterative mathematical reconstruction technique is used to convert the images into a tomogram. The reconstruction is mathematically constrained to curtail a solution space using three-dimensional SEM imagery of at least a part of the specimen that overlaps the tomogram by requiring iterative results of the reconstruction to be consistent with pixel values derived from the SEM imagery.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: March 17, 2020
    Assignee: FEI Company
    Inventors: Remco Schoenmakers, Pavel Poto{hacek over (c)}ek
  • Patent number: 10578655
    Abstract: A device for measuring low currents is proposed to include: a transimpedance amplifier to convert an analog current signal into an analog voltage signal; an analog-to-digital converter to acquire a graph that plots a curve representing variation of the analog voltage signal using digital codes; a statistic module to acquire a set of crossing numbers by: for each of the digital codes, making a straight line that has a constant value equaling the digital code across time in the graph, and counting a number of crossings of the curve with the straight line; and an analysis module to analyze distribution of the crossing numbers, and to output an output code based on the distribution of the crossing numbers.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: March 3, 2020
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN
    Inventors: Chi-Wen Hsieh, Yi-Chun Lin, Tseng-Te Huang, Ming-Chen Yuan, Chien-Hau Chu, Yu-Chin Chi
  • Patent number: 10524344
    Abstract: A laser-plasma-based acceleration system includes a focusing element and a laser pulse emission directing a laser beam to the focusing element to such that laser pulses transform into a focused beam and a chamber defining a nozzle having a throat and an exit orifice, emitting a critical density range gas jet from the exit orifice for laser wavelengths ranging from ultraviolet to the mid-infrared. the critical density range gas jet intersects the focused beam at an angle and in proximity to the exit orifice of the nozzle to define a point of intersection between the focused beam and the critical density range gas jet. In intersection with the critical density range gas jet, the pulsed focused beam drives a laser plasma wakefield relativistic electron beam. A corresponding method of laser-plasma-based acceleration is also described. The critical density range may include 2×1020 cm?3 to 5×1021 cm?3.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: December 31, 2019
    Assignee: University of Maryland, College Park
    Inventors: Howard M. Milchberg, Andrew Goers, George Hine, Fatholah Salehi, Linus Feder, Bo Miao
  • Patent number: 10522316
    Abstract: Disclosed is an X-ray source, including: a cathode; an anode positioned on the cathode so as to face the cathode; emitters formed on the cathode; a gate electrode positioned between the cathode and the anode and including openings at positions corresponding to those of the emitters; an insulating spacer formed between the gate and the anode; and a coating layer formed on an internal wall of the insulating spacer, and including a material having a lower secondary electron emission coefficient than that of the insulating spacer.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: December 31, 2019
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jin-Woo Jeong, Yoon-Ho Song
  • Patent number: 10433412
    Abstract: This disclosure provides systems, methods, and apparatus related to laser plasma accelerators. In one aspect a block of material defines a gas inlet, a chamber in fluid communication with the gas inlet, a throat in fluid communication with the chamber, a channel in fluid communication with the throat, and a gas outlet in fluid communication with the channel. The throat is configured to generate a supersonic flow of a gas when the gas flows through the throat. The channel includes a ramp that is positioned proximate the gas outlet, with the ramp being inclined at an angle with respect to a direction of a flow of the gas proximate a surface of the channel prior to the ramp at the gas outlet.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: October 1, 2019
    Assignee: The Regents of the University of California
    Inventors: Hann-Shin Mao, Wim Leemans, Stepan Bulanov
  • Patent number: 10420197
    Abstract: A radiation source apparatus comprising: a container for being pressurized with a gaseous medium in which plasma which emits plasma emitted radiation is generated following excitation of the gaseous medium by a driving radiation, wherein said container is operable substantially to remove radiation with a wavelength of 10-400 nm from said plasma emitted radiation before said plasma emitted radiation exits said container as output radiation. In an embodiment the container comprises: an inlet radiation transmitting element operable to transmit said driving radiation from outside said container to inside said container, and an outlet radiation transmitting element operable to transmit at least some of said plasma emitted radiation from inside said container to outside said container as output radiation; wherein at least one of said inlet and outlet radiation transmitting elements comprises a plane parallel plate.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: September 17, 2019
    Assignee: ASML Netherlands B.V.
    Inventor: Martijn Petrus Christianus Van Heumen
  • Patent number: 10365230
    Abstract: Metrology methods and modules are provided, which comprise measuring intensity spatial distributions and peaks of spots at the pupil plane of a metrology system that correspond to various diffraction orders scattered from target cells and calculating overlay(s) of the target cell(s) from the measured intensity spatial distributions and peaks. For example, intensity peak or distribution of zeroth diffraction orders from four cells, first diffraction orders from two cells as well as diffraction orders from a single cell may be used to derive an overlay estimation, which may also be compared to standard overlay measurements for different purposes. Intensity spatial distributions may also be used to derive weight function for adjusting measurements or the metrology system.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: July 30, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Eran Amit, Tzahi Grunzweig
  • Patent number: 10297359
    Abstract: An x-ray illumination beam system includes an electron emitter and a target having one or more target microstructures. The one or more microstructures may be the same or different material, and may be embedded or placed atop a substrate formed of a heat-conducting material. The x-ray source may emit x-rays towards an optic system, which can include one or more optics that are matched to one or more target microstructures. The matching can be achieved by selecting optics with the geometric shape, size, and surface coating that collects as many x-rays as possible from the source and at an angle that satisfies the critical reflection angle of the x-ray energies of interest from the target. The x-ray illumination beam system allows for an x-ray source that generates x-rays having different spectra and can be used in a variety of applications.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: May 21, 2019
    Assignee: Sigray, Inc.
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz, David Charles Reynolds, Alan Francis Lyon
  • Patent number: 10289006
    Abstract: A beam delivery apparatus is used with a laser produced plasma source. The beam delivery apparatus comprises variable zoom optics (550) operable to condition a beam of radiation so as to output a conditioned beam having a configurable beam diameter (b) and a plurality of mirrors (530a, 530b) operable to direct the conditioned beam of radiation to a plasma generation site. The beam delivery apparatus enables control of the axial position of the beam where the beam has a particular diameter, with respect to the beam's focus position (570). Also, a method is used to control the axial position of the location at a plasma generation site where a beam has a particular diameter, with respect to the beam's focus position.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: May 14, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Jan Bernard Plechelmus Van Schoot, Markus Franciscus Antonius Eurlings, Hermanus Johannes Maria Kreuwel
  • Patent number: 10247865
    Abstract: A bandpass filter may include a set of layers. The set of layers may include a first subset of layers. The first subset of layers may include hydrogenated germanium (Ge:H) with a first refractive index. The set of layers may include a second subset of layers. The second subset of layers may include a material with a second refractive index. The second refractive index may be less than the first refractive index.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: April 2, 2019
    Assignee: VIAVI Solutions Inc.
    Inventors: James Switzer, III, Georg J. Ockenfuss
  • Patent number: 10242837
    Abstract: Provided is an anode for an X-ray generating tube, which reduces a drop in the quality of an emitted X-ray due to the history of X-ray emitting operation. A target layer is formed on the inside of the edge of a support substrate. An end portion of an extended portion of a joining member, which protrudes over a support surface of the support substrate, is covered with a conductive member higher in melting point than the joining member. The conductive member is electrically connected to the target layer, thereby electrically connecting the joining member to the target layer.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: March 26, 2019
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Shuji Yamada, Nobuhiro Ito, Takao Ogura
  • Patent number: 10236090
    Abstract: An apparatus and method for the production of radioisotopes utilizing an energy recovery linac. The ERL system is composed of an electron beam source, multiple superconducting radio frequency cavities operating at 4.5 K, a thin radiator, a target material, and a beam dump. The accompanying method discloses the use of the ERL system to generate desired radioisotopes via target interaction with bremsstrahlung photons while allowing recovery of a substantial portion of the electron beam energy before the beam is extracted to the beam dump.
    Type: Grant
    Filed: July 4, 2013
    Date of Patent: March 19, 2019
    Assignee: JEFFERSON SCIENCE ASSOCIATES, LLC
    Inventors: Hari Areti, Andrew Kimber, Andrew Hutton, David Douglas, Rui Li, Geoff Krafft
  • Patent number: 10217596
    Abstract: The present disclosure relates to multi-layer X-ray sources having decreased hydrogen within the layer stack and/or tungsten carbide inter-layers between the primary layers of X-ray generating and thermally-conductive materials. The resulting multi-layer target structures allow increased X-ray production, which may facilitate faster scan times for inspection or examination procedures.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: February 26, 2019
    Assignee: General Electric Company
    Inventors: Yong Liang, Vance Scott Robinson
  • Patent number: 10074503
    Abstract: The invention relates to an electron gun for generating a flat electron beam, comprising a cathode with an emission surface which is curved about a central axis and which is designed to emit electrons. The electron gun further comprises an accelerating device for accelerating the electrons in a radial direction towards a target region on the central axis. Furthermore, the emission surface has a width in the azimuth direction and a height oriented perpendicularly to the width, said width being at least ten times greater than the height.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: September 11, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventor: Oliver Heid
  • Patent number: 10068742
    Abstract: The present invention relates to a radiation generating tube. The radiation generating tube includes an envelope including an insulating tubular member having at least two openings, a cathode connected to one of the openings of the insulating tubular member, and an anode connected to the other of the openings of the insulating tubular member. At least one of the cathode and the anode and the insulating tubular member are bonded at a bonded portion with an electrically conductive bonding member; and the bonded portion bonded with the electrically conductive bonding member is coated with a dielectric layer.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: September 4, 2018
    Assignee: Canon Kabushiki Kaisha
    Inventors: Koji Yamazaki, Yasue Sato, Kazuyuki Ueda
  • Patent number: 10051720
    Abstract: Disclosed below are representative embodiments of methods, apparatus, and systems for generating electrons. For example, certain embodiments comprise a charge gating diamond QED based electron source, which can be suspended within the RF cavity of an electron injection system in a superconducting radiofrequency (SRF) electron accelerator. Embodiments of the disclosed technology are capable of producing low temperature (cold) electron beams, where “temperature” refers to the transverse energy in the extracted electron beam (or beam emittance). Embodiments of the disclosed technology can also exhibit enhanced charge replenishment capabilities by virtue of the material selected to suspend the electron source within the RF cavity of the electron injection system.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: August 14, 2018
    Assignee: Los Alamos National Security, LLC
    Inventors: Roger Shurter, Jose Taccetti