Semiconductor Junction Microphone Patents (Class 381/175)
  • Patent number: 10412505
    Abstract: The present invention relates to a sound transducer assembly with a MEMS sound transducer for generating and/or detecting sound waves in the audible wavelength spectrum. The MEMS sound transducer includes a first cavity, and the sound transducer assembly includes an ASIC electrically connected to the MEMS sound transducer. The ASIC is embedded in a first substrate, and the first MEMS sound transducer is arranged on a second substrate. The first substrate and the second substrate are electrically connected to one another, and the first cavity is at least partially formed in one of the first substrate and the second substrate.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: September 10, 2019
    Assignee: USound GmbH
    Inventors: Andrea Rusconi Beltrami, Ferruccio Bottoni
  • Patent number: 10375488
    Abstract: Disclosed are various embodiments of systems, devices, components and methods for reducing feedback between a transducer and one or more microphones in a magnetic bone conduction hearing device. Such systems, devices, components and methods include acoustically sealing or welding first and second compartments of the hearing device from one another, where the first compart contains the one or more microphones, and the second compart contains the transducer.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: August 6, 2019
    Assignee: Sophono, Inc.
    Inventors: Peter Ruppersberg, Markus C. Haller, Todd C. Wyant, Nicholas F. Pergola
  • Patent number: 10158951
    Abstract: A silicon microphone with a suspended diaphragm and a system with the same are provided, the microphone comprises: a silicon substrate provided with a back hole therein; a compliant diaphragm disposed above the back hole of the silicon substrate and separated from the silicon substrate; a perforated backplate disposed above the diaphragm with an air gap sandwiched in between; and a precisely defined support mechanism, disposed between the diaphragm and the backplate with one end thereof fixed to the edge of the diaphragm and the other end thereof fixed to the backplate, wherein the diaphragm and the backplate are used to form electrode plates of a variable condenser. The microphone with a suspended diaphragm can improve the repeatability and reproducibility in performance and can reduce the diaphragm stress induced by the substrate.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: December 18, 2018
    Assignee: GOERTEK INC.
    Inventor: Zhe Wang
  • Patent number: 10152152
    Abstract: Provided are an element applicable to a high-precision, high-sensitivity pressure detecting sensor and switch, a manufacturing method for the element; and a sensor, an electronic circuit, and an input device that include the element. The electret element of the present invention has a semiconductor sandwiched between a pair of electrodes, and an electret film disposed at a location opposite to the semiconductor via a gap. The electret element of the present invention may be structured so that the semiconductor contacts with the electret film, or so as to have micro-sized gaps therebetween. The electret film is semi-permanently kept in a positively or negatively charged state. By having a structure in which the electret film can contact with or approach the semiconductor, an amount of electric currents flowing between the pair of electrodes can be controlled.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: December 11, 2018
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Takehito Kozasa, Manabu Yoshida
  • Patent number: 9902612
    Abstract: A method for forming a microelectromechanical device may provide forming a first layer at least one of in or over a semiconductor carrier; forming a second layer at least one of in or over at least a central region of the first layer, such that a peripheral region of the first layer is at least partially free of the second layer; removing material under at least a central region of the second layer to release at least one of the central region of the second layer or a central region of the first layer; and/or removing material under at least the peripheral region of the first layer to such that the second layer is supported by the semiconductor carrier via the first layer.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: February 27, 2018
    Assignee: Infineon Technologies AG
    Inventors: Alfons Dehe, Stefan Barzen, Ulrich Krumbein, Wolfgang Friza, Wolfgang Klein
  • Patent number: 9843868
    Abstract: Provided is an acoustic transducer including: a semiconductor substrate; a vibrating membrane provided above the semiconductor substrate, including a vibrating electrode; and a fixed membrane provided above the semiconductor substrate, including a fixed electrode, the acoustic transducer detecting a sound wave according to changes in capacitances between the vibrating electrode and the fixed electrode, converting the sound wave into electrical signals, and outputting the electrical signals. At least one of the vibrating electrode and the fixed electrode is divided into a plurality of divided electrodes, and the plurality of divided electrodes outputting the electrical signals.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: December 12, 2017
    Assignees: STMICROELECTRONICS S.R.L., Omron Corporation
    Inventors: Takashi Kasai, Shobu Sato, Yuki Uchida, Igino Padovani, Filippo David, Sebastiano Conti
  • Patent number: 9813831
    Abstract: A MEMS may include a backplate comprising first and second electrodes electrically isolated from one another and mechanically coupled to the backplate in a fixed relationship relative to the backplate, and a diaphragm configured to mechanically displace relative to the backplate as a function of sound pressure incident upon the diaphragm. The diaphragm may comprise third and fourth electrodes electrically isolated from one another and mechanically coupled to the diaphragm in a fixed relationship relative to the diaphragm such that the third and fourth electrodes mechanically displace relative to the backplate as the function of the sound pressure. The first and third electrodes may form a first capacitor, the second and fourth electrodes may form a second capacitor, and the first capacitor may be configured to sense a displacement of the diaphragm responsive to which the second capacitor may be configured to apply an electrostatic force to the diaphragm to return the diaphragm to an original position.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: November 7, 2017
    Assignee: Cirrus Logic, Inc.
    Inventor: Axel Thomsen
  • Patent number: 9712924
    Abstract: A microphone includes a substrate including a penetration hole; a vibration membrane disposed over the substrate and covering the penetration hole; a fixed electrode disposed over the vibration membrane and spaced apart from the vibration membrane; a fixed plate disposed over the fixed electrode; and a plurality of air inlets disposed in the fixed electrode and the fixed plate. The vibration membrane includes a plurality of slots positioned over the penetration hole, and an entire area of the plurality of slots is approximately 8% to approximately 19% of an entire area of the vibration membrane.
    Type: Grant
    Filed: July 5, 2015
    Date of Patent: July 18, 2017
    Assignee: Hyundai Motor Company
    Inventors: Ilseon Yoo, Hyunsoo Kim
  • Patent number: 9648434
    Abstract: A microphone porting structure, comprises a substrate (312) having a bearing surface and a porting through-hole (344) formed therethough for aligning with a microphone port of a bottom ported microphone (334). The bearing surface provides an area against which to seal and the through-hole provides for acoustic path alignment for the audio ports of paired bottom ported microphones mounted to a printed circuit board.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: May 9, 2017
    Assignee: MOTOROLA SOLUTIONS, INC.
    Inventors: Andrew P. Miehl, Patrick S. Claeys, Karl F. Mueller
  • Patent number: 9505614
    Abstract: A microphone system includes a diaphragm suspended by springs and including a sealing layer that seals passageways which, if left open, would degrade the microphone's frequency response by allowing air to pass from one side of the diaphragm to the other when the diaphragm is responding to an incident acoustic signal. In some embodiments, the sealing layer may include an equalization aperture to allow pressure to equalize on both sides of the diaphragm.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: November 29, 2016
    Assignee: INVENSENSE, INC.
    Inventors: Fang Liu, Kuang L. Yang
  • Patent number: 9499398
    Abstract: A structural concept for a vertically hybridly integrated assembly having at least one MEMS component is provided, whose MEMS structure is developed at least partially in the front side of the component and which is electrically contactable via at least one connection pad on the front side of the component. This structural concept is able to be realized in an uncomplicated and cost-effective manner and allows the largely stress-free mounting of the MEMS structure within the chip stack and also ensures a reliable electrical linkage of the MEMS component to further component parts of the assembly. For this purpose, the structural concept provides for mounting the MEMS assembly headfirst on a further component of the chip stack via an interposer and for electrically linking it to the further component via at least one plated contacting in the interposer.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: November 22, 2016
    Assignee: Robert Bosch GmbH
    Inventor: Florian Grabmaier
  • Patent number: 9374643
    Abstract: A microphone base includes a plurality of metal layers and a plurality of core layers. Each of the plurality of core layers is disposed between selected ones of the metal layers. A dielectric membrane is disposed between other selected ones of the plurality of metal layers. A port extends through the metal layers and the core layers but not through the dielectric membrane. The dielectric membrane has a compressed portion and an uncompressed portion. The uncompressed portion extends across the port and the compressed portion is in contact with the other selected ones of the metal layers. The compressed portion of the membrane is effective to operate as a passive electronic component and the uncompressed portion is effective to act as a barrier to prevent at least some external debris from traversing through the port.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: June 21, 2016
    Assignee: Knowles Electronics, LLC
    Inventors: John B. Szczech, Peter Van Kessel
  • Patent number: 9362853
    Abstract: A plate, a transducer, a method for making a transducer, and a method for operating a transducer are disclosed. An embodiment comprises a plate comprising a first material layer comprising a first stress, a second material layer arranged beneath the first material layer, the second material layer comprising a second stress, an opening arranged in the first material layer and the second material layer, and an extension extending into opening, wherein the extension comprises a portion of the first material layer and a portion of the second material layer, and wherein the extension is curved away from a top surface of the plate based on a difference in the first stress and the second stress.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: June 7, 2016
    Assignee: Infineon Technologies AG
    Inventor: Alfons Dehe
  • Patent number: 9329199
    Abstract: An acoustic sensor includes a back plate; at least one back plate electrode coupled to the back plate; a proof of mass with the proof of mass elastically coupled to the back plate; and a proof of mass electrode coupled to the proof of mass. Movement of the sensor causes a capacitance between the proof of mass electrode and the at least one back plate electrode to vary and the capacitance represents a magnitude of the movement of the sensor.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: May 3, 2016
    Assignee: KNOWLES ELECTRONICS, LLC
    Inventors: Sung Bok Lee, Eric J. Lautenschlager
  • Patent number: 9264814
    Abstract: Provided is a microphone. The microphone includes a substrate including an acoustic chamber, a lower backplate disposed on the substrate, a diaphragm spaced apart from the lower backplate on the lower backplate, the diaphragm having a diaphragm hole passing therethrough, a connection unit disposed on the lower backplate to extend through the diaphragm hole, and an upper backplate disposed on the connection unit, the upper backplate being spaced apart from the diaphragm. Thus, the microphone may be improved in sensitivity and reliability.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: February 16, 2016
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Chang Han Je, Jaewoo Lee, Woo Seok Yang, Jong-Kee Kwon
  • Patent number: 9264833
    Abstract: The present disclosure provides one embodiment of an integrated microphone structure. The integrated microphone structure includes a first silicon substrate patterned as a first plate; a silicon oxide layer formed on one side of the first silicon substrate; a second silicon substrate bonded to the first substrate through the silicon oxide layer such that the silicon oxide layer is sandwiched between the first and second silicon substrates; and a diaphragm secured on the silicon oxide layer and disposed between the first and second silicon substrates, wherein the first plate and the diaphragm are configured to form a capacitive microphone.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: February 16, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jung-Huei Peng, Chia-Hua Chu, Yao-Te Huang, Chin-Yi Cho, Li-Min Hung, Chun-Wen Cheng
  • Patent number: 9162873
    Abstract: A packaging concept for MEMS components having at least one diaphragm structure formed in the front side of the component is provided, according to which the MEMS component is mounted on a support which at least laterally delimits a cavity adjoining the diaphragm structure. In addition, at least one electrical feedthrough is formed in the support which allows electrical contacting of the MEMS component through the support. To achieve the largest possible rear volume for the diaphragm structure of the MEMS component for a given chip surface area, and also to simplify the processing of the support, according to the invention the electrical feedthroughs are integrated into the wall of the cavity adjoining the diaphragm structure, in that at least one section of such a feedthrough is implemented in the form of an electrically conductive coating of a side wall section of the cavity.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: October 20, 2015
    Assignee: ROBERT BOSCH GMBH
    Inventors: Jochen Zoellin, Ricardo Ehrenpfordt, Christoph Schelling, Juergen Graf, Frederik Ante, Michael Curcic
  • Patent number: 9107009
    Abstract: A silicon condenser microphone is disclosed. The microphone includes a transducer, an IC chip, a first board, a second board spaced from the first board by a frame, and a third board located between the first board and the second board. A cavity is accordingly formed by the first board, the frame and the third board to accommodate the transducer and the IC chip. The IC chip is electrically connected to a surface of the third board facing the second board. The microphone provides an enlarged back volume to the transducer and provides the transducer with a shield against electro-magnetic interference. A manufacturing process is also disclosed.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: August 11, 2015
    Assignees: AAC Acoustic Technologies (Shenzhen) Co., Ltd., AAC Acoustic Technologies (Chanzhou) Co., Ltd.
    Inventors: Xu-dong Pan, Jian-quan Li
  • Patent number: 9060229
    Abstract: An electret microphone having reduced noise due to reduced leakage current is provided. The microphone includes a flexible diaphragm, and sensor member disposed in opposing, spaced relation to the diaphragm and comprising a semi-conductor channel. At least one electret surface, comprised of a dielectric material having a permanently-embedded static electric charge, is disposed on one of the diaphragm and the sensor member. In turn, the semi-conductor channel of the sensor member has an electrical conductivity dependent upon relative movement of the diaphragm and support member responsive to acoustic signals incident upon the diaphragm, wherein the channel provides an output signal indicative of the acoustic signals. The electret surface may be disposed on the diaphragm. Alternatively, the electret surface may be disposed on the sensor member in spaced, face-to-face relation to an electrically conductive surface located on the diaphragm.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: June 16, 2015
    Assignee: Cochlear Limited
    Inventors: Scott Allan Miller, III, Denis Dupeyron
  • Publication number: 20150146894
    Abstract: A semiconductor device includes a microphone module implemented on a first semiconductor die and a signal processing module implemented on a second semiconductor die. The microphone module includes a movable microphone element arranged at a main side of the first semiconductor die and the second semiconductor die is mounted to the main side of the first semiconductor die.
    Type: Application
    Filed: November 25, 2013
    Publication date: May 28, 2015
    Applicant: Infineon Technologies AG
    Inventor: Chee Yang Ng
  • Patent number: 9042581
    Abstract: Measures for improving the acoustic properties of a microphone component produced in sacrificial layer technology. The micromechanical microphone structure of such a component is implemented in a layered structure, and includes at least one diaphragm, which is deflectable by sound pressure and which is implemented in a diaphragm layer, and a stationary acoustically permeable counterelement for the diaphragm which is implemented in a thick functional layer above the diaphragm layer and which is provided with through openings for introducing sound. The through openings for introducing sound are situated above the middle region of the diaphragm, while perforation openings which are largely acoustically passive are provided in the counterelement, above the edge region of the diaphragm.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: May 26, 2015
    Assignee: ROBERT BOSCH GMBH
    Inventors: Jochen Zoellin, Axel Grosse, Bernhard Gehl
  • Publication number: 20150125007
    Abstract: A packaged microphone has a lid structure with an inner surface having a concavity, and a microphone die secured within the concavity. The packaged microphone also has a substrate coupled with the lid structure to form a package having an interior volume containing the microphone die. The substrate is electrically connected with the microphone die. In addition, the packaged microphone also has aperture formed through the package, and a seal proximate to the microphone die. The seal acoustically seals the microphone and the aperture to form a front volume and a back volume within the interior volume. The aperture is in acoustic communication with the front volume.
    Type: Application
    Filed: January 9, 2015
    Publication date: May 7, 2015
    Inventors: David Bolognia, Kieran Harney
  • Patent number: 9002039
    Abstract: A MEMS microphone has a base, a backplate, and a backplate spring suspending the backplate from the base. The microphone also has a diaphragm forming a variable capacitor with the backplate.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: April 7, 2015
    Assignee: Invensense, Inc.
    Inventor: Xin Zhang
  • Patent number: 9002040
    Abstract: Microelectromechanical systems (MEMS) microphone devices and methods for packaging the same include a package housing, an interior lid, and an integrated MEMS microphone die. The package housing includes a sound port therethrough for communicating sound from outside the package housing to an interior of the package housing. The interior lid is mounted to an interior surface of the package housing to define an interior lid cavity, and includes a back volume port therethrough. The MEMS microphone die is mounted on the interior lid over the back volume port, and includes a movable membrane. The back volume port is configured to allow the interior lid cavity and the MEMS movable membrane to communicate, thereby increasing the back volume of the MEMS microphone die and enhancing the sound performance of the packaged MEMS microphone device.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: April 7, 2015
    Assignee: Invensense, Inc.
    Inventor: Jicheng Yang
  • Patent number: 9002038
    Abstract: A microphone package is described that includes a plastic lid, a substrate base, and two electrical components. The plastic lid includes a first conductive lid trace and the substrate base includes a first conductive substrate trace. The plastic lid is sealably coupled to the substrate base to form a sealed cavity. The substrate trace and the lid trace are arranged such that, when the cavity is sealed, an electrical connection is formed between the substrate trace and the lid trace. The first component is mounted on the substrate base and electrically coupled to the substrate trace. The second component is mounted on the lid and is electrically coupled to the lid trace. The electrical connection between the substrate trace and the lid trace provides electrical coupling between the first component and the second component. At least one of the first component and the second component includes a MEMS microphone die.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: April 7, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Eric Ochs, Jay S. Salmon
  • Patent number: 8989422
    Abstract: A microphone unit (1) comprises a first vibrating part (14), a second vibrating part (15), and a housing (20) for accommodating the first vibrating part (14) and the second vibrating part (15), the housing being provided with a first sound hole (132), a second sound hole (101), and a third sound hole (133). The housing (20) is provided with a first sound path (41) for transmitting sound pressure inputted from the first sound hole (132) to one surface (142a) of a first diaphragm (142) and to one surface (152a) of a second diaphragm (152), a second sound path (42) for transmitting sound pressure inputted from the second sound hole (101) to the other surface (142b) of the first diaphragm (142), and a third sound path (43) for transmitting sound pressure inputted from the third sound hole (133) to the other surface (152b) of the second diaphragm (152).
    Type: Grant
    Filed: January 17, 2011
    Date of Patent: March 24, 2015
    Assignee: Funai Electric Co., Ltd.
    Inventors: Fuminori Tanaka, Ryusuke Horibe, Shuji Umeda, Takeshi Inoda
  • Patent number: 8989411
    Abstract: A vacuum sealed directional microphone and methods for fabricating said vacuum sealed directional microphone. A vacuum sealed directional microphone includes a rocking structure coupled to two vacuum sealed diaphragms which are responsible for collecting incoming sound and deforming under sound pressure. The rocking structure's resistance to bending aids in reducing the deflection of each diaphragm under large atmospheric pressure. Furthermore, the rocking structure exhibits little resistance about its pivot thereby enabling it to freely rotate in response to small pressure gradients characteristic of sound. The backside cavities of such a device can be fabricated without the use of the deep reactive ion etch step thereby allowing such a microphone to be fabricated with a CMOS compatible process.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: March 24, 2015
    Assignee: Board of Regents, The University of Texas System
    Inventors: Neal A. Hall, Michael Louis Kuntzman, Karen Denise Kirk
  • Patent number: 8983099
    Abstract: An electrostatic loudspeaker includes: a first electrode having acoustic transmission property; a second electrode having acoustic transmission property, and disposed so as to be opposed to the first electrode; a vibrating member having conductibility, and disposed between the first electrode and the second electrode; a first elastic member having elasticity, insulation property, and acoustic transmission property, and disposed between the vibrating member and the first electrode; a second elastic member having elasticity, insulation property, and acoustic transmission property, and disposed between the vibrating member and the second electrode; and a first separation member having insulation property and acoustic transmission property, and disposed on an opposite side of a face of the first electrode, which is opposed to the first elastic member.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: March 17, 2015
    Assignee: Yamaha Corporation
    Inventors: Yasuaki Takano, Kunimasa Muroi, Yoshikatsu Matsubara
  • Patent number: 8971553
    Abstract: An electret material having excellent charge retentivity against heat is provided. The electret material 10 includes an electrode plate 1, a semiconducting layer 2 formed on the electrode plate 1, and an electret layer 3 formed on the semiconducting layer 2. The semiconducting layer 2 includes carbon and a fluororesin. This electret material 10 can be inhibited from decreasing in the surface potential of the electret layer 3 when heated to a high temperature.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: March 3, 2015
    Assignee: Nitto Denko Corporation
    Inventor: Seiichi Takaoka
  • Patent number: 8965013
    Abstract: The invention is directed to echo cancellation for a microphone system. An exemplary microphone system comprises a first transistor, wherein a gate terminal of the first transistor is connected to a ground terminal via a microphone electret element, the microphone electret element being associated with a capacitance and a voltage, the microphone electret element reverse biasing the first transistor; and a second transistor in parallel with the first transistor, wherein a gate terminal of the second transistor is connected to the ground terminal via a capacitor, the capacitance of the capacitor being selected to suppress at least a portion of a common mode signal, and wherein the gate terminal of the second transistor is not connected to the microphone electret element. The common mode signal comprises the echo, which may be the output of a speaker system that is received as input to the microphone system.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: February 24, 2015
    Assignees: Sony Corporation, Sony Mobile Communications AB
    Inventors: Joakim Eriksson, Jonny Strandh
  • Patent number: 8965027
    Abstract: A packaged microphone has a lid structure with an inner surface having a concavity, and a microphone die secured within the concavity. The packaged microphone also has a substrate coupled with the lid structure to form a package having an interior volume containing the microphone die. The substrate is electrically connected with the microphone die. In addition, the packaged microphone also has aperture formed through the package, and a seal proximate to the microphone die. The seal acoustically seals the microphone and the aperture to form a front volume and a back volume within the interior volume. The aperture is in acoustic communication with the front volume.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: February 24, 2015
    Assignee: Invensense, Inc.
    Inventors: David Bolognia, Kieran P. Harney
  • Publication number: 20150043759
    Abstract: A microphone has a package, and an acoustic sensor, an under surface of which is fixed to an inner face of the package. The acoustic sensor has a substrate having a plurality of hollows penetrating the substrate from a top surface to an under surface, and a capacitor structure made by a movable electrode plate and a fixed electrode plate disposed above each of the hollows. A package sound hole is opened in the package in a position opposed to the under surface of the acoustic sensor. A dent which is communicated with each of the hollows and open below the under surface side of the substrate is formed below the under surface of the substrate. A height of the dent measured from the under surface of the substrate is equal to or less than half of a height of the hollow.
    Type: Application
    Filed: July 25, 2014
    Publication date: February 12, 2015
    Inventors: Momotani Koji, Takashi Kasai
  • Patent number: 8948419
    Abstract: A MEMS microphone has 1) a backplate with a backplate interior surface and a plurality of through-holes, and 2) a diaphragm spaced from the backplate. The diaphragm is movably coupled with the backplate to form a variable capacitor. At least two of the through-holes have an inner dimensional shape (on the backplate interior surface) with a plurality of convex portions and a plurality of concave portions.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: February 3, 2015
    Assignee: Invensense, Inc.
    Inventor: Xin Zhang
  • Patent number: 8948420
    Abstract: A MEMS microphone. The MEMS microphone includes a substrate, a transducer support that includes or supports a transducer, a housing, and an acoustic channel. The transducer support resides on the substrate. The housing surrounds the transducer support and includes an acoustic aperture. The acoustic channel couples the acoustic aperture to the transducer, and isolates the transducer from an interior area of the MEMS microphone.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: February 3, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Andrew J. Doller, Michael Peter Knauss, Philip Sean Stetson
  • Patent number: 8942394
    Abstract: A MEMS acoustic transducer provided with a substrate having cavity, and a membrane suspended above the cavity and fixed peripherally to the substrate, with the possibility of oscillation, through at least one membrane anchorage. The membrane comprises at least one spring arranged in the proximity of the anchorage and facing it, and is designed to act in tension or compression in a direction lying in the same plane as said membrane.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: January 27, 2015
    Assignee: STMicroelectronics S.r.l.
    Inventors: Sebastiano Conti, Matteo Perletti
  • Patent number: 8934649
    Abstract: A MEMS device includes substrate having a cavity. A dielectric layer is disposed on a second side of substrate at periphery of the cavity. A backplate structure is formed with the dielectric layer on a first side of the substrate and exposed by the cavity. The backplate structure includes at least a first backplate and a second backplate. The first backplate and the second backplate are electric disconnected and have venting holes to connect the cavity and the chamber. A diaphragm is disposed above the backplate structure by a distance, so as to form a chamber between the backplate structure and the diaphragm. A periphery of the diaphragm is embedded in the dielectric layer. The diaphragm serves as a common electrode. The first backplate and the second backplate respectively serve as a first electrode unit and a second electrode unit in conjugation with the diaphragm to form separate two capacitors.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: January 13, 2015
    Assignee: Solid State System Co., Ltd.
    Inventors: Chien-Hsing Lee, Tsung-Min Hsieh, Jhyy-Cheng Liou
  • Patent number: 8934648
    Abstract: A microphone includes a diaphragm assembly supported by a substrate. The diaphragm assembly includes at least one carrier, a diaphragm, and at least one spring coupling the diaphragm to the at least one carrier such that the diaphragm is spaced from the at least one carrier. An insulator (or separate insulators) between the substrate and the at least one carrier electrically isolates the diaphragm and the substrate.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: January 13, 2015
    Assignee: Invensense, Inc.
    Inventor: Jason W. Weigold
  • Patent number: 8921956
    Abstract: MEMS devices with a rigid backplate and a method of making a MEMS device with a rigid backplate are disclosed. In one embodiment, a device includes a substrate and a backplate supported by the substrate. The backplate includes elongated protrusions.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: December 30, 2014
    Assignee: Infineon Technologies AG
    Inventor: Alfons Dehe
  • Patent number: 8902604
    Abstract: A component support allows cost-effective, space-saving and low-stress packaging of MEMS components having a sensitive structure. The component support is suited, in particular, for MEMS components, which are mounted in the cavity of a housing and are intended to be electrically contacted. The component support is produced as a composite part in the form of a hollow body open on one side, the composite part being made essentially of a three-dimensionally shaped carrier foil flexible in its shaping, and an encasing material. The encasing material is molded onto one side of the carrier foil, so that the carrier foil is situated on the inner wall of the component support. At least one mounting surface for at least one component is formed on the inner wall having the carrier foil. The carrier foil is also provided with contact surfaces and insulated conductive paths for electrically contacting the at least one component.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: December 2, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Jochen Zoellin, Ricardo Ehrenpfordt, Ulrike Scholz
  • Patent number: 8897470
    Abstract: A method of fabricating an integrated semiconductor device, comprising: providing a substrate having a first region and a second region; and forming a semiconductor unit on the first region and forming a micro electro mechanical system (MEMS) unit on the second region in one process.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: November 25, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Hsueh-I Huang, Ming-Tung Lee, Shuo-Lun Tu
  • Patent number: 8867772
    Abstract: To stably obtain high acoustic resistance required for pressure equalization in a non-directional condenser microphone unit. A diaphragm 8 whose circumferential edge is attached to a diaphragm holder 4 and a fixed electrode 6 made of a metal material and arranged to face the diaphragm at a predetermined interval through an electrically insulating spacer 5 are provided, and the rear space of the above-mentioned diaphragm is closed to constitute the non-directional condenser microphone unit. A blind groove 16a is formed by an etching process at a portion which is in contact with the spacer 5 and in the fixed electrode 6 so that the rear space between the diaphragm and the fixed electrode may communicate with the outside, and a communication part formed between the groove 16a and the spacer 5 may be used as acoustic resistance for pressure equalization.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: October 21, 2014
    Assignee: Kabushiki Kaisha Audio-Technica
    Inventor: Hiroshi Akino
  • Patent number: 8855337
    Abstract: The invention relates to a method for manufacturing a micromachined microphone and an accelerometer from a wafer 1 having a first layer 2, the method comprising the steps of dividing the first layer 2 into a microphone layer 5 and into an accelerometer layer 6, covering a front side of the microphone layer 5 and a front side of the accelerometer layer 6 with a continuous second layer 7, covering the second layer 7 with a third layer 8, forming a plurality of trenches 9 in the third layer 8, removing a part 10 of the wafer 1 below a back side of the microphone layer 5, forming at least two wafer trenches 11 in the wafer 1 below a back side of the accelerometer layer 6, and removing a part 12, 13 of the second layer 7 through the plurality of trenches 9 formed in the third layer 8. The micromachined microphone and the accelerometer according to the invention is advantageous over prior art as it allows for body noise cancellation in order to minimize structure borne sound.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: October 7, 2014
    Assignee: NXP, B.V.
    Inventors: Twan van Lippen, Geert Langereis, Martijn Goossens
  • Patent number: 8842858
    Abstract: The present invention relates to an electret condenser microphone which comprises an exterior sidewall structure attached to a carrier. The exterior sidewall structure comprises a non-conductive base material carrying first and second electrical wiring patterns electrically connected to first and second electrical traces, respectively, of the carrier. A diaphragm holder, carrying a conductive microphone diaphragm is attached to the sidewall structure to establish electrical connection between a conductive microphone diaphragm and one of the first and second electrical wiring patterns of the sidewall structure. A conductive perforated backplate is arranged in spaced relationship to the conductive microphone diaphragm. The conductive perforated backplate is electrically connected to another one of the first and second wiring patterns of the sidewall structure.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: September 23, 2014
    Assignee: Invensense, Inc.
    Inventor: Christian Lillelund
  • Patent number: 8842859
    Abstract: A packaged microphone has a base with a top face, a lid coupled to the base and forming an interior, and a MEMS microphone (i.e., a die or chip) secured to the top face of the base within the interior. The packaged microphone also includes a circuit chip secured to the top face of the base within the interior. The circuit chip has a top surface with a top pad, a bottom surface with a bottom pad, and a via. The bottom pad is electrically connected to the base, and the via electrically connects the top pad with the bottom pad. A wire bond is connected between the MEMS microphone and the top pad on the circuit chip. The MEMS microphone is electrically connected to the bottom pad and the base through the via.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: September 23, 2014
    Assignee: Invensense, Inc.
    Inventors: Michael D. Delaus, Kathleen O'Donnell
  • Patent number: 8837754
    Abstract: A MEMS transducer has a micromechanical sensing structure and a package. The package is provided with a substrate, carrying first electrical-connection elements, and with a lid, coupled to the substrate to define an internal cavity, in which the micromechanical sensing structure is housed. The lid is formed by: a cap layer having a first surface and a second surface, set opposite to one another, the first surface defining an external face of the package and the second surface facing the substrate inside the package; and a wall structure, set between the cap layer and the substrate, and having a coupling face coupled to the substrate. At least a first electrical component is coupled to the second surface of the cap layer, inside the package, and the coupling face of the wall structure carries second electrical-connection elements, electrically connected to the first electrical component and to the first electrical-connection elements.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: September 16, 2014
    Assignees: STMicroelectronics S.r.l., STMicroelectronics (Malta) Ltd.
    Inventors: Kevin Formosa, Mark Anthony Azzopardi, Mario Francesco Cortese, Mark Shaw, Alex Gritti, Luca Maggi, Filippo David
  • Patent number: 8824706
    Abstract: This disclosure provides systems, methods and apparatus for glass-encapsulated microphones. In one aspect, a glass-encapsulated microphone may include a glass substrate, an electromechanical microphone device, an integrated circuit device, and a cover glass. The cover glass may be bonded to the glass substrate with an adhesive, such as epoxy, or a metal bond ring. The cover glass may have any of a number of configurations. In some configurations, the cover glass may define an aperture for the electromechanical microphone device at an edge of the glass-encapsulated microphone. In some configurations, the cover glass may define a cavity to accommodate the integrated circuit device that is separate from a cavity that accommodates the electromechanical microphone device.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: September 2, 2014
    Assignee: Qualcomm MEMS Technologies, Inc.
    Inventors: Philip Jason Stephanou, David William Burns
  • Patent number: 8818007
    Abstract: A device and method for generating or recovering acoustic energy are provided, including a substrate; at least one deformable cavity disposed in the substrate and being delimited by at least one mobile or deformable wall, the at least one deformable cavity extending in a lateral direction in the substrate defined by a first plane parallel to an upper surface of the substrate; at least one opening disposed in an upper portion of the at least one deformable cavity, configured to transmit at least one pulse produced in the at least one deformable cavity to an ambient atmosphere, the at least one pulse being a pressure pulse, a depression pulse, a partial vacuum pulse, or a combination thereof; and at least one actuator configured to generate a force in the first plane that displaces or deforms, or displaces and deforms, the at least one mobile or deformable wall.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: August 26, 2014
    Assignee: Commissariat a l'energie atomique et aux energies alternatives
    Inventor: Philippe Robert
  • Patent number: 8818010
    Abstract: Disclosed is a microphone unit comprising a film substrate (1), electrically conductive layers (15, 16) which are formed on both substrate surfaces of the film substrate (11), and an electrical acoustic transducer unit (12) which is provided on the film substrate (11) and comprises a diaphragm capable of converting a sound pressure to an electrical signal. In the microphone unit, the linear expansion coefficient of the film substrate (11), including the electrically conductive layers (15, 16), falls within the range of 0.8 to 2.5 times, inclusive, the linear expansion coefficient of the diaphragm.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: August 26, 2014
    Assignee: Funai Electric Co., Ltd.
    Inventors: Takeshi Inoda, Ryusuke Horibe, Fuminori Tanaka, Tomio Ishida
  • Patent number: 8787601
    Abstract: A condenser microphone includes a substrate having a cavity, first and second spacers defining an opening, a diaphragm having a rectangular shape positioned inside of the opening, and a plate having a rectangular shape positioned just above the diaphragm. Plate joint portions integrally interconnected with two sides of the plate are directly attached onto the second spacer. Supports, which are attached onto the second spacer across the opening and project inwardly of the opening, are connected to the prescribed portions of the diaphragm via third spacers relatively to the other two sides of the plate. The center portion of the diaphragm can be designed in a multilayered structure, and the peripheral portion can be bent outwardly. In addition, both ends of the diaphragm are fixed in position, while free ends of the diaphragm vibrate due to sound waves.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: July 22, 2014
    Assignee: Yamaha Corporation
    Inventors: Toshihisa Suzuki, Yukitoshi Suzuki, Nariyasu Yaguchi, Kazushi Sakurauchi
  • Patent number: 8781140
    Abstract: A microelectromechanical (MEMS) microphone assembly includes a MEMS structure, a base portion, and a lid. The MEMS structure includes a diaphragm that responds to changes in sound pressure and the MEMS structure contributes to a vertical dimension of the assembly. The MEMS structure is supported by the base portion. The lid partially but not completely encloses the MEMS structure, such that the portion of the MEMS structure is not surrounded by the lid, the lid, and the base portion form a boundary with and are exposed to the environment external to the microphone assembly.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: July 15, 2014
    Assignee: Knowles Electronics, LLC
    Inventors: Eric J. Lautenschlager, Galen Kirkpatrick